第12讲 行程问题

合集下载

2014年五年级暑假第12讲-复杂行程问题(教师版)

2014年五年级暑假第12讲-复杂行程问题(教师版)

第十二讲复杂行程问题多人多次相遇追及二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差火车过桥火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度 人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

行程问题精讲

行程问题精讲

基本慨念:行程问题是研究物体运动的,它研究的是物体运动的速度、时间、行程三者的关系。

一、基本公式:路程用字母s表示;速度用字母v表示;时间用字母t表示。

有如下公式:关键问题,确定行程过程中路程、速度、时间。

(一)相遇问题基本公式相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长(二)相离问题两个运动物体由于背向运动而相离,就是相离问题。

解答相离问题的关键是求出两个运动物体共同结果的距离(速度和时间)基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间(三)追及问题基本公式追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差×追及时间追及问题(环形)快的路程-慢的路程=曲线的周长(四)流水问题基本公式顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2例题应用详解:1. 电子游戏--龟兔对跑:屏幕上有一直线,直线上有A、B、C、D四点。

AD=31厘米,BC=3.2厘米。

兔子和乌龟分别从A、D两点同时出发,相向而行。

兔子每秒跑7.5厘米,乌龟每秒爬1.5厘米。

当兔子跑到C点时,乌龟恰好爬到B点。

AB相距多少厘米?CD相距多少厘米?本题解法有几种,可设未知数,也可不设未知数。

解法一:设AB=X,CD=Y联立方程式:x+y+3.2=31(x+3.2)÷7.5=(y+3.2)÷1.5最后x=25.3 y=2.5解法二:当兔子到达C点时,龟兔共走路程为:AC+BD=AD+BC=31+3.2=34.2龟兔速度和为:7.5+1.5=9则:兔子到达C点是用时t=34.2÷9=3.8秒所以AC距离是:3.8×7.5=28.5厘米AB=AC-BC=28.5-3.2=25.3厘米CD=AD-AC=31-28.5=2.5厘米思考:解法二似乎比解法一复杂,其实对于没学过二元一次方程组的小学阶段学生来说,解法二更适用,而且从不同角度思考数学问题的解法,正是数学的魅力所在。

思维拓展第12讲《行程问题(二)》(教案)五年级上册数学人教版

思维拓展第12讲《行程问题(二)》(教案)五年级上册数学人教版

思维拓展第12讲《行程问题(二)》教案一、教学目标1. 知识与技能目标:使学生掌握行程问题的基本概念和解题方法,能够运用速度、时间和路程的关系解决实际问题。

2. 过程与方法目标:通过引导学生观察、分析、归纳,培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 行程问题的基本概念:速度、时间和路程的关系。

2. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。

3. 行程问题的实际应用:解决生活中的行程问题。

三、教学重点与难点1. 教学重点:行程问题的基本概念和解题方法。

2. 教学难点:行程问题的实际应用。

四、教学过程1. 导入新课:通过提问的方式引导学生回顾已学的行程问题知识,为新课的学习做好铺垫。

2. 新课讲解:a. 行程问题的基本概念:速度、时间和路程的关系。

b. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。

c. 行程问题的实际应用:解决生活中的行程问题。

3. 例题解析:通过讲解典型例题,使学生掌握行程问题的解题方法和技巧。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 小组讨论:分组讨论行程问题的解题方法,培养学生的合作意识和创新精神。

6. 课堂小结:总结本节课所学内容,强调重点和难点。

7. 课后作业:布置与行程问题相关的作业,巩固所学知识。

五、教学反思本节课通过讲解、练习、讨论等多种教学手段,使学生掌握了行程问题的基本概念和解题方法。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

同时,要注重培养学生的合作意识和创新精神,提高学生的综合素质。

六、板书设计思维拓展第12讲《行程问题(二)》1. 行程问题的基本概念:速度、时间和路程的关系。

2. 行程问题的解题方法:利用速度、时间和路程的关系式解决问题。

3. 行程问题的实际应用:解决生活中的行程问题。

第12讲 简单的行程问题-2023年小升初数学常规应用题高频易错题汇编(通用版)

第12讲 简单的行程问题-2023年小升初数学常规应用题高频易错题汇编(通用版)

第12讲简单的行程问题2023年小升初数学常规应用题高频易错题汇编(通用版)真题汇编一.应用题1.妙妙家距离学校900米,她每天8:00出发步行上学,步行速度大约是60米/分,学校8:30上课,她从不迟到。

妙妙明天早上上学途中想去买文具,她在文具店停留多长时间合适?请说说你的理由。

2.一辆汽车从建湖到南京行了3小时,以同样的速度从南京到杭州行了4小时。

建湖到南京的公路长285千米,南京到杭州的公路长多少千米?3.甲、乙两车分别从A、B两地同时出发,相向而行,甲车的速度是75千米/时,乙车的速度是85千米/时,行驶2时后两车相遇。

请你提出一个问题并解答。

4.卡车每小时行45千米,小汽车的速度是卡车的1.4倍。

它们从相距162千米的两地同时出发,相向行驶。

(1)经过几小时两车相遇?(2)如果出发时间是8时15分,相遇时是几时几分?5.一辆汽车从甲地开往乙地,以每小时125千米的速度行了8小时后,离终点还有75千米。

甲乙两地的距离是多少千米?6.两地相距350km,甲、乙两车同时从两地出发相向而行。

甲车每小时行50km,出发2.5小时后两车还差75km相遇,乙车每小时行多少千米?7.甲、乙两车同时从相距350千米的A、B两地相向而行。

已知甲车每时行42千米,乙车每时行58千米,多少时后两车相距50千米?8.双休日爸爸带小明去登山。

从山底到山顶全程有9.6km,他们上山用了4小时,下山用了3小时。

上山、下山的平均速度各是多少?9.李老师步行上班,他每小时走5km,从家到学校要用0.75小时。

如果改为骑车,每小时骑行15km,则从家到学校要用多长时间?10.一辆汽车从A地开往B地,前两小时行驶130千米,后3小时平均每小时行驶70千米。

这辆汽车平均每小时行驶多少千米?11.甲、乙两车从相距567km的两地同时出发,相向而行,经过4.2小时相遇。

已知甲车每小时比乙车慢15km。

乙车每小时行多少千米?12.上午11时两列高速列车分别从北京南站和上海站开出,相向而行。

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。

【竞赛题】人教版小学五年级下册数学第12讲《行程问题中的比例关系》竞赛试题(含详解)

【竞赛题】人教版小学五年级下册数学第12讲《行程问题中的比例关系》竞赛试题(含详解)

