动量守恒定律1 动量 动量定理(1)理解与应用2018学案
动量、冲量及动量守恒定律
动量、冲量及动量守恒定律动量和动量定理一、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v;2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小).4.与动能的区别与联系:(1)区别:动量是矢量,动能是标量.(2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k.二、动量定理1.冲量(1)定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量.(2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲)题组一对动量和冲量的理解1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大2.如图所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2s的时间内,物体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)3.(2014·西安高二期末)下列说法正确的是() A.动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变4.如图所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()A.mg sin θ(t1+t2) B.mg sin θ(t1-t2) C.mg(t1+t2) D.05.在任何相等时间内,物体动量的变化总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动题组二动量定理的理解及定性分析1跳远时,跳在沙坑里比跳在水泥地上安全,这是由于()A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小2.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是()A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s3.如图所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉到地面上的P点,若以2v速度抽出纸条,则铁块落地点为()A.仍在P点B.在P点左侧C.在P点右侧不远处D.在P点右侧原水平位移的两倍处题组三动量定理的有关计算1.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前速度约为30 m/s,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?动量守恒定律一、系统、内力与外力1.系统:相互作用的两个或多个物体组成一个力学系统.2.内力:系统中,物体间的相互作用力.3.外力:系统外部物体对系统内物体的作用力.二、动量守恒定律1.内容:如果一个系统不受外力或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式:对两个物体组成的系统,常写成:p1+p2p1′+p2′或m1v1+m2v2m1v1′+m2v2′.3.成立条件(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.三、动量守恒定律的普适性动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.四、对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,合外力也不为零,但合外力远远小于内力.此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前的某一时刻,v1、v2均是此时刻的瞬时速度;同理,v1′、v2′应是相互作用后的同一时刻的瞬时速度.例1如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C 组成系统的动量守恒针对训练下列情形中,满足动量守恒条件的是()A.用铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑桌面上的木块的过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒2.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力使弹簧压缩,如图所示.当撤去外力后,下列说法正确的是()A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a和b组成的系统动量守恒D.a离开墙壁后,a和b组成的系统动量不守恒五、动量守恒定律简单的应用1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:(2)Δp1=-Δp2(3)Δp=0 (4)m1v1+m2v2=m1v1′+m2v2′2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.例2将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图所示.(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?题组一对动量守恒条件的理解1.关于系统动量守恒的条件,下列说法中正确的是()A.只要系统内存在摩擦力,系统的动量就不可能守恒B.只要系统中有一个物体具有加速度,系统的动量就不守恒C.只要系统所受的合外力为零,系统的动量就守恒D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒2.如图所示,物体A的质量是B的2倍,中间有一压缩弹簧,放在光滑水平面上,由静止同时放开两物体后一小段时间内() A.A的速度是B的一半B.A的动量大于B的动量C.A受的力大于B受的力D.总动量为零3.在光滑水平面上A、B两小车中间有一弹簧,如图所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看成一个系统,下面说法正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零题组二动量守恒定律的简单应用4.在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,碰撞后两辆车接在一起,并向南滑行了一小段距离后停下,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰撞前的行驶速率()A.小于10 m/s B.大于20 m/s,小于30 m/sC.大于10 m/s,小于20 m/s D.大于30 m/s,小于40 m/s5.将静置在地面上质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A. m M v 0B. M m v 0C. M M -mv 0 D. m M -mv 0 6.质量为M 的木块在光滑水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( )A.(M +m )v 1m v 2B.M v 1(M +m )v 2C.M v 1m v 2D.m v 1M v 27.质量为M 的小船以速度v 0行驶,船上有两个质量均为m 的小孩a 和b ,分别静止站在船头和船尾.现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中,则小孩b 跃出后小船的速度方向________,大小为________(水的阻力不计).题组三 综合应用8.光滑水平面上一平板车质量为M =50 kg ,上面站着质量m=70 kg的人,共同以速度v0匀速前进,若人相对车以速度v=2 m/s向后跑,问人跑动后车的速度改变了多少?。
《第一章 1 动量》教学设计
《动量》教学设计方案(第一课时)一、教学目标1. 理解动量的观点及单位,知道动量的性质。
2. 能够运用动量观点进行简单的计算。
3. 理解冲量观点及单位,掌握冲量公式。
4. 能用冲量观点分析一些简单的物理问题。
二、教学重难点1. 教学重点:动量、冲量的观点及计算方法。
2. 教学难点:将动量、冲量观点应用于实际问题中。
三、教学准备1. 准备教学PPT和相关图片或视频。
2. 准备一些小道具(如小球、橡皮筋等)以演示动量和冲量的观点。