第十二讲行程问题中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -本讲我们主要学习比例关系在行程问题中的应用.首先学习的是匀速过程中的比例关系,只要弄明白题中有哪些相同的量,就能找到相应的比例关系,比如:当两个过程的路程相同,速度就与时间成反比;当两个过程的时间相同,路程就与速度成正比;当两个过程的速度相同,路程就与时间成正比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?分析:两车同时出发,到相遇的时候所用的时间是相同的.时间相同,速度和路程有什么样的关系?练习1.甲、乙两人的速度比是3:2.两人同时从A地出发前往B地,当甲到达时,乙还差200米.那么AB两地之间的距离是多少?例题2.姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,那么姐姐骑车的速度是多少?分析:姐妹两人都从甲地去乙地,所走的路程是一样的.路程相同,时间和速度有什么样的关系?练习2.小高和墨莫早上8:00同时从甲地出发去乙地,小高的速度是墨莫的两倍.小高比墨莫早到40分钟,那么小高几点到达乙地?在行程问题中,我们经常由“时间比结合时间差”求时间,由“速度比结合速度差”求速度,由“路程比结合路程差”求路程.但是往往,题目中除了告诉了一种量的差,还告诉了另外一种量的比.这时我们就要利用行程问题中的正反比关系,求出差所对应量的比,就可以解决问题了.例题3.大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为4:5,两车开出后60分相遇,并继续前进.问:大客车比小客车晚多少分到达目的地?分析:相遇点与甲乙两地的距离之比是多少?练习3.甲、乙两人同时从A、B两地出发相向而行,甲的速度是乙的两倍.两人出发10分钟后相遇,并继续前进.那么甲比乙早多少分钟到达目的地?如果两个行程过程的路程、速度和时间都不相同,这时就没有正比和反比的关系了.这时我们还有一个很好的工具——复合比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.萱萱去姥姥家,途中要经过上坡、平路和下坡各一段,路程比为1:2:1.已知萱萱在三种路段上行走的速度比为6:4:3,且在平路上行走的时间是25分钟.那么萱萱去姥姥家路上一共花了多长时间?分析:题目告诉了我们路程比与速度比,那么时间比是多少?各段分别用了多长时间?练习4.小红帽去外婆家要翻过一座高山,上山与下山的路程比是2:3.小红帽上山的速度是1米/秒,下山的速度是2米/秒,且路上一共用了70分钟.那么小红帽从外婆家回来需要多少分钟?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.甲、乙两车分别从A、B两地同时出发匀速行驶,相向而行.当甲车到达B地时,乙车距A地30千米;当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?分析:行程问题中一定要注意“同时性”.在甲车超过B地40千米的同时,乙车走了多少千米?例题6.一辆轿车和一辆巴士都从A地到B地,巴士速度是轿车速度的45.巴士要在两地的中点停10分钟,轿车中途不停车.轿车比巴士在A地晚出发11分钟,早7分钟到达B地.如果巴士是10点出发的,那么轿车超过巴士时是10点多少分?分析:如果巴士不在中点停留,那么从A地到B地,轿车将比巴士少花多少分钟?两车所花的时间比是多少?马拉松马拉松赛是一项长跑比赛项目,其距离为42.195公里(也有说法为42.193公里).这个比赛项目要从公元前490年9月12日发生的一场战役讲起.这场战役是波斯人和雅典人在离雅典不远的马拉松海边发生的,史称希波战争,雅典人最终获得了反侵略的胜利.为了让故乡人民尽快知道胜利的喜讯,统帅米勒狄派一个叫裴里庇第斯的士兵回去报信.裴里庇第斯是个有名的“飞毛腿”,为了让故乡人早知道好消息,他一个劲地快跑,当他跑到雅典时,已上气不接下气,激动的喊道“欢乐吧,雅典人,我们胜利了!”说完,就倒在地上死了.为了纪念这一事件,在1896年举行的现代第一届奥林匹克运动会上,设立了马拉松赛跑这个项目,把当年菲迪皮茨送信跑的里程——42.193公里作为赛跑的距离.马拉松原为希腊的一个地名.在雅典东北30公里.其名源出腓尼基语marathus,意即“多茴香的”,因古代此地生长众多茴香树而得名.体育运动中的马拉松赛跑就得名于此.1896年举行首届奥运会时,顾拜旦采纳了历史学家布莱尔(Michel Breal)以这一史事设立一个比赛项目的建议,并定名为“马拉松”.比赛沿用当年菲迪皮得斯所跑的路线,距离约为40公里200米.此后十几年,马拉松跑的距离一直保持在40公里左右.1908年第4届奥运会在伦敦举行时,为方便英国王室人员观看马拉松赛,特意将起点设在温莎宫的阳台下,终点设在奥林匹克运动场内,起点到终点的距离经丈量为26英里385码,折合成42.195公里.国际田联后来将该距离确定为马拉松跑的标准距离.女子马拉松开展较晚,1984年第23届奥运会才被正式列入比赛项目.由于马拉松比赛一般在室外进行,不确定因素较多,所以在2004年1月1日前马拉松一直使用世界最好成绩,没有世界记录.在2004年雅典奥运会上,首次将奥运会的最后一个比赛项目男子马拉松的颁奖典礼安排在闭幕式上举行.在东道主希腊人看来,马拉松比赛是奥运会的“灵魂”之一,在闭幕式上为马拉松运动员颁奖,是奥林匹克回家的一种象征.2008年北京奥运会,继承了这一做法.作业1.小东每天步行上下学,去的时候每秒走1.8米,回来的时候每秒走1.2米,上下学共用时25分钟,那么小东家与学校相距多少千米?作业2.小灰灰和喜羊羊同时从狼村和羊村相对出发,在距中点1千米处相遇,已知小灰灰和喜洋洋的速度比为3:2,那么狼村和羊村相距多少千米?作业3.话说段誉的“凌波微步”独步一方,乔峰的武功天下闻名,两人相遇,一见如故,决定在杏子林外比试下脚程,来个万米跑.只见尘土飞扬,两人同时出发,一路上不分先后,最后还是段誉略胜一筹.当段誉达到终点时,乔峰还差2米.已知段誉的速度为10米/秒,那么乔峰的速度是多少?作业4.阿呆和阿瓜去公园玩.阿呆因故先走了7分钟,阿瓜出发后21分钟追上了阿呆.如果阿瓜比阿呆每分钟多走20米,那么阿呆每分钟走多少米?2:5作业5.甲、乙两人从A、B两地同时出发相向而行,两人的速度比为,经过18分钟相遇.如果甲的速度变为原来的2倍,那么经过多少分钟两人相遇?。

高斯小学奥数六年级上册含答案第12讲复杂行程问题

高斯小学奥数六年级上册含答案第12讲复杂行程问题

第十二讲复杂行程问题认的没 箱动;•扶,快数 高太沬 阿呆阳瓜到欣欣胡场,有到曲部电梯,一 部向丄行驶.一鄙向下 行驶"觉得很冇意思这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一.扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成.2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二.优化配置问题注意“极值”发生时的状况;三.往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.A------------------------------------------ B甲 ------------- ②“丄^②①「② ③___________________________<乙往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同;4. 车速不同,人速不同;5. 多组往返接送.例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.卡莉娅 4 扶梯»扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」 4 辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4 千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10 千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果 4 辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到 B 地,另两架安全返回 A 地,那么A、B 两地最远相距多少千米?「分析」只需让一架飞机飞到 B 地即可,其余两架安全返回.返回的两架飞机其实就是给飞往 B 地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80 名同学去距学校36 千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40 人(除了司机).已知车速每小时45 千米,同学们步行速度是每小时5 千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗/ 苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人: 同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有:一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲, : :碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里 :; -路?:达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点. 另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理. 因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6. 超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是 3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是 3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点. 另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理. 因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6. 超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里路?。

思维拓展第12讲《行程问题》教案

思维拓展第12讲《行程问题》教案
-突破方法:提供实际案例,让学生动手绘制行程图、速度图、时间表,并在小组内分享、讨论,提高解读图表的能力。
(4)将行程问题应用于实际问题:学生可能不知道如何将所学知识应用到实际问题中。
-突破方法:设计生活化的案例,如计算上学、放学的路程、时间等,让学生感受到数学知识在实际生活中的应用。
四、教学流程
(一)导入新课(用时5分钟)
-突破方法:设计不同场景的问题,让学生练习路程、速度、时间的计算,如行程问题、追击问题等。
(2)非匀速直线运动的行程问题计算:加速度、平均速度等概念较为抽象,学生难以理解。
-突破方法:运用图形、动画等教学资源,形象地展示非匀速直线运动的过程,帮助学生理解加速度和平均速度的计算。
(3)行程图、速度图、时间表的绘制与解读:学生可能缺乏实际操作经验,阅读和理解图表存在困难。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“行程问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
同学们,今天我们将要学习的是《行程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过计算路程、速度和时间的情况?”比如,计算从家到学校的路程和时间。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索行程问题的奥秘。
(二)新课讲授(用时10分钟)
3.重点难点解析:在讲授过程中,我会特别强调路程、速度、时间的关系以及匀速直线运动和非匀速直线运动的计算方法。对于难点部分,我会通过举例和比较来帮助大家理解。

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

高斯小学奥数六年级上册含答案第12讲 复杂行程问题

第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。

人教版数学七年级上册第12讲 一元一次方程的实际应用(二)

人教版数学七年级上册第12讲  一元一次方程的实际应用(二)

第12讲一元一次方程的实际应用(二)知识导航1.列一元一次方程解决行程问题;2.列一元一次方程解决工程问题;3.列一元一次方程解决调配与配套问题;4.列一元一次方程解决利润问题.【板块一】行程问题方法技巧1.行程问题有相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运动.2.相遇问题是相向而行,相遇时的总路程=两运动物体的路程和.3.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追.4.顺流(风)、逆流(风)和上坡、下坡问题应注意运动方向和速度不同.题型一一般行程问题【例1】一列匀速前进的火车,从它进入320米长隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,求这列火车的长为多少米?【练1】某人骑自行车由甲地驶向乙地,如果每小时比原来的速度快6公里,便可以早到5分钟;如果每小时比原来的速度慢5公里,便要迟到6分钟.求甲、乙两地的距离为多少公里?题型二相遇问题【例2】小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A,B两地间的路程.【练2】A,B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km,甲车出发25min后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?题型三追及问题【例3】A,B两地相距480km,一列慢车从A地出发,每小时行走50km,一列快车从B地出发,每小时走70km.⑴两车同时出发,相向而行,出发后多少小时相遇?⑵若两车同时出发,同向而行,慢车在快车前面,相遇前经过多少小时两车相距200km?相遇后经过多少小时两车相距200km?【练3】甲、乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.⑴求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)⑵若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?题型四 流水问题与上、下坡问题【例4】某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A ,C 两地之间的路程为10千米,求A ,B 两地之间的路程.【练4】如图所示,折线AC -CB 是一条公路的示意图,AC =8km .甲骑摩托车从A 地沿这条公路到B 地,速度为40km /h ,乙骑自行车从C 地到B 地,速度为10km /h ,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.针对练习11、 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( )A . 0.5小时B . 1小时C . 1.2小时D . 1.5小时2、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x 日追上驽马,那么根据题意,可列方程为 .3、已知A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.若甲车速度为110千米/ 时,乙车速度为90千米/时,经过t 小时两车相距50千米,则t = 小时.4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相 同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内 可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.ACB5、为赴台湾考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟. 7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返同,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶千米,爸爸返回千米(均用含x的代数式表示);(2)小颖的爸爸能否在规定的时间内赶到机场?6.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10km.如果乙船由A地经过B地再到达C地共用了4h,问:乙船从B到到达C地时,甲船距离B地有多远?【板块二】工程问题方法技巧1、基本量之间的关系:工作量=工作效率╳工作时间.2、当总工作量未给出具体数量时,常把总工作量当作整体1.常用的相等关系为:总工作量=各部分工作量的和.题型一有具体数量作为工作量【例5】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【练5】有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及粉刷,同样的时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张师傅现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?题型二没有具体数量作为工作量【例6】检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙合做,但乙中途离开了一段时间,后2天由乙、丙合做完成,问乙中途离开了几天?【练6】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这次货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)题型三牛吃草问题(总工作量发生变化)【例7】有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?【练7】山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则 20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?针对练习21、完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( )A. 2.8B. 3C. 6D. 122、为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 .3、某农民在农贸市场卖鸡,甲先买了总数的一半又半只,然后乙买了剩下的一半又半只,最后丙买了剩下的一半又半只,恰好卖完,则该农民一共卖了只鸡.4、刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成.现在甲先单独绣1天,接着乙又单独绣 4天,剩下的工作由甲、乙两人合绣.再绣多少天可以完成这件作品?5、甲、乙两个施工队在六安(六盘水一安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设 5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,则乙队每天铺设(x—100)米.(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米.6、—棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)—个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值.【板块三】调配及配套问题方法技巧1.调配问题的相等关系往往通过题目中的一句关键的语气呈现.2.产品配套问题的相等关系要抓住成套产品的两个部件之间固有的倍数关系.题型一调配问题【例8】学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.【练8】某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?题型二配套问题【例9】某儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个.要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?【练9】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?针对练习31.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工在厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?2.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件上衣配一条裤子),应怎样分配人数,才能使每天生产的上衣和裤子配套?3.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800无;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B厂各为多少台机器?4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件。

数学 创新实验版教案 四升五-12 行程问题(二)

数学 创新实验版教案 四升五-12 行程问题(二)

第12讲“智慧大王”在哪里——行程问题(二)【教学内容】《数学思维训练教程》暑期创新实验版,四升五第12讲““智慧大王”在哪里——行程问题(二)”。

【教学目标】知识技能通过自主探究,合作交流,正确理解火车过桥问题的基本思想方法。

数学思考对于稍复杂或特殊情况的行程问题,能够借助直观图分析数量关系。

问题解决动手操作演示几种特殊行程问题的过程(如:火车过桥、两车相遇等的过程),从而理清自己的思路,表达自己的想法。

情感态度通过学习活动,培养积极的学习态度,树立好学数学的信心。

【教学重难点】1.通过自主探究,合作交流,正确理解火车过桥问题的基本思想方法。

2.对于较复杂的行程问题,能够借助直观图分析一些数量关系。

【教学准备】动画多媒体语言课件。

第一课时教学过程:生:火车头上桥就开始了。

师:好,现在火车开始上桥了,火车的速度是每秒30米。

(教师把板擦从黑板的一边慢慢向另一边推进,直到板擦头接触到黑板的另一边时停下来。

)师:同学们,火车头已经到桥的尽头了,这时火车通过大桥了吗?生:没有,车身还在桥上呢!师:那火车什么情况下才完全通过大桥?生:火车尾离开大桥时火车才算完全通过桥。

(教师根据学生的回答慢慢推动黑板擦,直至板擦离开黑板)通过了吗?生:没有,快了……生:停,通过了。

师:通过刚才的情景再现,你发现火车完全通过大桥,所走的路程是哪一段?生:黑板的长度+板擦的长度生:桥长+车身长(教师可以根据学生的回答画出线段图)师:对,火车过桥时,因为本身有一定的长度,不能忽略,因而它的行程包含了它所需要通过的路程与它本身的长度。

这就是我们行程问题中的一种类型——火车过桥问题。

凡是需要考虑运动物体自身的长度(队列、物体等)的行程问题,都是属于这一类问题。

板书课题:火车过桥师:那么现在大家算一算,大头儿子和小头爸爸乘坐的火车需要多长时间才能通过南京长江大桥?教师可充分利用身边现成的东西,如橡皮、铅笔、粉笔文具盒、笔袋等,根据题意动手演示,使应用题的内容形象化,利用线段图来分析问题从而找到解题的线索解决较复杂的火车过桥问题。

四年级下册数学试题-奥数专题讲练:第12讲 行程问题之相遇与追击 提高篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:第12讲 行程问题之相遇与追击 提高篇(解析版)全国通用