3. 准备一些练习题以供学生练习。
4. 回顾一下前一节课的相关内容,以便引入新的观点。
四、教学过程:本节课为动量教学的第一课时,教学内容主要是让学生了解动量的观点以及动量的计算公式。
教学过程中将通过多个实验和例题,让学生深入理解动量的观点,并能够运用动量定理解决实际问题。
1. 引入:起首通过一个小游戏来引入动量的观点。
让两名学生上台,互相扔球,看谁扔得更遥。
这个游戏能够引起学生的兴趣,并让他们认识到在扔球的过程中需要思量力的作用时间和方向等因素。
2. 观点讲解:接下来,详细讲解动量的观点和计算公式。
可以通过举例的方式,让学生了解动量是描述物体运动状态量,可以用位移和速度的乘积来表示。
同时,介绍动量的矢量性,即它是一个有方向的物理量。
3. 实验探究:设计一系列实验,让学生通过观察和思考,深入理解动量的观点和计算公式。
例如,可以通过小球反弹实验、碰撞实验等,让学生观察到动量守恒的现象。
4. 例题讲解:通过例题的方式,让学生运用动量定理解决实际问题。
可以从简单的计算题开始,逐渐增加难度,让学生逐步掌握动量定理的应用。
5. 小组讨论:让学生分成小组,讨论生活中常见的动量问题,并尝试运用所学知识解决这些问题。
通过小组讨论,可以培养学生的思考能力和团队合作精神。
6. 总结与回顾:最后,对本节课的内容进行总结,并让学生回顾所学知识。
可以通过提问的方式,检查学生对动量观点和计算公式的掌握情况。
学案1:1.3 动量守恒定律
1.3 动量守恒定律学习目标1.知道系统、内力、外力的概念.2.理解动量守恒定律的内容及表达式,理解其守恒的条件.(重点)3.了解动量守恒定律的普遍意义,会用动量守恒定律解决实际问题.(重点、难点)知识点1.系统、内力、外力1.系统相互作用的两个或多个物体组成的_______.2.内力系统_______物体间的相互作用力.3.外力系统_______的物体对系统_______的物体的作用力.判断1.对于由几个物体组成的系统,物体所受的重力为内力()2.某个力是内力还是外力是相对的,与系统的选取有关()思考如图所示,公路上三辆汽车发生了追尾事故.如果将前面两辆汽车看做一个系统,最后面一辆汽车对中间汽车的作用力是内力,还是外力?如果将后面两辆汽车看做一个系统呢?知识点2.动量守恒定律1.内容如果一个系统不受_______或者所受_______的矢量和为零,这个系统的总动量保持不变.2.表达式对两个物体组成的系统,常写成:p1+p2=_______或m1v1+m2v2=_______.3.适用条件系统不受_______或者所受_______的矢量和为零.判断1.一个系统初、末状态动量大小相等,即动量守恒()2.只要合外力对系统做功为零,系统动量就守恒()3.系统动量守恒也就是系统的动量变化量为零()思考1.系统总动量为零,是不是组成系统的每个物体的动量都等于零?2.动量守恒定律和牛顿第二定律的适用范围是否一样?小组探讨如图所示,两小球m1和m2在光滑的水平面上沿同一直线同向匀速运动,且v2>v1,两球相撞后的速度分别为v1′和v2′.探讨1:两球在碰撞过程中系统动量守恒吗?若守恒,请写出动量守恒表达式.探讨2:试用动量定理和牛顿第三定律推导两球碰前动量m1v1+m2v2和碰后动量m1v1′+m2v2′的关系.核心点击1.对系统“总动量保持不变”的理解(1)系统在整个过程中任意两个时刻的总动量都相等,不仅仅是初、末两个状态的总动量相等.(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.(3)系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为0.(2)系统受外力作用,合外力也不为0,但合外力远远小于内力.这种情况严格地说只是动量近似守恒,但却是最常见的情况.(3)系统所受到的合外力不为0,但在某一方向上合外力为0,或在某一方向上外力远远小于内力,则系统在该方向上动量守恒.3.动量守恒定律的五个性质(1)矢量性:定律的表达式是一个矢量式,其矢量性表现在:①该式说明系统的总动量在相互作用前后不仅大小相等,方向也相同.②在求初、末状态系统的总动量p=p1+p2+…和p′=p1′+p2′+…时,要按矢量运算法则计算.如果各物体动量的方向在同一直线上,要选取一正方向,将矢量运算转化为代数运算.(2)相对性:在动量守恒定律中,系统中各物体在相互作用前后的动量必须相对于同一惯性系,各物体的速度通常均为对地的速度.(3)条件性:动量守恒定律的成立是有条件的,应用时一定要首先判断系统是否满足守恒条件.(4)同时性:动量守恒定律中p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′…必须是系统中各物体在相互作用后同一时刻的动量.(5)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.4.动量守恒定律的三种表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′(系统相互作用前的总动量p等于相互作用后的总动量p′,大小相等,方向相同).(2)Δp1=-Δp2或m1Δv1=-m2Δv2(系统内一个物体的动量变化量与另一物体的动量变化量等大反向).(3)Δp=p′-p=0(系统总动量的变化量为零).5应用动量守恒定律的解题步骤明确研究对象,确定系统的组成↓受力分析,确定动量是否守恒↓规定正方向,确定初、末状态动量↓根据动量守恒定律,建立守恒方程↓代入数据,求出结果并讨论说明自主检测1.(多选)关于动量守恒的条件,下面说法正确的是()A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就守恒C.系统加速度为零,系统动量一定守恒D.只要系统所受合外力不为零,则系统在任何方向上动量都不可能守恒2.如图所示,A、B两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p1和p2,碰撞后A球继续向右运动,动量大小为p1′,此时B球的动量大小为p2′,则下列等式成立的是()A.p1+p2=p1′+p2′B.p1-p2=p1′-p2′C.p1′-p1=p2′+p2D.-p1′+p1=p2′+p23.(多选)如图所示,A、B两物体的质量比m A∶m B=3∶2,它们原来静止在平板车C 上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,若A、B两物体分别向左、右运动,则有()A.A、B系统动量守恒B.A、B、C系统动量守恒C.小车向左运动D.小车向右运动4.如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s,乙同学和他的车的总质量为200 kg.碰撞前向左运动,速度的大小为4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)________.5.a、b两球在光滑的水平面上沿同一直线发生正碰,作用前a球动量p a=30 kg·m/s,b球动量p b=0,碰撞过程中,a球的动量减少了20 kg·m/s,则碰撞后b球的动量为________.6.一辆质量m1=3.0×103 kg的小货车因故障停在车道上,后面一辆质量m2=1.5×103 kg的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s =6.75 m停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g=10 m/s2)【参考答案】知识点11.整体2.内部3.以外以内判断1.×2.√思考答案:内力是系统内物体之间的作用力,外力是系统以外的物体对系统以内的物体的作用力.一个力是内力还是外力关键是看所选择的系统.如果将前面两辆汽车看做一个系统,最后面一辆汽车对中间汽车的作用力是系统以外的物体对系统内物体的作用力,是外力;如果将后面两辆汽车看做一个系统,最后面一辆汽车与中间汽车的作用力是系统内部物体之间的作用力,是内力.知识点21.外力外力2.p1′+p2′m1v1′+m2v2′3.外力外力判断1.×2.×3.√思考1.答案:不是.系统总动量为零,并不一定是每个物体的动量都为零,还可以是几个物体的动量并不为零,但它们的矢量和为零.2.答案:动量守恒定律比牛顿运动定律的适用范围要广.自然界中,大到天体的相互作用,小到质子、中子等基本粒子间的相互作用都遵循动量守恒定律,而牛顿运动定律有其局限性,它只适用于低速运动的宏观物体,对于运动速度接近光速的物体,牛顿运动定律不再适用.小组探讨探讨1:答案:守恒,m1v1+m2v2=m1v1′+m2v2′.探讨2:答案:设m1和m2间的相互作用力分别为F1,F2,相互作用时间为t,根据动量定理可得:F1t=m1v1′-m1v1,F2t=m2v2′-m2v2.由牛顿第三定律可得:F1=-F2.故有:m1v1′-m1v1=-(m2v2′-m2v2)即:m1v1+m2v2=m1v1′+m2v2′.自主检测1.解析:动量守恒的条件是系统所受合外力为零,与系统内有无摩擦力无关,选项A 错误、B 正确.系统加速度为零时,根据牛顿第二定律可得系统所受合外力为零,所以此时系统动量守恒,选项C 正确.系统合外力不为零时,在某方向上合外力可能为零,此时在该方向上系统动量守恒,选项D 错误.答案:BC2.解析:因水平面光滑,所以A 、B 两球组成的系统在水平方向上动量守恒.取向右为正方向,由于p 1、p 2、p 1′、p 2′均表示动量的大小,所以碰前的动量为p 1-p 2,碰后的动量为p 1′+p 2′,由系统动量守恒知p 1-p 2=p 1′+p 2′,经变形得-p 1′+p 1=p 2′+p 2,D 对.答案:D3.解析:弹簧释放后,C 对A 的摩擦力向右,大小为μm A g ,C 对B 的摩擦力向左,大小为μm B g ,所以A 、B 系统所受合外力方向向右,动量不守恒,选项A 错误.由于力的作用是相互的,A 对C 的摩擦力向左,大小为μm A g ,B 对C 的摩擦力向右,大小为μm B g ,所以C 所受合外力方向向左而向左运动,选项C 正确,D 错误.由于地面光滑,A 、B 、C 系统所受合外力为零,动量守恒,选项B 正确.答案:BC4.解析:两车碰撞过程动量守恒.m 1v 1-m 2v 2=(m 1+m 2)v ,得v =m 1v 1-m 2v 2m 1+m 2=150×4.5-200×4.25150+200m/s =-0.5 m/s. 答案:-0.5 m/s5.解析:碰撞过程中,a 球的动量减少了20 kg·m/s ,故此时a 球的动量是10 kg·m/s ,a 、b 两球碰撞前后总动量保持不变,仍为30 kg·m/s ,则碰撞后b 球的动量为20 kg·m/s.答案:20 kg·m/s6.解析:由牛顿第二定律得a =F f m 1+m 2=μg =6 m/s 2 v =2as =9 m/s由动量守恒定律得m 2v 0=(m 1+m 2)vv 0=m 1+m 2m 2v =27 m/s. 答案:27 m/s。
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
2024-2025学年高中物理第一章动量守恒定律1、2动量动量定理教案新人教版选择性必修第一册
四、教学方法与手段
教学方法:
1. 讲授法:教师通过讲解动量和动量定理的基本概念、原理和公式,为学生提供系统的知识框架。在讲授过程中,教师可以通过生动的例子和实际应用场景,激发学生的兴趣和理解。
对于应用动量定理的难点,我计划让学生更多的参与进来,通过小组合作和讨论,共同解决问题。我会提供一些实际问题的案例,让学生分小组进行分析和讨论,找出解决问题的方法。此外,我还会安排一些课后作业,让学生在课后进一步巩固所学知识。
八、课堂
1. 提问评价:通过提问学生关于动量和动量定理的概念、公式和应用等问题,了解学生对知识点的掌握程度。对于回答正确的学生,给予肯定和鼓励;对于回答错误的学生,及时给予指导和纠正,帮助他们理解并掌握相关知识点。
答案:根据动量定理 FΔt=Δp,其中 F=10N,Δt=2s,所以 Δp=10N×2s=20kg·m/s。
3. 动量守恒定律
(3) 题目:一个质量为1kg的物体以5m/s的速度与另一个质量为2kg的物体以3m/s的速度相撞,求两个物体的最终速度。
答案:根据动量守恒定律,系统总动量保持不变,即 m1v1+m2v2=m1v'1+m2v'2。将已知数值代入公式,解得 v'1=1m/s,v'2=4m/s。
2. 观察评价:在课堂教学中,通过观察学生的参与程度、反应和表现,了解他们的学习状态。对于积极参与课堂讨论、提问和回答问题的学生,给予肯定和鼓励;对于沉默寡言、反应迟钝的学生,及时给予关注和指导,激发他们的学习兴趣和主动性。
第十二章 第1讲 动量定理 动量守恒定律
[考试标准]一、动量和动量定理1.动量物体的质量与速度的乘积为动量,即p=m v,单位是kg·m/s.动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.2.冲量力与力的作用时间的乘积叫做力的冲量,即I=F·t,冲量是矢量,其方向与力的方向相同,单位是N·s.3.动量定理物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量,即p′-p=I.适用于单个物体或多个物体组成的系统.二、动量守恒定律1.适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力.(3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.三、碰撞1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类四、反冲运动 火箭 1.反冲现象(1)物体的不同部分在内力作用下向相反方向运动.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理. (3)反冲运动中,由于有其他形式的能转化为机械能,所以系统的机械能增加. 2.火箭(1)工作原理:利用反冲运动.火箭燃料燃烧产生的高温、高压燃气从尾喷管迅速喷出时,使火箭获得巨大的反作用力.(2)设火箭在Δt 时间内喷射燃气的质量是Δm ,喷出燃气的速度是u ,喷出燃气后火箭的质量是m ,则火箭获得的速度v =Δmum.1.两辆汽车的质量分别为m 1和m 2,已知m 1>m 2,沿水平方向同向行驶具有相等的动能,则此时两汽车动量p 1和p 2的大小关系( ) A .p 1等于p 2 B .p 1小于p 2 C .p 1大于p 2 D .无法比较答案 C2.关于冲量,以下说法正确的是( )A .只要物体受到了力的作用,一段时间内物体受到的总冲量就一定不为零B .只要物体受到的合外力不为零,该物体在任意时间内所受的总冲量就一定不为零C .做曲线运动的物体,在任意时间内所受的总冲量一定不为零D .如果力是恒力,则其冲量的方向与该力的方向相同 答案 D3.关于系统动量守恒,下列说法错误的是( ) A .只要系统内有摩擦力,动量就不可能守恒 B .只要系统所受的合外力为零,系统动量就守恒C .系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D .相互作用的两物体动量的增量的矢量和一定为零 答案 A4.如图1所示,在光滑的水平面上有静止的物体A 和B .物体A 的质量是B 的2倍,两物体中间用被细绳束缚的处于压缩状态的轻质弹簧相连.当把细绳剪断,弹簧在恢复原长的过程中( )图1A.A的速率是B的2倍B.A的动量大于B的动量C.A受的力大于B受的力D.A、B组成的系统的总动量为零答案 D5.(多选)下列属于反冲运动的是()A.汽车的运动B.直升飞机的运动C.火箭的运动D.反击式水轮机的运动答案CD6.如图2所示,光滑水平面上的两个小球A和B,其质量分别为m A和m B,且m A<m B,B 球上固定一水平轻质弹簧,且处于静止状态.现A球以速度v撞击弹簧的左端(撞击后A、B 两球在同一直线上运动),则下列关于撞击后的说法中正确的是()图2A.两球共速时,速度大小为m A vm A+m BB.当两球速度相等时,弹簧恢复原长C.当A球速度为零时,B球速度为vD.当弹簧压缩量最大时,两球速度都为零答案 A命题点一动量定理的理解与应用例1(2015·重庆理综·3)高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mgB.m 2gh t -mgC.m gh t+mgD.m gh t-mg解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =m v ,解得安全带对人的平均作用力为F =m 2ght +mg ,A 项正确.答案 A用动量定理解题的基本思路题组阶梯突破1.篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图3所示.这样做可以( )图3A .减小球对手的冲量B .减小球对人的冲击力C .减小球的动量变化量D .减小球的动能变化量 答案 B解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-m vF =m vt,冲量和动量、动能的变化量都不变,当时间增大时,作用力减小,所以B 正确.2.(多选)如图4,在光滑水平面上有一质量为m的物体,在与水平方向成θ角的恒定拉力F 作用下运动,则在时间t内()图4A.重力的冲量为0B.拉力F的冲量为FtC.拉力F的冲量为Ft cos θD.物体动量的变化量等于Ft cos θ答案BD解析重力的冲量I G=mgt.故A错误.拉力F的冲量I F=Ft.故B正确,C错误.合力的冲量I合=Ft cos θ,根据动量定理知,合力的冲量等于动量的变化量,则动量的变化量为Ft cos θ.