第十二讲 行程问题之相遇与追击内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t )、速度(v )和路程(s )这三个基本量,它们之间的关系如下:(1)速度×时间=路程 可简记为:s = vt(2)路程÷速度=时间 可简记为:t = s ÷v(3)路程÷时间=速度 可简记为:v = s ÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和 t v S 和和=追及问题:速度差×追及时间=路程差 t v S 差差=对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?分析:40 +5 = 45(千米),(40 + 45)×4 = 340(千米),340千米 < 400千米 ,因为两车4小时共行340千米,所以4小时后两车没有相遇.【巩固】甲、乙两地相距480千米.一辆汽车从甲地开往乙地,每小时行52千米, 行驶312千米后遇到从乙地开来的另一辆汽车.如果乙地开来的汽车每小时行42千米,算一算这两辆车是不是同时开出的? 分析:312÷52 = 6(小时),(480—312)÷42 = 4(小时),从甲地开出的汽车行驶6小时,从乙地开出的汽车行驶4小时,所以说,这两辆车不是同时开出的.【例2】 大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?分析:大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60—42=18(米/分钟).【前铺】阿呆和小新同时从A 、B 两地相对出发,阿呆每分钟走20米,小新骑着自己的三轮车每分钟比阿呆快42米,经过20分钟后两人相遇,你知道A 、B 两地间的距离吗?分析:(法1)小新的速度是:每分钟62米,A 、B 两地间的距离=阿呆走过的路程+小新走过的路程= 20×20+62×20=400+1240=1640(米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:t v S 和和=.对于刚刚学习奥数的孩子,注意引导他们认识、理解进而应用公式.(法2)直接利用公式:t v S 和和==(20+62)×20=1640(米).【巩固】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?分析:建议教师画线段图。

第12讲 环形行程问题

第12讲  环形行程问题

第12讲环形行程问题【知识要点】<要点1> 同地背向情景设置:两人从同一个地点相背出发①环形1次相遇,相遇时间=路程和÷速度和,路程和=整个环形长度,这里使用1份时间;②环形2次相遇,这里使用2份时间;③环形3次相遇,这里使用3份时间;……环形跑道问题同一地点出发,如果是相背出发,则每合走一圈相遇一次<要点2> 同地相向情景设置:两人从同一个地点同向出发①环形1次相遇,相遇时间=路程差÷速度差,路程差=整个环形长度,这里使用1份时间;②环形2次相遇,这里使用2份时间;③环形3次相遇,这里使用3份时间;……环形跑道问题同一地点出发,如果是同向出发,则每追上一圈相遇一次【精讲精练】<例题1>一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟第一次相遇?再过多少分钟第二次相遇?<练习1>甲、乙两人骑自行车从环形公路上同一地点同时出发,背向而行。

这条公路长2400米,甲骑一圈需要10分钟。

如果第一次相遇时甲骑了1440米。

请问:乙骑一圈需要多少分钟?再过多久他们第二次相遇?<例题2>甲、乙两人在300米长的环形跑道上跑步,他俩同时同地同向出发,甲的速度是每秒5米,乙的速度是每秒3米,那么过多少时间后甲第一次追上乙?再过多少时间甲第三次追上乙?<练习2>一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?再过多少分钟第4次相遇?上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?<练习3>幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?<例题4>在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?<练习4>在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。

高思数学_4年级下第十二讲分段计算的行程问题

高思数学_4年级下第十二讲分段计算的行程问题

行程问题主要有三组共9个基本公式,它们分别是:(1),,;(2),,;(3),,.对于运动过程较为复杂的行程问题,不仅要会灵活运用公式,通过已知的条件求出未知的路程、速度或时间,还要学会分段、比较、从整体考虑等各种辅助手段.分析 要是能求出甲、乙两人的速度就好办了,你能求出他们的速度吗?练习1.甲车每小时行 40千米,乙车每小时行 60千米.甲车从 A 地、乙车从B 地同时出发相向而行,两车相遇后9小时,甲车到达B 地.请问A 、B 两地相距多少千米?分段比较,主要在速度相同、时间相同或路程相同的前提下进行,因而按时间流程来画线段图是非常重要的!有时候,我们还给相同时间点标上相同的记号,使线段图更加一目了然.分析 本题中甲、乙两人的行程过程较为复杂,不画出线段图实在很难想清楚.画出线段图,并注意在图中标出甲出发的时刻、乙出发的时刻、甲到达A 地的时刻、乙到达A 地的时刻.大家自己把已知条件在图中标出来,看看有什么发现. 5分钟后与乙相遇,这时乙距离甲出发A 地,此时甲距离起点ķ˖ ѻ ԅ ĸ˖ ѻ ԅĹ˖ ӾӒA ԙԅĺ˖ ӾӒA ԙԅ练习2.甲、乙分别从 A 、B 两地出发相向而行,甲比乙早出发10分钟,甲每分钟走 60米,乙每分钟走90米.两人相遇后,甲再走12分钟到B 地.请问A 、B 两地相距多少米?在路程、速度与时间这行程三要素中,有时我们只知道其中的一个量,这时我们就可以通过设份数来解决.此外,我们还经常需要用到以下这三个基本倍数关系:当运动的速度相同时,时间的倍数关系等于路程的倍数关系;当运动的时间相同时,速度的倍数关系等于路程的倍数关系;当运动的路程相同时,时间的倍数关系等于速度的反倍数关系:时间长的速度慢,时间短的速度快.因此我们要仔细分析在同一段时间或者同一段路程中,不同运动对象的运动过程. 分析 大家试着自己画出线段图,并把关键时刻标注在线段图中,看看能不能算出自行车队12分钟经过的路程?能不能找到相同时间内,自行车队与摩托车经过的路程之间有什么关系?练习3.肖马虎步行去上学,从家出发5分钟后爸爸发现他没带文具盒,于是骑摩托车去追,在距离家600米的地方追上了他.肖马虎拿着文具盒继续向学校走去,爸爸返回家后发现他作业也没带,于是带上作业又骑摩托车去追,刚好在学校门口追上了他.已知家到学校门口的距离为1000米,请问肖马虎每分钟走多少米?距出发点发点后通信员又马上掉头去追自行车队,再次追上时恰好离出发点自行车队每分钟行多少千米?摩托车每分钟行多少千米?分析 大家先画出线段图,想想兔子睡觉的过程该怎么画.有时候逆向思维会带来意想不到的效果.我们可以不去考虑兔子睡觉的过程,而考虑兔子没睡觉时兔子和乌龟各跑了多远.练习4.乌龟与蜗牛进行100米赛跑,乌龟的速度是蜗牛的10倍.当它们从起点一起出发后,蜗牛不停地爬,乌龟爬到某一地点开始睡觉.乌龟醒来时发现蜗牛已经领先它20米,于是奋起直追.当蜗牛到达终点时,乌龟仍落后10米.请问:乌龟睡觉期间,蜗牛爬了多少米? 龟兔赛跑 第一次比赛:兔子中途睡觉,结果乌龟赢了.第二次比赛:兔子不服气,要再赛一次,乌龟也答应了.枪声一响,兔子拼命往前跑.只差一步到终点时,兔子想回头看乌龟到哪了,它刚转过身,就听到乌龟在它后面笑着说:“老弟,我在这呐,你又输了.”因为,枪声一响,乌龟就一口咬住了兔子的尾巴.第三次比赛:兔子更不服气,还要再赛一次,乌龟同样答应了.枪声一响,兔子拼命往前跑,当它冲过终点时,发现乌龟已在终点等它了,原来乌龟这次叫了计程车.第四次比赛:兔子找到乌龟要再比一次,乌龟说:“好呀,地点我来定.”兔子快到终点时傻眼了,原来终点设在河心的小岛上,它实在没办法上去.第五次比赛:兔子找乌龟雪耻,乌龟说:“线路我选.”兔子说:“可以,但全要选山路.”乌龟说:“没问题,三天后比,全程跑完七座山.”比赛那天,兔子每跑到半山腰,都听见乌龟在山顶上喊:“兔子加油,我就在你前面.”兔子拼尽全力满怀希望跑到第七座山的山腰,还是那个声音“兔子加油,我就在你前面.”原来乌龟找了7个同伴来帮忙了.倍.当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉.兔子醒来时发现乌龟已经领先它终点时,兔子仍落后分析 我们既不知道两车速度的关系,也不知道有关的路程,只知道时间.所以应该搞清楚在每个时间阶段内,甲、乙各自的路程与速度之间的关系.我们知道,当路程一定时,速度的倍数关系与时间的倍数关系恰好相反.你能求出两车速度的倍数关系吗?练习5.甲、乙两车分别从A 、B 两地同时出发,相向而行,18小时后在C 地相遇.相遇后,两车并不停顿,继续前进.甲车在相遇后继续行驶12小时到达B 地.请问甲车到达B 地后乙车还要再开几小时才能到达A 地?时后在行驶经过每天早上7:30司机开车原速返回王经理家.一天早上,王经理想要锻炼一下,因此中途下车走到公司,结果理步行速度的多少倍?如果第二天,王经理仍然中途下车,但是下车地点比前一天距离公司要近一些,题本一、行程问题中的三个基本倍数关系: 1.当运动的速度相同时,时间的倍数关系等于路程的倍数关系;2.当运动的时间相同时,速度的倍数关系等于路程的倍数关系;3.当运动的路程相同时,时间的倍数关系等于速度的反倍数关系.二、按时间流程画线段图的方法.画线段图在求解行程问题中是至关重要的,画好线段图,能使题目条件一目了然,对解题颇有益处.三、分段与比较的想法.主要依据行程问题的三个基本倍数关系,来得到不同行程过程之间的关系.当按时间流程画出线段图后:1.同一个人的不同过程之间,速度相同,可以得到路程与时间之间的关系;2.两个时刻之间所经过的时间相同,可以得到不同对象之间路程与速度的关系;3.长度相同的线段,路程相同,可以得到速度与时间之间的关系.作业1.甲、乙同时从A、B两地出发相向而行.甲每小时走5千米,两人相遇后,乙再走50千米到A地,甲再走8小时到B地.请问乙每小时走多少千米?2.甲、乙两人从同一个地点出发同向而行,甲比乙先出发.甲走了2400米到达A地时,乙落后甲600米.又过了5分钟乙到达A地,此时乙还落后甲500米.请问乙比甲晚出发多少分钟?3.下午3点,小强放学了,从学校开始向家走.同时小强家的宠物狗大壮从家出发,迎接小强.小强与大壮在距离小强家2000米的地方相遇,相遇后大壮立即调头向家跑,跑到家之后再返回迎接小强,在距离小强家500米的地方再次与小强相遇.请问小强家到学校的距离为多少米?4.小高和小娅比赛骑自行车,赛程是2000米.小高骑自行车的速度是小娅的2倍,小娅从出发点很顺利行驶到达终点.而小高的车在中途爆胎了,小高停下来花了些时间换上备用轮胎.换完后,小娅已经骑到他前面200米处.于是小高奋起直追,终于在距离终点200米处追上了小娅,最终赢得了比赛的胜利.那么小高换轮胎期间,小娅骑了多远?如果小高换轮胎花了5分钟,那么小高每分钟骑多少米?5.快羊羊和慢羊羊分别从绵羊村的村东头和村西头同时出发,相向而行,30分钟后它们在途中某地相遇.相遇后两只羊并不停留,继续按原来方向前行,快羊羊又走了10分钟到达村西头.这时,快羊羊马上返回追慢羊羊,请问它追上慢羊羊还需要多少分钟?。