故D正确.3.如图5所示,运动员挥拍将质量为m的网球击出.如果网球被拍子击打前、后瞬间速度的大小分别为v1、v2,v1与v2方向相反,且v2>v1.重力影响可忽略,则此过程中拍子对网球作用力的冲量()图5A.大小为m(v2+v1),方向与v1方向相同B.大小为m(v2+v1),方向与v2方向相同C.大小为m(v2-v1),方向与v1方向相同D.大小为m(v2-v1),方向与v2方向相同答案 B解析取拍子击打前网球的速度v1的方向为正方向,根据动量定理得:拍子对网球作用力的冲量I=-m v2-m v1=-m(v1+v2),即冲量大小为m(v1+v2),方向与v1方向相反,与v2方向相同.选项B正确,A、C、D错误.命题点二动量守恒定律的应用例2 质量为10 g 的子弹,以300 m /s 的速度射入质量为24 g 、静止在光滑水平桌面上的木块.如果子弹留在木块中,则木块运动的速度是多大?如果子弹把木块打穿,子弹穿过后的速度为100 m/s ,这时木块的速度又是多大?解析 子弹质量m =10 g =0.01 kg ,子弹初速度v 0=300 m/s ,木块质量M =24 g =0.024 kg ,设子弹嵌入木块后与木块的共同速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得m v 0=(m +M )v解得v =m v 0m +M =0.01×3000.01+0.024m /s ≈88.2 m/s.若子弹穿出木块后速度为v 1=100 m /s ,设木块速度为v 2,仍以子弹初速度方向为正方向,由动量定恒定律得mv 0=mv 1+Mv 2.代入数据解得v 2≈83.3 m/s. 答案 88.2 m /s 83.3 m/s动量守恒定律解题的基本步骤1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); 3.规定正方向,确定初、末状态动量; 4.由动量守恒定律列出方程;5.代入数据,求出结果,必要时讨论说明. 题组阶梯突破4.如图6所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量m =0.25M 的小木块.现使木箱获得一个向右的初速度v 0,则( )图6A .木箱和小木块最终都将静止B .小木块最终速度大小为4v 0,方向向右C .木箱最终速度大小为0.8v 0,方向向右D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 答案 C解析 系统所受外力的合力为零,动量守恒,初状态木箱有向右的动量,小木块动量为零,故系统总动量向右,系统内部存在摩擦力,阻碍两物体间的相对滑动,最终相对静止,由于系统的总动量守恒,不管中间过程如何相互作用,根据动量守恒定律,最终两物体以相同的速度一起向右运动,选项A 、D 错误;最终两物体速度相同,由动量守恒定律得M v 0=(m +M )v ,则得v =M v 0m +M =M1.25M v 0=0.8v 0,方向向右,选项C 正确,B 错误.5.(多选)如图7所示,放在光滑水平桌面上的两个木块A 、B 中间夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后飞离桌面落在地上.A 的落地点与桌边的水平距离为0.5 m ,B 的落地点与桌边的水平距离为1 m ,那么( )图7A .A 、B 离开弹簧时的速度之比为1∶2 B .A 、B 质量之比为2∶1C .未离开弹簧时,A 、B 所受冲量之比为1∶2D .未离开弹簧时,A 、B 加速度之比为1∶2 答案 ABD解析 A 、B 组成的系统在水平方向上不受外力,动量守恒,A 、B 两物体的落地点到桌边的距离x =v 0t ,因为两物体的落地时间相等,所以v 0与x 成正比,故v A ∶v B =1∶2,即A 、B 离开弹簧时的速度之比.由动量守恒定律可知,m A ∶m B =2∶1.未离开弹簧时,A 、B 受到的弹力相等,作用时间相同,冲量大小也相同.未离开弹簧时,F 相等,m 不同,加速度a =Fm ,与质量成反比,故a A ∶a B =1∶2.命题点三 碰撞模型的规律及应用例3 如图8所示,一个质量为M =50 kg 的运动员和质量为m =10 kg 的木箱静止在光滑水平面上,从某时刻开始,运动员以v 0=3 m /s 的速度向墙的方向推出箱子,箱子与右侧墙壁发生完全弹性碰撞后返回.当运动员接到箱子后,再次重复上述过程,每次运动员均以v 0=3 m/s 的速度向墙的方向推出箱子.求:图8(1)运动员第一次接到木箱后的速度大小; (2)运动员最多能够推出木箱几次?解析 (1)取水平向左为正方向,根据动量守恒定律得 第一次推出木箱0=M v 1-m v 0第一次接住木箱M v 1+m v 0=(M +m )v 1′ 解得v 1′=2m v 0M +m=1 m/s(2)第二次推出木箱(M +m )v 1′=M v 2-m v 0 第二次接住木箱M v 2+m v 0=(M +m )v 2′ 同理可得第n 次接住木箱时获得的速度为 v n ′=2n m v 0M +m ≤v 0(n =1,2,3…)解得n ≤3故运动员最多能够推出木箱3次. 答案 (1)1 m/s (2)3次碰撞问题解题策略1.抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.2.熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m 1≫m 2,且v 20=0时,碰后质量大的速率不变,质量小的速率为2v .当m 1≪m 2,且v 20=0时,碰后质量小的球原速率反弹. 题组阶梯突破6.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m /s ,B 球的动量是5 kg·m/s ,A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( ) A .p A ′=6 kg·m /s ,p B ′=6 kg·m/s B .p A ′=3 kg·m /s ,p B ′=9 kg·m/s C .p A ′=-2 kg·m /s ,p B ′=14 kg·m/s D .p A ′=-4 kg·m /s ,p B ′=17 kg·m/s 答案 A解析 从碰撞前后动量守恒p A +p B =p A ′+p B ′验证,A 、B 、C 三项皆有可能.从碰撞后总动能不增加,即p 2A 2m A +p 2B2m B ≥p A ′22m A +p B ′22m B来看,只有A 可能.7.一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A.A +1A -1 B.A -1A +1 C.4A (A +1)2D.(A +1)2(A -1)2答案 A解析 设中子的质量为m ,则被碰原子核的质量为Am ,两者发生弹性碰撞,据动量守恒,有m v 0=m v 1+Am v ′,根据机械能守恒,有12m v 20=12m v 21+12Am v ′2.解以上两式得v 1=1-A 1+A v 0.若只考虑速度大小,则中子的速率为v 1′=A -1A +1v 0,故碰撞前、后中子速率之比为A +1A -1.8.(多选)如图9甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为m 1和m 2,图乙为它们碰撞前后的x -t 图象.已知m 1=0.1 kg.由此可以判断( )图9A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .由动量守恒可以算出m 2=0.3 kgD .碰撞过程中系统损失了0.4 J 的机械能 答案 AC解析 由x -t (位移时间)图象的斜率表示速度,碰前m 2的位移不随时间而变化,处于静止.m 1的速度大小为v 1=ΔxΔt =4 m /s ,方向只有向右才能与m 2相撞.故A 正确.由图读出,碰后m 2的速度为正方向,说明向右运动,m 1的速度为负方向,说明向左运动.故B 错误.由图求出碰后m 2和m 1的速度分别为v 2′=2 m/s ,v 1′=-2 m/s ,根据动量守恒定律得,m 1v 1=m 2v 2′+m 1v 1′,代入解得,m 2=0.3 kg.故C 正确.碰撞过程中系统损失的机械能为ΔE =12m 1v 21-12m 1v 1′2-12m 2v 2′2,代入解得,ΔE =0 J ,故D 错误.1.将吹足气的气球由静止释放,球内气体向后喷出,气球会向前运动,这是因为气球受到( ) A .重力 B .手的推力 C .空气的浮力D.喷出气体对气球的作用力答案 D2.(多选)鸡蛋掉在草地上比掉在水泥地上不容易碎.下列防护与规定中与其具有相同原理的是()A.撑竿跳高比赛中,横杆的下方放有较厚的海绵垫B.易碎物品运输时要用柔软材料包装,船舷和码头悬挂旧轮胎C.有关部门规定用手工操作的各类振动机械的频率必须大于20赫兹D.在汽车上安装安全气囊答案ABD解析鸡蛋掉在草地上时与草地的作用时间比,掉在水泥地上时与水泥地的作用时间长,由动量定理知FΔt=Δp,当动量变化量相同时,鸡蛋掉在草地上时受到的作用力小,所以不易碎.撑竿跳高比赛时,横杆的下方有较厚的海绵垫是为了增大运动员与海绵的作用时间而减小运动员受到的作用力,选项A正确;易碎物体运输时要用柔软材料包装,船舷和码头悬挂旧轮胎是为了增大物体间的作用时间而减小物体间的作用力,选项B正确;用手工操作的各类振动机械的频率大于20 Hz是为了防止发生共振现象而对人体健康造成危害,选项C错误;在汽车上安装安全气囊是为了增大安全气囊与人的作用时间而减小人受到的作用力,选项D 正确.3.如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱.关于上述过程,下列说法中正确的是()图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与小车(包含男孩)的动量增量相同答案 C解析木箱、男孩、小车组成的系统动量守恒,木箱的动量增量与男孩、小车的总动量增量大小相同,方向相反,故A、B、D错误.4.有消息称:中国羽毛球运动员在一档节目上演示了一把高速度杀球,轻小的羽毛球被快速击出后瞬间将西瓜冲撞爆裂!据测羽毛球的时速高达300 km,羽毛球的质量介于4.74 g~5.50 g之间,经分析,下列说法中正确的是()A.这则消息一定是假的,因为羽毛球很轻小,不可能使西瓜爆裂B.这则消息一定是假的,因为击出的羽毛球速度虽然高,但其能量却很小C.这则消息可能是真的,俗话说无快不破,羽毛球虽然很轻小,但速度很高D.这则消息可能是真的,西瓜是否被撞击爆裂取决于羽毛球对西瓜的冲击力大小答案 D解析在高速度杀球时,由于球速较快,在与西瓜相撞的瞬间,速度急剧变化,根据动量定理可知,羽毛球对西瓜的作用力较大,完全可以使西瓜爆裂,故使西瓜裂开的原因不是速度,而是冲击力的大小,该消息可能是真的,故只有D正确,A、B、C错误.5.(多选)动能相同的A、B两球(m A>m B)在光滑的水平面上相向运动,当两球相碰后,其中一球停止运动,则可判定()A.碰撞前A球的速度小于B球的速度B.碰撞前A球的动量大于B球的动量C.碰撞前后A球的动量变化大于B球的动量变化D.碰撞后,A球的速度一定为零,B球朝反方向运动答案ABD解析A、B两球动能相同,且m A>m B,可得v B>v A,再由动量和动能关系可得p A>p B;由动量守恒得,碰撞前后A球的动量变化量与B球的动量变化量大小相等;由题意可知,碰撞后A球的速度一定为零,B球朝反方向运动,所以A、B、D对.6.两名质量相等的滑冰运动员甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是() A.若甲先抛球,则一定是v甲>v乙B.若乙先抛球,则一定是v乙>v甲C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论谁先抛球,只要乙最后接球,就有v甲>v乙答案 D解析因系统动量守恒,故最终甲、乙动量大小必相等.谁最后接球谁的质量中包含了球的质量,即质量大,根据动量守恒:m1v1=m2v2,因此谁最终接球谁的速度小.7.(多选)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为()A.m(v-v0) B.mgtC.m v2-v20D.m2gh答案BCD解析由动量定理得I=Δp,即mgt=Δp,故B正确;由p=m v知,Δp=m·Δv,而Δv=v2-v20=2gh,所以Δp=m·v2-v20=m2gh,故C、D正确.8.如图2甲所示,光滑平台上物体A 以初速度v 0滑到静止于水平地面且上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图乙为物体A 与小车B 的v -t 图象,由图乙中各物理量可求得( )图2A .小车上表面的长度B .物体A 的质量C .小车B 的质量D .物体A 与小车B 的质量之比答案 D解析 由图象可知,A 、B 最终以共同速度v 1匀速运动,可以确定小物块相对小车的位移,不能确定小车上表面长度,A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,可解得物体A 与小车B 的质量之比,D 正确,B 、C 错误.9.古时有“守株待兔”的寓言,倘若兔子受到的冲击力(可视为恒力)大小为自身体重2倍时即可导致死亡,如果兔子与树桩的作用时间为0.2 s ,则被撞死的兔子其奔跑速度可能是(重力加速度g 取10 m/s 2)( )A .1.5 m /sB .2.5 m/sC .3.5 m /sD .4.5 m/s答案 D10.(2014·福建理综·30(2))如图3所示,一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )图3A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2 D .v 0+m 2m 1(v 0-v 2) 答案 D解析 根据动量守恒定律(m 1+m 2)v 0=m 1v 1+m 2v 2,解得v 1=v 0+m 2m 1(v 0-v 2),故A 、B 、C 错误,D 正确.11.在光滑水平面上,一质量为m 、速度大小为v 的A 球与质量为2m 、静止的B 球碰撞后,A 球的速度方向与碰撞前相反.则碰撞后B 球的速度大小可能是( )A .0.6vB .0.4vC .0.3vD .0.2v答案 A解析 设碰撞后A 球的速度大小为v A ,B 球的速度大小为v B ,碰撞前A 球的运动方向为正方向.根据动量守恒定律得:m v =2m v B -m v A 化简可得,v A =2v B -v ,因v A >0,所以v B >v 2,故只有A 项正确.12.如图4所示,倾角为α的光滑斜面AB 的长度为s ,一个质量为m 的物体自A 点从静止滑下,在由A 点到B 点的过程中,斜面对物体的冲量大小是________,重力对物体的冲量大小是________.物体受到的合力对物体的冲量大小是________(斜面固定不动).图4答案 m cos α 2gs sin α m 2gs sin αm 2sg sin α 解析 物体沿光滑斜面下滑,加速度a =g sin α,滑到底端所用的时间为t ,由s =12at 2可知t =2s a = 2s g sin α由冲量的定义式可知斜面对物体的冲量大小为: I F =mg cos α·t =mg cos α 2s g sin α=m cos α2gs sin α 重力的冲量大小I G =mgt =mg2s g sin α=m 2gs sin α 合力的冲量大小I 合=F 合t =mg sin α 2s g sin α=m 2sg sin α. 13.如图5所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车质量共为30 kg ,乙和他的冰车质量也是30 kg.游戏时,甲推着一个质量为15 kg 箱子和他一起以2 m/s 的速度滑行,乙以同样大小的速率迎面滑来.为避免相撞,甲突然将箱子沿冰面推给乙.箱子滑到乙处时乙迅速把它抓住.若不计冰面摩擦,甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?图5答案 5.2 m/s解析要想刚好避免相撞,要求乙抓住箱子后与甲推出箱子后的速度正好相同,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.对甲和箱子,推箱子前后动量守恒,以初速度方向为正,由动量守恒定律(M+m)v0=m v+M v1①对乙和箱子,抓住箱子前后动量守恒,由动量守恒定律有m v-M v0=(m+M)v2②刚好不相撞的条件是v1=v2③联立①②③式解得v=5.2 m/s.故甲至少以速度(相对地)5.2 m/s将箱子推出,才能避免与乙相撞.。
动量和动量定理教案动量和动量定理教案优秀5篇
动量和动量定理教案动量和动量定理教案优秀5篇作为一名优秀的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。
那么大家知道正规的教案是怎么写的吗?读书破万卷,下笔如有神,如下是作者爱岗敬业的小编飞白帮家人们收集的动量和动量定理教案优秀5篇,仅供借鉴。
动量和动量定理教案篇一教学目标:1. 理解动量的概念及其物理意义,掌握动量的定义式和单位。
2. 理解动量定理的内容,能够运用动量定理解释生活中的物理现象。
3. 通过实验或案例分析,培养学生的观察、分析和解决问题的能力。
4. 培养学生的逻辑思维能力和物理建模能力。
教学重点:动量的概念及计算。
动量定理的理解与应用。
教学难点:动量定理中力的冲量与动量变化之间的关系。