六年级下册奥数试题行程问题(二)全国通用(含答案)

六年级下册奥数试题行程问题(二)全国通用(含答案)

第12讲行程问题(二)在四年级的教材中,我们已经对于相遇问题、追及问题、水流问题和车长及桥长等问题,进行了较为细致的研究。

在这一讲中,我们将进一步就环行路上的行程问题以及多次相遇等问题进行研究。

行程问题在小学的应用题中是变化最多的类型之一。

对于行程问题的研究是小学综合运用知识解决问题的一个重要的内容。

因为行程问题的变化可谓是丰富多彩,不仅在小学,而且在中学的数学和物理的学习中,也是极其重要的内容。

一、环行路上的行程问题环行路上的行程问题,有着它独特的方面,由于环行的道路是封闭的,因此,环行路上的运动,计算行程时,通常与环行道路的周长有关。

例1在400米的环行跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。

甲每秒跑5米,乙每秒跑4米,他们每人跑100米,都要停10秒钟。

求甲追上乙需要多少秒?分析:这道题初看时,由于他们每人跑100米,都要停10秒钟。

似乎不太好解决。

但如果将二人看成不停的跑,就很容易算出甲追上乙的时间,这时再考虑在这期间所停留的时间,问题的解决就比较简单了。

解答:如果甲、乙不停的跑步,甲追上乙共需:100÷(5-4)=100(秒),甲在100秒中共跑:5×100=500(米),而甲在跑100米、200米、300米、400米时共停留了4次,到了500米处恰好追上乙。

不必计算停留的时间。

所以,甲追上乙所需的时间是:100+4×10=140(秒)说明:甲跑到500米处时,正好是乙跑完400米,并且休息完10秒时。

当甲跑到时,乙恰好要出发,他们两个在这一瞬间正好相遇。

例2 如图,A、B是圆直径的两个端点,小华在点A,小明在点B,他们同时出发,反向而行。

他们在C点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B点80米。

求这个圆的周长。

分析:第一次相遇,两人合起来走了半圈,第二次相遇,两人合起来走了一圈,因此,从开始出发到第二次相遇,两人合起来走了一圈半。

奥赛起跑线五年级分册-行程问题(二)

奥赛起跑线五年级分册-行程问题(二)