运用动量定理解决实际问题。
教学准备:多媒体课件、实验器材、生活实例素材教学过程:一、引入新课情境导入:播放一段运动员跳水的视频,引导学生观察运动员入水前后的速度变化,思考是什么因素导致了这种变化,引出动量的概念。
提出问题:为什么我们常说“不要在高速行驶的车辆旁停留”,这与我们今天要学的动量有什么关系?二、讲授新知1. 动量的概念定义:物体的质量和速度的乘积称为物体的动量,用符号p表示,即p=mv。
物理意义:动量是描述物体运动状态的。
物理量,反映了物体运动的“惯性”和“冲击力”。
单位:千克米每秒(kg·m/s)。
2. 动量定理内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
强调:动量定理是矢量定理,要注意动量和冲量的方向性。
三、实验探究实验设计:利用小车、斜面等器材,设计实验验证动量定理。
例如,观察不同速度下小车撞击静止物体后的运动状态变化,测量并计算动量变化与冲量之间的关系。
学生分组实验:指导学生进行实验,记录数据,分析实验结果。
讨论交流:各组分享实验现象和结论,教师总结归纳。
四、巩固练习例题讲解:选取几道典型例题,如汽车刹车问题、运动员跳跃问题等,引导学生运用动量定理解题。
《动量和动量定理》的教案
《动量和动量定理》的教案教案一:动量和动量定理的引入课时安排:1课时教学目标:1. 理解动量的概念和单位;2. 理解动量定理的内容和作用;3. 学会应用动量定理解决实际问题。
教学重点:1. 动量的概念和计算方法;2. 动量定理的内容和应用。
教学难点:1. 动量定理的应用;2. 动量守恒定律的理解。
教具准备:1. 课件或黑板、白板和粉笔;2. PPT或教学图片,以例子和图示来说明动量和动量定理的概念和应用。
教学过程:步骤一:导入(5分钟)1. 利用一个引人入胜的物理现象或实验,引起学生对动量的兴趣,如用弹簧秤测量不同物体的重量。
2. 提问:你们知道弹簧秤是如何工作的吗?弹簧秤的指针指示的是什么?步骤二:讲解动量的概念和计算方法(15分钟)1. 在黑板或白板上引入动量的概念和公式:动量 = 质量×速度,即p = mv。
2. 通过示意图或实际案例,以不同速度运动的物体进行对比,进一步解释动量的意义和计算方法。
3. 通过例题,让学生自己计算物体的动量,并完成相关练习。
步骤三:讲解动量定理的内容和应用(15分钟)1. 在黑板或白板上介绍动量定理的公式:力 = 动量变化率/时间,即F = Δp/Δt。
2. 解释力的作用是改变物体的动量;施加不同大小的力可以导致不同速度的变化。
3. 通过示意图或实际案例,展示动量定理的应用,如汽车碰撞、运动员起跑等。
4. 通过例题,让学生运用动量定理解决实际问题,并完成相关练习。
步骤四:总结和归纳(10分钟)1. 小结动量的概念和计算方法;2. 总结动量定理的内容和作用;3. 提醒学生动量守恒定律在实际生活中的应用。
步骤五:课堂练习和讨论(15分钟)1. 通过小组或个人讨论,解决一些动量和动量定理相关的问题。
2. 教师巡视课堂,及时给予帮助和指导。
步骤六:课堂总结(5分钟)1. 对本节课的学习内容进行总结和回顾;2. 强调动量和动量定理的重要性和应用领域;3. 鼓励学生积极思考和探索动量的更多应用场景。
动量和动量定理教案
动量和动量定理教案一、教学目标1. 让学生理解动量的概念,掌握动量的计算公式。
2. 让学生了解动量定理,理解动量定理的意义和应用。
3. 培养学生运用动量定理解决实际问题的能力。
二、教学内容1. 动量的概念及其计算公式2. 动量定理的表述和证明3. 动量定理的应用实例三、教学重点与难点1. 动量的概念和计算2. 动量定理的理解和应用四、教学方法1. 采用讲授法讲解动量和动量定理的基本概念和理论。
2. 通过示例和练习,引导学生运用动量定理解决实际问题。
3. 利用动画和实验,增强学生对动量和动量定理的理解。
五、教学过程1. 导入:通过回顾速度和质量的概念,引出动量的概念。
2. 新课:讲解动量的定义、计算公式,并通过示例演示动量的计算过程。
3. 动量定理:介绍动量定理的表述和证明,解释动量定理的意义。
4. 应用实例:分析实际问题,引导学生运用动量定理解决问题。
5. 练习:布置练习题,让学生巩固动量和动量定理的知识。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评价1. 课堂问答:检查学生对动量和动量定理的理解程度。
2. 练习题:评估学生运用动量定理解决实际问题的能力。
3. 课后作业:检验学生对课堂内容的掌握情况。
七、教学资源1. 教材:提供相关章节的内容,作为教学参考。
2. 动画:展示动量的变化过程,帮助学生形象理解。
3. 实验设备:进行动量实验,验证动量定理。
八、教学进度安排1. 动量的概念及其计算公式(0.5课时)2. 动量定理的表述和证明(0.5课时)3. 动量定理的应用实例(0.5课时)九、教学拓展1. 动量守恒定律:介绍动量守恒定律的原理和应用。
2. 动量与动能的关系:探讨动量和动能的联系与区别。
3. 动量定理在其他领域的应用:举例说明动量定理在其他学科和实际生活中的应用。
十、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。
针对学生的掌握情况,适当增加练习和示例,以确保学生能够熟练运用动量定理解决实际问题。
《动量定理》教案(精选5篇)
《动量定理》教案(精选5篇)高二物理《动量定理》微课教学设计篇一教学目标一、知识与技能1.能从牛顿运动定律和运动学公式推导出动量定理的表达式。
2.理解动量定理的确切含义,知道动量定理适用于变力。
3.会用动量定理解释有关现象和处理有关的问题。
二、过程与方法1.通过演示实验,引入课题,激发学生的学习兴趣。
2.通过对动量定理的探究过程,尝试用科学探究的方法研究物理问题,通过对例题的分析和讲解,得到动量定理解题的方法和步骤。
3.能够应用动量定理处理一些与生产和生活相关的实际问题,培养学生理论联系实际的能力,在分析、解决问题的过程中培养交流、合作能力。
三、情感态度与价值观有参与科技活动的热情,有从生活走向物理,从物理走向社会的意识。
教学重点动量定理的推导以及利用动量定理解释有关现象教学难点如何正确理解合外力的冲量等于物体动量的变化;如何正确应用动量定理分析打击和碰撞这类短时间作用的力学问题。
教学过程一、提出问题,导入新课(创设实验情景)【问题一】演示:在地板上放一块海面垫,尽可能把鸡蛋举的高高的,然后放开手,让鸡蛋落到海面垫上。
首先让学生猜想可能出现的现象。
实际操作:观察到鸡蛋并没有被打破。
引入:鸡蛋从一米多高的地方落到海面垫上,鸡蛋却没有打破,为什么呢?本节课我们就来学习这方面的知识。
【问题二】(情景暗示创设问题情境)我们在上节课知道,我们可以通过一个新的物理量来研究运动物体对外界的作用效果:p=mv.某时刻物体有一个速度,对应有一个动量。
如果说物体速度发生了变化,那么动量也会发生变化:=p`-p=mv`-mv那么我们是不是要问了:一个运动的物体,它的动量为什么会变化呢?这个变化有什么规律呢?这就是我们今天这节课要研究的问题。
【问题三】(生活经验创设问题情境)汽车刹车(坐公交车,我们就有这样的体会)在停下来的过程中动量变化()相同,慢慢滑行停下阻力小,作用时间长;急刹车阻力大,作用时间短。
它们之间究竟有什么定量关系呢?二、新课教学(一)引导学生推导动量定理,并理解其特点〖问题〗一个质量为m的物体,初速度为v,在合力F的作用下,经过一段时间t,速度变为V`,求:物体的初动量P和末动量P`分别为多少?物体的加速度a=?〖推导〗由牛顿第二定律得:F合=ma 且a=(V-v)/t即:F合t=mV-mv=p`-p〖讨论〗在这个表达式中,各个物理量分别是什么?〖结论〗物体所受合外力的冲量等于物体的动量变化,这个结论叫做动量定理。
动量守恒定律(1)
②ΔΡ1=- ΔΡ2(两个物体组成的系统中,各自动量增量大小 相等、方向相反), ③△P=0 其中①的形式最常用,具体到实际应用时又有以下常见三种 形式: a.m1v1+m2v2=m1v′1+m2v′2 (适用于作用前后都运动的两个物 体组成的系统). b.0=m1v1+ m2v2(适用于原来静止的两个物体组成的系统,比 如爆炸、反冲等,两者速率及位移大小与各自质量成反比).
练习:质量相等的三个小球abc,在
光滑的水平面上以相同的速率运 动,它们分别与原来静止的ABC 三球发生碰撞,碰撞后a继续沿原 方向运动,b静止,c沿反方向弹 回,则碰撞后ABC三球中动量数 值最大的是 C A 、 a球 B、b球 C 、 c球 D、三球一样大
项城二高
1、在列车编组站里,一辆m1=1.8×104kg的货车在 平直轨道上以V1=2m/s的速度运动,碰上一辆 m2=2.2×104kg的静止的货车,它们碰撞后结合在 一起继续运动,求货车碰撞后运动的速度。
16.3
动量守恒定律
问题思考:
1、动量定理内容及表达式?
2、在探究碰撞中的不变量实验中, 两个物体碰撞前后哪个物理量是不变
的?
基本概念:
系统: 由相互作用的(两个或多个)物体组成 内力: 系统中各物体间的相互作用力
系统内的物体受到系统外物体的作用力 外力:
内力和外力的区分依赖于系统的选取, 只有在确定了系统后,才能确定内力和 外力。
例如:马拉车时, 它们之间有一对 F2。 相互作用力 F1、 对马和车构成的 F1 、 F2 系统来说, 是内力。
F1
F2
F2是它受到的外力; 以马为研究对象, F1 是它受到的外力。 以车为研究对象,
动量定理及动量守恒定律
4、一枚在空中飞行的导弹,质量为m,在某点的速度为 ,方向水平。 、一枚在空中飞行的导弹,质量为 ,在某点的速度为v,方向水平。 导弹在该点突然炸裂成两块,其中质量为 的一块沿着与v相反的 导弹在该点突然炸裂成两块,其中质量为m1的一块沿着与 相反的 方向飞去,速度为v1。求炸裂后另一块的速度 2。 求炸裂后另一块的速度v 方向飞去,速度为
动量守恒定律的理解及应用要点
矢量性:动量守恒定律方程是一个矢量方程。 矢量性:动量守恒定律方程是一个矢量方程。对于作用前后物体的运动方向 都在同一直线上的问题,应选取统一的正方向。若方向未知, 都在同一直线上的问题,应选取统一的正方向。若方向未知,可以 设的正方向为标准列动量守恒方程,通过所得结果的正负, 设的正方向为标准列动量守恒方程,通过所得结果的正负,判定未 知量的方向 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 不是同一时刻的动量不能相加 相对性: 相对性:应用动量守恒定律时各物体的速度必须是相对同一惯性系的速度 普适性:只要系统所受的合外力为零, 普适性:只要系统所受的合外力为零,不论系统内部物体之间的相互作用力 性质如何,不论系统内各物体是否具有相同运动方向, 性质如何,不论系统内各物体是否具有相同运动方向,不论物体相 互作用时是否直接接触, 互作用时是否直接接触,也不论相互作用后粘合在一起还是分裂成 碎片,动量守恒定律均适用。 碎片,动量守恒定律均适用。动量守恒定律不仅适用于低速宏观物 体,而且适用于接近光速运动的微观粒子。 而且适用于接近光速运动的微观粒子。
A
等于碰撞前的总动能 ③ 碰撞后同向运动时后一
A、 PA=6kg.m/s, PB=6kg.m/s 、 , B、 PA=3kg.m/s, PB=9kg.m/s 、 , C、 PA=-2kg.m/s, PB=14kg.m/s 、 - , D、 PA=-5kg.m/s, PB=17kg.m/s 、 - , 物体速度不大于前一物 体速度
动量(精选学案)
动量总复习1.动量2.冲量3.动量定理4.动量守恒定理(内力,外力,动量守恒条件)5.碰撞6.反冲运动一、动量的变化量【题1】质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同二、动量定理【题2】人们对手机的依赖性越来越强,有些人喜欢躺着看手机,经常出现手机砸伤眼睛的情况。
若手机质量为120 g,从离人眼约20 cm的高度无初速掉落,砸到眼睛后手机未反弹,眼睛受到手机的冲击时间约为0.2 s,取重力加速度g=10 m/s2;下列分析正确的是A.手机与眼睛作用过程中手机动量变化约为0.48 kg·m/sB.手机对眼睛的冲量大小约为0.48 N·sC.手机对眼睛的冲量方向竖直向上D.手机对眼睛的作用力大小约为0.24 N【题3】用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
【题4】高空坠物已成为一种新型城市公害,极易对行人造成伤害。
若一个50 g 的小物块从居民楼21层楼的地面处落下(高约60米),撞地后弹起0.6米高,与地面的撞击时间2 ms ,g 取10 m/s 2,求(结果保留根号)(1)小物块落地时速度约多少?(2)物块对地面产生的冲击力约为多大?(撞地力远大于物块的重力)三 动量守恒定律1.系统、内力、外力(1)系统:相互作用的两个或多个物体物体组成系统。
动量定理及其应用
1.动量:①定义:物体质量与速度的乘积,②动量的性质:是状态量、具有相对性、矢量性2.动量守恒定律①动量的变化量:②内力与外力:系统内物体间的相互作用力叫做内力;系统外物体施加给系统内物体的力叫做内力。
③动量守恒定律:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
④动量守恒定律的成立条件a.系统不受外力或所受外力和为零,则系统的动量守恒。
b.系统所受外力比内力小很多,则系统的动量近似守恒。
c.系统某一方向不受外力或所受外力的和为零,或所受外力比内力小很多,该方向动量守恒。
⑤动量守恒定律的普适性a.牛顿定律解决问题涉及全过程,用动量解决只涉及始末状态,与过程无关。
b.动量守恒不仅适用宏观低速,而且适用微观高速,牛顿定律不适用微观高速。
二.碰撞1.碰撞的分类:2.一维弹性碰撞当时①若,交换速度②若,,同向,速度前大后小③若,反弹④若,⑤若,三.反冲1.反冲:如果一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲。
2.反冲遵循的规律:,即:,,即:3.反冲运动的应用:喷气式飞机,射击时枪筒的后退,火箭发射等。
四.用动量概念表示牛顿第二定律1.用动量概念表示牛顿第二定律假设物体受到恒力的作用做匀变速直线运动,在时刻物体的初速度为,在时刻物体的速度为,由牛顿第二定律得,物体的加速度合力F=ma由于,所以2.动量定理应用动量定理需要注意的几点:①方程左边是物体动量的变化量,计算时顺序不能颠倒②方程右边是物体受到的合外力的总冲量,其中F可以是恒力也可以是变力,如果合外力是变力,则F是合外力在时间t内的平均值③整个式子反映了一个过程,即力对时间的积累效果是引起物体动量的变化。
④动量定理中的冲量和动量都是矢量,冲量的方向与动量变化量的方向相同。
⑤动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。
「精品」新课标高考物理一轮复习第十一章动量近代物理初步第1讲动量和动量定理教案
第十一章 动量 近代物理初步【研透全国卷】高考对本章知识的考查主要以选择、计算为主,本章的主要考点有碰撞模型、动量定理、动量守恒定律、经典物理理论、原子和原子核部分的最新科技成果.以生活中的具体事例及经典物理学理论为命题背景,结合物理知识在生活中的应用及最新科技成果的命题趋势较强,2018年高考应予以高度关注.第十一章 动量 近代物理初步第1讲 动量和动量定理知识点一 动量1.定义:物体的 与 的乘积.2.表达式:p = .3.特征:矢量性、瞬时性、相对性.4.动量的变化(也叫动量的变化量、动量的改变量、动量的增量等等) (1)定义:动量的变化等于 与 之差.(2)表达式: ,Δp 也是矢量,Δp 的方向由初末动量的方向共同决定. 答案:1.质量 速度 2.mv 4.(1)末动量 初动量 (2)Δp =p ′-p 知识点二 冲量1.定义: 与 的乘积叫做力的冲量.2.公式: .3.单位: ,符号是 .4.矢标性:冲量是 ,方向是由 决定的.5.物理意义:表示力的作用对 的积累效果.6.作用效果:使物体的 发生变化.答案:1.力 力的作用时间 2.I =F ·t 3.牛顿·秒 N·s 4.矢量 力的方向 5.时间 6.动量知识点三 动量定理1.内容:物体在一个过程始末的 等于它在这个过程中所受力的冲量.2.表达式:F (t ′-t )=mv ′-mv 或I =p ′-p .3.注意:(1)动量定理内容有两方面:一是合外力冲量的大小与动量变化的大小 ,二是动量变化的方向与冲量的方向 .(2)动量定理的研究对象,可以是 ,也可以是 .对物体系统,内力的作用不改变系统的总动量,外力的总冲量等于物体系统的动量变化.4.用动量概念表示牛顿第二定律F =ΔpΔt,此式表示:物体 等于它所受的力. 答案:1.动量变化量 3.(1)相等 相同 (2)单个物体 物体系统 4.动量的变化率(1)冲量是物体动量变化的原因.( )(2)作用在静止的物体上的力的冲量一定为零.( ) (3)动量越大的物体受到的冲量越大.( ) (4)冲量的方向就是物体运动的方向 .( ) (5)物体的动量发生变化,其动能一定变化.( ) (6)物体的动能发生变化,其动量一定变化.( ) (7)动量大的物体惯性一定大.( ) (8)动量相同的物体运动方向一定相同.( ) 答案:(1) (2) (3) (4) (5)(6) (7) (8)考点动量的概念以及动量的变化1.动量是矢量,是物体的质量与速度的乘积,而不是质量与速率的乘积.2.