数学奥赛起跑线五年级分册例题及答案第12讲[行程问题思考与练习(二)]1.甲、乙两人同时从A、B两地相向而行,甲骑自行车每小时行16千米,乙骑摩托车每小时行65千米,甲在离出发点62.4千米处与乙相遇,A、B两地相距多少千米?解:已知甲乙两人是同时出发的,那么他们相遇时两人行驶的时间是一样的.甲的速度为16千米每小时,他行了62.4千米与乙相遇,由此可以得出他们行驶了多少时间,在用时间乘以乙的速度则得出乙行驶了多少千米,把两者的米数相加就得AB两地相距多少千米了.62.4÷16×65+62.4=315.9(千米).答:A、B两地相距315.9千米.2.汽车往返于A、B两地,去时速度为40千米/小时,要想往返的平均速度达到48千米/小时,返回时的速度应为多少?解:总路程除以总时间等于平均速度.①设数法.假设AB两地之间的路程为120千米,则:去时的时间:240÷40=6(小时),来回总时间:240×2÷48=10(小时),回时的时间:10-6=4(小时),回来时速度:240÷4=60(千米/小时) .②代数法.设AB两地之间的路程为S千米,则:去时的时间:S/40小时,来回总时间:2S/48=S/24(小时),回时的时间:S/24-S/40=S/60(小时),回来时速度:S÷(S/60)=60(千米/小时).③巧用单位"1" ,把AB两地之间的路程看作"1" ,去时的时间:1/40小时,来回总时间:2/48=1/24(小时),回时的时间:1/24-1/40=1/60(小时),回来时速度:1÷(1/60)=60(千米/小时).答:返回时的速度应为每小时60千米.3.小张和小王同时分别从甲乙两村出发,相向而行.步行1小时15分钟后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇.小王的速度是每小时3.7千米,小张每小时行多少千米?解:小张比小王多走路程=0.75+0.75=1.5千米,1小时15分钟=5/4小时,小张速度=3.7+1.5÷5/4=4.9千米/小时. 答:小张每小时行4.9千米.4.兄弟俩骑自行车郊游.弟弟先出发,速度是每分钟行200米.5分钟后,哥哥带着一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后又立即返回跑向哥哥,遇到哥哥后再立即掉头向弟弟追去,然后又返回……不断往返,直到哥哥追上弟弟,狗共跑了多少米?解:5分钟时间,弟弟行了200×5=1000米,则哥哥追上弟弟的时间为1000÷(250-200)=20 分钟,因为,狗跑的时间就是哥哥追上弟弟的时间,所以,狗共跑了300×20=6000 (米).答:不断的往返,直到哥哥追上弟弟,狗共跑了6000米.5.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇.如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?解:12时-8时=4时,12时-9时=3时,10时-8时=2时,240÷2=120千米,客车的速度为V1=120/4=30千米/时, 货车的速度为V2=120/3=40千米/时,开出两小时所走的路程为S=(V1+V2)×2=(30+40)×2=140千米,两车相距的距离:240-140=100(千米).答:两车还相距100千米.6.甲、乙两辆汽车同时从东村、西村之间的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米.已知甲车的速度是乙车的两倍.东西两村之间的公路长多少千米?解:甲车速度是乙车的2倍,所以甲车的行程也是乙车的2倍,乙车没有行驶的42千米就是甲车行程的一半,同时乙车自己行驶了42千米,甲车行驶了84千米,甲乙两村公路长84×2=168(千米).答:东西两村之间的公路长168千米.7.一个学生,他家离学校30千米,他每天早晨骑自行车上学,以每小时15千米的速度行进,恰好准时到校.一天早晨,因为逆风,开始的10千米,他只能以每小时10千米的速度骑行,剩下的20千米,他应怎样的速度骑行,才能准时到校?解:家到学校应该用的时间:时间=路程÷速度=30÷15=2(小时),逆风行驶10千米所用的时间:时间=路程÷速度=10÷10=1(小时),剩下的路程需要用的时间:2-1=1(小时),剩下路程的长度:30-10=20(千米),剩下路程的速度:速度=路程÷时间=20÷1=20(千米/小时).答:剩下的20千米,他应每小时行20千米的速度骑行,才能准时到校.8.A、B两地相距60千米,甲、乙两人分别从A、B两地同时出发在两地间往返行走(到达另一地后马上返回),在出发40分钟后两人第一次相遇.乙到达A地后马上返回,在离A地2千米的地方两人第二次相遇.求甲、乙两人行走的速度?解:40分钟=2/3小时,6÷2/3=9千米/小时,40×3=120分钟=2小时, 乙的速度:(6+2)÷2=4(千米/小时), 甲的速度:9-4=5(千米/小时).答:甲每小时行5千米;乙每小时行4千米.9.甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地.两地间的距离是多少千米?解:3小时甲没走,乙走了105千米,甲要想追上乙需要:35×3÷(40-35)=21(小时),当甲到达目的地时还有40千米,40千米需要8小时,也就是说甲追了13小时,这13小时乙走了:[21-40÷(40-35)]×35=455(千米),再加上105千米,两地之间的距离是:455+105=560(千米).答:两地间的距离是560千米.10.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米.两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到达甲地后也立即返回,两车在距中点108千米处再次相遇.问:甲、乙两地相距多少千米?解:客车速度较快,所以再次相遇的时候,客车行了1.5个全程加上108千米;货车行了1.5个全程减去108千米.两车第一次相遇的时候,共行了1个全程;两车第二次相遇的时候,共行了3个全程.第二次相遇时,客车比货车多行了:108×2=216千米,每小时,客车比货车多行:54-48=6千米.所以两车第二次相遇时,共用了:216÷6=36小时.那么两车共行1个全程,需要:36÷3=12小时,甲乙相距:(54+48)×12=1224(千米).答:甲、乙两地相距1224千米.。

第十二讲相遇问题

第十二讲相遇问题
第十二讲 相遇问题
第十二讲
知识导航:
相遇问题
研究走路、行走等匀速运动中的速度、时间和路程三者关系的应用题叫行程问题。 解答行程问题的基础,在于正确理解并掌握速度、时间、路程三种量之间的如下关系: 路程 = 速度×时间 时间 = 路程÷速度 速度 = 路程÷时间 S= VT T=S÷V V=S÷T
相遇问题是行程问题中的一种类型,解答相遇问题要紧紧抓住“速度和”这个关键条 件。相遇问题的基本关系是: 速度和×相遇时间 = 路程 路程÷ 速度和 = 相遇时间 路程÷ 相遇时间 =速度和 速度和一甲速度 =乙速度
3、甲乙两列火车分别从相距 436 千米的两城相向而行,甲车每小时行 52 千米,乙车每小时行 56 千米,乙车先出发两小时后,甲车才出发,甲车行几小时后与乙车相遇?
例 3.小张从甲地到乙地,步行每小时走 5 千米,小王从乙地到甲地,骑自行车每小时行 11 千米, 两人同时出发,在距离甲乙两地的中点 9 千米的地方相遇,甲乙两地相距多少千米? 解析:我们来分析一下,如果两人同时从两地相向而行,速度相同,他们一定在路程的中点相 遇,如果速度不同,相遇的地点一定在中点的一侧,距离速度慢的较近。小王和小张在中点 9
第二关:我能会
例 1.甲、乙两车同时从 A、B 两地相对开出,4 小时相遇,甲车再开 3 小时到达 B 城。已知甲车 每小时比乙车每小时快 20 千米。A、B 两地相距多少千米? 解析:甲、乙两车 4 小时相遇,相遇后甲再开 3 小时到达 B 城,比乙车减少 1 小时,又知道甲 车每小时比乙车快 20 千米,3 小时快 60 千米,就是乙车的速度。用公式速度和×相遇时间= 全程。 解:20×3÷(4-3)=60(千米/小时) (60+80)×4=560(千米) 答:A、B 两地相距 560 千米。

小升初六年级数学名校冲刺精编讲义第12讲行程问题(学生版)

小升初六年级数学名校冲刺精编讲义第12讲行程问题(学生版)

第12讲行程问题一、基本公式: 1.路程=速度×时间 2.速度=路程÷时间 3.时间=路程÷速度二、形成问题的类型及基本关系1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.环形跑道问题:从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同向而行的等量关系:乙走的路程-甲走的路程=跑道长背向而行的等量关系:乙走的路程+甲走的路程=跑道长4.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷ 2 ④水速=(顺水速度-逆水速度)÷ 25.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点一:一般相遇问题【例1】(2019?长沙模拟)甲乙两人从南北城同时出发相向而行,甲行了全程的3,正好与乙相遇.已15知甲每小时行 4.5千米,乙走完全程需要 6.5小时,求南北两地距离.【例2】(2019?北京模拟)甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?1.(2019秋?高碑店市期末)在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米,甲、乙两车同时从两地相向而行,3小时后相遇,已知甲、乙两车的速度之比是3:2,则甲、乙两车的速度各是多少?2.(2019?鄞州区)鄞州院士公园里的一条健身步道全长1500米,张明走完全程要用20分钟,李林走完全程要用30分钟.他们分别从这条健身步道的两端同时出发,相向而行,多长时间能够相遇?3.(2019?郑州)公园的湖边小道近似于长方形(如图).一天,唐老鸭和米老鼠同时从A点出发沿湖边小道跑步,10分钟后在E点相遇.已知40CE米,米老鼠的速度是唐老鸭的34,这条湖边小道全长多少米?4.(2019?湘潭)两辆汽车从A、B两地同时相对开出,甲车每小时行70千米,乙车每小时行80千米两车在离中点15千米处相遇,则A、B两地的距离是多少千米?若甲车因事在中途耽误了58小时,则两车相遇地点距离中点多少千米?5.(2019?句容市)A、B两地相距630米,客车和货车分别从A、B两地同时出发相向而行,3小时相遇.已知客车的速度是货车速度的34,客车每小时行多少千米?7.(2019?杭州模拟)甲、乙两城相距210千米,一辆客车和一辆货车同时从两城相对开出,3小时相遇.已知货车每小时的速度比客车慢6千米,两车每小时各行多少千米?8.(2019?郑州模拟)甲车的速度是100千米,是乙车速度的54,两车同时分别从两地相向而行,在距中点180千米处相遇,问两车开出后多少小时相遇?考点二:一般追击问题【例3】(2019?广州模拟)在AB两城有甲乙两人,分别从AB两城同时相向而行,2小时相遇,相遇时甲所走的路程与乙所走的路程比是7:9;如果甲乙两人同时同向而行,乙需要多少小时才能追上甲?【例4】一辆快车和一辆慢车同时从甲地开往乙地,当快车行了全程的12时,慢车离乙地还有54千米;当快车到达终点时,慢车行了全程的45,甲乙两地相距多少千米?1.(2019?常州)小明跑步去追一个和他同向而行的100米外的那个人,那个人的速度为4米每秒,小明追那个人追了1分40秒,问:小明的速度是多少?2.(2019秋?高碑店市期末)已知一个运动场的跑道的形状与大小如图,两边是半圆形,中间是长方形,小亮站在A点,小明站在B点,两人同时按逆时针方向跑,小亮每分钟跑315米,小明每分钟跑275米,小亮几分钟追上小明?(得数保留一位小数)3.(2019春?营山县期末)甲乙两地相距20千米,客货两车同时从甲乙两地出发,同向而行开往成都.2小时后,客车追上货车.已知货车的速度是30千米/时,求客车每小时行多少千米?4.(2019春?普陀区期中)小巧以65米/分的步行速度从家里出发去少年宫.出发16分钟后,妈妈发现小巧把学习资料袋忘在家里了,于是骑车以185米/分的速度去追.已知小巧家与少年宫之间的路程是1800米,妈妈能在小巧到达少年宫之前追上她吗?考点三:特殊相遇问题【例5】(2019?宁德)A车和B车同时从甲、乙两地相向开出,经过5小时相遇.然后,它们又各自按原速原方向继续行驶3小时,这时A车离乙地还有135千米,B车离甲地还有165千米.甲、乙两地相距多少千米?【例6】(2019?毕节地区模拟)一列快车和一列慢车同时从甲、乙两地相对开出,8小时相遇,相遇后两车继续以原速前进,快车又经过6小时到达乙地,这时慢车离甲地还有175千米,求甲、乙两地相距多少千米?1.(2019?长沙)甲、乙两地是电车发车站,每隔一定时间两地同时发出一辆车,每辆电车都是每隔4分钟遇到迎面开来的一辆电车,小张和小王分别骑车从甲、乙两地同时出发,相向而行,小张每隔5分钟遇到迎面开来的一辆电车,小王每隔6分钟遇到一辆迎面开来的电车,如果电车行驶全程需要56分钟,那么小王与小张在途中相遇时,他们已经出发了多少分?2.(2019?徐州)甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇,小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?3.(2019?武汉)甲、乙、丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲、乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,十分钟再遇到甲,求两镇的距离是多少米?4.甲乙两车同时从A、B两地相对开出,第一次在离A地80千米处相遇.相遇后两车继续前进,到达目的地后又立即返回,第二次相遇在离B地60千米处.求A、B两地间的距离.考点四:环形跑道问题【例7】(2019?湘潭模拟)假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?1.(2019?如东县)李军和王亮沿着水库四周的道路跑步,他们从同一地点同时出发,反向而行,李军的速度是225米/分,王亮的速度是215米/分,经过18分钟两人还相距40米.水库四周的道路长多少米?2.(2019秋?南康区期末)如图,甲、乙两人分别在圆形跑道的直径两端上.甲跑完一圈要4分钟,乙跑完一圈要6分钟.(1)两人如果同时出发,相向而行,多少分钟后能相遇?(2)两人如果同时出发,同向而行,多少分钟后甲能够追上乙?3.(2019春?溧阳市期末)学校环形跑道长400米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过20分钟,笑笑第一次追上淘气.淘气的速度是240米/分,笑笑每分跑多少米?(列方程解答)4.(2019春?蓝山县期中)父子俩在长400米的环形跑道上散步,他俩同时从同一地点出发,如果相背而行,4分钟相遇:如果同向而行,8分钟父亲可以追上儿子.在跑道上走一圈,父亲和儿子各需要多少分钟?5.(2019?湖南模拟)甲乙二人沿400米环形跑道同时从某点开始反方向跑步,已知甲的速度比乙的速度,当两人第一次相遇时甲跑了多少米?快110考点五:流水行船问题【例8】(2019?铜仁市)甲乙两港相距140千米,一艘轮船从甲港驶向乙港用了 4.5小时,返回时因为逆水比去时多用1小时.求这艘轮船往返的平均速度.1.(2019?长沙)一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?2.(2019秋?德江县期末)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?3.(2019春?泗洪县校级期末)两个城市间有一条河,一艘轮船在两个城市间航行,顺流需要6小时,逆流要8小时,水流速度为每小时 2.5千米,求船在静水中的速度.4.(2019?郴州模拟)一艘轮船往返于甲、乙两个码头,去时顺水,每小时行20千米;返回时逆水,每小时行15千米,去时比返回时少用了2小时.甲、乙两个码头相距多少千米?5.(2019?成都)一条船往返于甲、乙两港之间,由甲至乙是顺水行驶;由乙至甲是逆水行驶,已知船在静水中的速度为每小时8公里,平时逆行与顺行所用时间的比为2:1.某天恰逢暴雨.水流速度变为原来的2倍,这条船往返共用9小时,那么甲乙两港相距多少公里?[来源XK]考点六:火车过桥问题【例9】(2019春?聊城期末)一列火车长400米,铁路沿线的电线杆间隔都是40米,这列火车从车头开到第一根电线杆到车尾离开第51根电线杆共用了2分钟.这列火车每分钟行多少米?1.(2019秋?汉川市期末)一列火车长是200米,每秒行驶32米.如果这列火车经过一座大桥时,从车头上桥到车尾离开桥共用104秒.这座大桥长是多少米?2.(2019春?英山县期末)某铁路桥长2000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度?3.(2019?徐州)一个铁路巡道工正在隧道中工作,突然听到一列火车向隧道驶来.他马上看了一下隧道里的路标,知道他与隧道入口间的距离为隧道全长的25.凭着工作经验知道,如果用最快的速度奔跑,不论向哪一头跑,当火车到达他跟前时,他都刚好离开隧道.火车的速度为每小时60千米.巡道工奔跑的速度是多少?考点七:图形类问题【例10】(2019?成都自主招生)两只小爬虫甲和乙,从A点同时出发,沿着长方形ABCD的边按照箭头方向爬行(如图所示).在距离C点32厘米的E点它们第一次相遇;在离D点16厘米的F点第二次相遇;在离A点18厘米的G点第三次相遇.长方形的边AB长多少厘米?1.(2019春?大田县期末)如图,小红和小丽两个小朋友在一块正方形地上玩游戏.小红在A点,小丽在C点,她们同时出发,在距离D点3.5米处的E点相遇.已知小红和小丽的速度比是7:5,这个正方形的周长是米.AB BC,位于A点的第一只蚂蚁按2.(2019?郑州校级自主招生)如图长方形ABCD中,:5:4A B C D A方向爬行,位于C点的第二只蚂蚁按C B A D C的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.DA B.BC C.CD D.AB3.如图,两只小爬虫从A点出发,沿长方形ABCD的边按箭头方向爬行,在距C点16厘米的E点它们第一次相遇,在距D点8厘米的F点第二次相遇,在距A点8厘米的G点第三次相遇,求长方形的边AB 的长.小升初专项培优测评卷(十二)行程问题1.甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的13多50千米时与乙车相遇,A、B两地相距千米.2.A、B两地之间有一条笔直的公路,甲、乙两车分别从A、B两地同时出发,相向而行.30分钟后,甲车行了50千米,乙车行了40千米,此时两车的距离恰好是全程的20%.A、B之间的距离可能是多少千米?(有几种可能都要求出?可用画图表示)3.(2019?宿迁)两车分别从南京、宿迁两地同时相对开出,行驶4小时后,两车已相遇后又相距75千米,已知南京、宿迁两车每小时共行驶全程的724,请你通过列式,计算出南京、宿迁两地相距多少千米?4.(2019?亳州模拟)小巧以65米/分的速度,步行从家里出发去少年宫.出发16分钟后,妈妈发现小巧把垃圾分类资料忘了,于是骑车以195米/分的速度去追.已知小巧家与少年宫之间的路程是2100米.妈妈能在小巧到达少年宫之前追上她吗?5.(2019?南京模拟)A、B两地相距480km,甲走完全程需要8小时,乙走完全程需要12小时,现在甲从A地出发,乙从B地出发,相向而行,相遇之后甲即返回乙继续向A地前进,当甲回到A地时,乙距离A地多少千米?6.(2019?长沙)乙两辆汽车分别从A、B两地同时相对开出,甲、乙两车速度的比是9:7.第一次相遇后车继续向前行驶,甲车到达B地、乙车到达A地后立即掉头向回行驶,两车第二次相遇点和第一次相遇点之间相距32千米,求A、B两地之间的距离.7.(2019?湖南模拟)在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?8.(2019春?沈阳期末)星期日,小明和小强在5600m的环湖公路上晨跑.小强每分钟跑150米,小明每分钟跑130m,两人同时同地出发反向跑步.(1)估计两人在何处第一次相遇?在图中标出.(2)多长时间后两人第一次相遇?(列方程解)。

四年级上册数学奥数试题-第十二讲:行程问题(无答案)全国通用

四年级上册数学奥数试题-第十二讲:行程问题(无答案)全国通用

第十二讲行程问题专题解析:行程问题来啦!行程问题可以用平均分去理解,总路程÷时间=速度,其实就是把路程平均分给时间,每个单位时间分得的路程,现在所学的公式都离不开我们对加减乘除四则运算的概念理解,回到初始,会发现大道至简,一起努力!知识回顾之行程问题:重点知识理解:行程问题的初始公式,将之完全理解,对今后的学习非常有帮助【经典例题】【例题1】小明骑车从学校回家,如果他每分钟骑100米,要骑10分钟,如果他每分钟骑200米,请问小明要多久回到家?思维点拨:两次的关键是路程不变,我们可以先把路程求出来随堂演练:有一司机从长沙开车去武汉,他估算了一下,如果每小时开70km,则需要8小时,他想提早一个小时达到武汉,那么他应该把速度提高到多少?此时速度提高了多少?【例题2】相遇问题两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?思维点拨:这里的路程是两地的路程,时间也是确定的,但是这段路程是两列火车一起走的,应该用两列火车的路程加起来随堂演练:1.甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?【例题3】甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?思维点拨:两人一起走了20千米,甲走的如果知道了,那么乙是不是就能求出来呢?随堂演练:甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米【例题4】小丽和小红从400米长的环形跑道起点同时相背而行,小丽的速度是75米/分,小红的速度是65米/分。

3分钟后两人相距多少米?思维点拨:理解环形跑道和相背的概念,我俩的距离=你走的+我走的随堂演练:一艘轮船,从甲港驶往乙港,每小时行驶20千米,10小时到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲行程问题
路程=速度×时间速度=路程÷时间时间=路程÷速度
1.(1)龟、兔进行1000米的赛跑。

小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手。

”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意的躺在旁边睡着了。

当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑。

请同学们解答两个问题:(1)它们谁胜利了?为什么?(2)胜者到终点时,另一个距终点还有几米?
(2)上一次龟兔赛跑兔子输得很不服气,于是向乌龟再次下战书,进行1000米的赛跑。

为了表示他的大度,兔子让乌龟先跑10分钟,但是兔子不知道乌龟经过锻炼,速度已经提高到5倍,那么这一次谁将获得胜利呢?
2.一辆汽车从甲地出发到300千米外的乙地去,已知前120千米的速度为40千米/时,要想使这辆汽车从甲地到乙地用5小时走完,那么剩下的路程应以什么速度行驶?
3.陈叔叔从家到单位去上班,如果每分钟走45米,就要迟到2分钟,如果每分钟走60米,就可以早到3分钟;如果骑自行车每分钟行150米,从家到单位需要几分钟?
4.两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行20千米。

几小时后,甲、乙两车相遇?
5.小紫和小玉约好在东方明珠见面,小紫每小时走200千米,小玉每小时走150千米,他们同时出发2小时后还相距500千米,则开始时两人的距离是多少千米?
6.甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车
到达B城需4小时,乙车到达A城需12小时。

问:两车出发后多长时间相遇?
7.甲车每小时行40千米,乙车每小时行60千米。

两车分别从A、B两地同时出发,相向而行,相遇后又过了3小时,甲车到达B地。

求A、B两地的距离?8.灰太狼回家,距家门360米时,红太狼和小灰灰一起向他奔来,灰太狼和红太
狼的速度分别是每分钟50米和每分钟40米,小灰灰的速度是每分钟100米,小灰灰用同样的速度不停往返于灰太狼与红太狼之间,当灰太狼和红太狼相遇时,小灰灰一共跑了多少米?
9.一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问:几小时后两车相距90千米?10.甲、乙两座城市相距530千米,货车和客车从两城同时出发,相向而行,货
车每小时行50千米,客车每小时行70千米,客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇。

问:相遇时客车、货车各行驶多少千米?
11甲、乙两座城市相距540千米,货车和客车从两城同时出发,相向而行,货车每小时行40千米,客车每小时行60千米,客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇。

问:相遇时客车、货车各行驶多少千米?
12.甲、乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米,乙走2小时后,甲追上乙需要几小时?
13. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时行90千米的速度从甲地也开往乙地,在甲、乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
【课后练习】
1.两列火车从相距80千米的两城背向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车相距多少千米?
2.小聪早上8点从家出发到离家3600米的学校,他先用150米每分的速度走了一半路程,休息6分钟后,他又出发用120米每分的速度走了剩下的路程,求到学校时为几点几分?
3.一辆汽车从甲地出发到500千米外的乙地去,已知前300千米的速度为60千米/时,要想使这辆汽车从甲地到乙地用7小时走完,那么剩下的路程应以什么速度行驶?
4.蜻蜓、蝴蝶同时驾车从相距400千米的两城相对开出,蜻蜓的车每小时行55千米,蝴蝶的车每小时行45千米。

经过几小时相遇?
5.小明回家,距家门400米,妹妹和小狗一起向他奔来,小明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到小明后会立即跑向妹妹,然后用同样的速度不停往返小明与妹妹之间,当小明与妹妹相遇时,小狗一共跑了多少米?
6.陈叔叔从家到单位去上班,如果每分钟走50米,就要早到5分钟;如果每分钟走45米,早到2分钟;如果骑电动车每分钟行270米,从家到单位需要几分钟?
7.甲、乙两座城市相距540千米,货车和客车从两城同时出发,相向而行,货车每小时行40千米,客车每小时行60千米,客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇。

问:相遇时客车、货车各行驶多少千米?
8.良马每天行120千米,劣马每天行75千米,劣马先行12天,良马几天可以追上劣马?
9. 小智和小慧从学校到森林公园春游,小智步行,每小时走5千米,他出发后4小时,小慧骑自行车,每小时行15千米,小慧追上小智时,正好到达森林公园,学校离森林公园有多少千米?
10.一只电子猫在周长为240米的环形跑道上跑了一圈,前一半时间每秒跑5米,后一半时间每秒跑3米,这只电子猫后面的120米用了多少秒?。

相关文档
最新文档