动量是状态量,物体的动量总是指物体在某一时刻的动量,因此在计算时相应的速度应取这一时刻的瞬时速度.3.物体动量的变化是矢量,其方向与物体速度的变化量Δv的方向相同.在合力为恒力的情况下,物体动量变化的方向也与物体加速度的方向相同,即与物体所受合力的方向相同.4.有关物体动量变化的运算,一定要按照矢量运算的法则(平行四边形定则或三角形定则)进行,如果物体的初、末动量都在同一条直线上,常常选取一个正方向,使物体的初、末动量都带有表示自己方向的正负号,这样,就可以把复杂的矢量运算化为简单的代数运算了.考向1 动量、动量变化的理解[典例1] 对于竖直向上抛出的物体,下面关于物体在上升阶段的动量和动量变化量说法中,哪个是正确的( )A.物体的动量方向向上,动量变化量的方向也向上B.物体的动量方向向上,动量变化量的方向向下C.物体的动量方向向下,动量变化量的方向向上D.物体的动量方向向下,动量变化量的方向也向下[解析] 物体在上升阶段时,速度向上,则物体的动量方向向上,根据动量定理可知,动量的变化量Δp=mgt,重力的方向竖直向下,则动量变化量的方向向下.B选项正确.[答案] B考向2 动量变化的计算[典例2] 质量是8 g的玻璃球,以3 m/s的速度向右运动,碰到一个物体后被弹回,以2 m/s 的速度沿同一直线向左运动,试求该玻璃球的动量变化量.[解析] 设水平向右的方向为正方向,则p=mv=8×10-3×3 kg·m/s=2.4×10-2kg·m/s,p′=mv′=8×10-3×(-2) kg·m/s=-1.6×10-2kg·m/s故玻璃球动量的变化量为Δp=p′-p=-1.6×10-2kg·m/s-2.4×10-2kg·m/s=-4.0×10-2kg·m/s“-”表示动量变化量的方向水平向左.[答案] 4.0×10-2kg·m/s,方向水平向左1.动量是状态量,方向与速度方向相同,速度指的是瞬时速度.2.动量变化量是两个矢量的差,注意在一维情况下动量变化量的矢量运算可转化为代数运算.考点冲量的理解与计算1.对冲量的理解(1)冲量是过程量:冲量描述的是作用在物体上的力对时间的积累效应,与某一过程相对应.(2)冲量的矢量性:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同,如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同.(3)冲量的绝对性:冲量仅由力和时间两个因素决定,具有绝对性.2.冲量的计算(1)单个力的冲量:利用公式I=Ft计算.(2)合力的冲量:①如果是一维情形,可以化为代数和,如果不在一条直线上,求合冲量遵循平行四边形定则.②两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I合=F合·Δt求解.③变力的冲量:用动量定理列式求解.考向1 对冲量的理解[典例3] (多选)恒力F作用在质量为m的物体上,如图所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是( )A.拉力F对物体的冲量大小为零B.拉力F对物体的冲量大小为FtC.拉力F对物体的冲量大小为Ft cos θD.合力对物体的冲量大小为零[解析] 由冲量的定义知拉力F对物体的冲量I=F·t,选项A、C错误,B正确;物体处于静止状态,合力为零,故合力对物体的冲量大小为零,选项D正确.[答案] BD考向2 冲量的计算[典例4] 一个铁球,从静止状态由10 m高处自由下落,然后陷入泥潭中,从进入泥潭到静止用去0.4 s,该铁球的质量为336 g,求从开始下落到进入泥潭前,重力对小球的冲量为多少?从进入泥潭到静止,泥潭的阻力对小球的冲量为多少?(保留两位小数,取g=10 m/s2) [解析] 小球进入泥潭前做自由落体运动,求出小球下落的时间,便可以求出恒定重力在这一过程的冲量;小球进入泥潭后,泥土对小球的阻力是变力,此变力的冲量要由动量定理求得.小球自由下落10 m所用的时间是t1=2hg=2×1010s= 2 s,重力的冲量I G=mgt1=0.336×10× 2 N·s≈4.75 N·s.对小球从静止开始运动至停在泥潭中的全过程运用动量定理得mg(t1+t2)-Ft2=0.泥潭的阻力F对小球的冲量Ft2=mg(t1+t2)=0.336×10×(2+0.4) N·s≈6.10 N·s,方向竖直向上.如图所示.[答案] 4.75 N·s 6.10 N·s变力的冲量不能由I=Ft求出,可以由动量定理求出动量的变化,从而求得变力的冲量;同理,当物体做曲线运动时,动量的变化可以通过求合力的冲量,从而求得动量变化.考点用动量定理定性解释物理现象用动量定理解释的现象一般可分为两类:(1)物体的动量变化Δp一定,由动量定理Ft=Δp可知,若力的作用时间t越短,则作用力F 越大,因此在需要增大作用力时,可尽量缩短作用时间,如打击、碰撞等过程;若力的作用时间越长,则作用力F就越小,因此在需要减小作用力时,可设法延长力的作用时间,如利用软垫、弹簧的缓冲作用来延长作用的时间.(2)作用力F一定,由动量定理Ft=Δp可知,力的作用时间越长,动量的变化就越大;力的作用时间越短,动量的变化就越小.考向1 缩短作用时间,增大作用力[典例5] (2017·河北邯郸广平一中期中)从同一高度自由落下的玻璃杯,掉在水泥地上易碎,掉在软泥地上不易碎.这是因为( )A.掉在水泥地上,玻璃杯的动量大B.掉在水泥地上,玻璃杯的动量变化大C.掉在水泥地上,玻璃杯受到的冲量大,且与水泥地的作用时间短,因而受到水泥地的作用力大D.掉在水泥地上,玻璃杯受到的冲量和掉在软泥地上一样大,但与水泥地的作用时间短,因而受到水泥地的作用力大[解析] 杯子从同一高度落下,到达地面时的速度一定相等,故着地时动量相等;与地面接触后速度减小为零,故动量的变化相同,由动量定理I=Δp可知,冲量也相等;但由于在软泥地上,软泥地的缓冲使接触时间较大,由I=Ft可知,杯子受到的作用力较小,故杯子在水泥地上比在软泥地上更易破碎;只有D选项正确.[答案] D考向2 延长作用时间,减小作用力[典例6] 篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A.减小球对手的冲量B.减小球对人的冲击力C.减小球的动量变化量D.减小球的动能变化量[解析] 接球过程中,球的初动量和末动量一定,所以球的动量变化量恒定不变,选项C错误;根据动量定理,手对球的冲量等于球的动量的改变量,也恒定不变,球对手的冲量也不变,选项A 错误;球的初动能和末动能一定,所以球的动能变化量恒定不变,选项D错误;根据冲量I=Ft,球对手的冲量I不变,接球时两手随球迅速收缩至胸前,是通过延长受力时间t以减小球对人的冲击力F,所以选项B正确.[答案] B考点应用动量定理定量计算1.动量定理表达式为FΔt=Δp,它的左边是物体受到的所有力的总冲量,而不是某一个力的冲量.其中力F可以是恒力,也可以是变力,如果是变力,则F应是在Δt时间内的平均值.2.动量定理说明的是合力的冲量I合和动量的变化量Δp的关系,I合与Δp不仅大小相等而且方向相同.3.动量定理的研究对象是单个物体或物体系统.系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和,而系统内物体之间的作用力(内力),由大小相等、方向相反和等时性可知,其总冲量为零,不会改变系统的总动量.4.在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便,不需要考虑运动过程的细节.考向1 计算变力的冲量[典例7] (2017·河北衡水中学期中)如图所示,A 、B 经细绳相连挂在弹簧下静止不动,A 的质量为m ,B 的质量为M ,当A 、B 间绳突然断开,物体A 上升到某位置时速度为v ,这时B 下落速度为u ,在这段时间内弹簧弹力对物体A 的冲量为 .[解析] 分别对A 、B 两物体应用动量定理列式,联立即可以求出弹簧的弹力对A 的冲量.以向上为正方向,由动量定理得:对B :-Mgt =-Mu -0,对A :I -mgt =mv -0,解得:I =m (v +u ).[答案] m (u +v ) 考向2 计算平均作用力[典例8] 一质量为m 的铁锤,以速度v 竖直打在木桩上,经过Δt 时间后停止,则在打击时间内,铁锤对木桩的平均冲力的大小是( )A.mg ΔtB.mvΔt C.mvΔt+mg D.mvΔt-mg [解析] 对铁锤应用动量定理.设木桩对铁锤的平均作用力为F ,则(F -mg )·Δt =0-(-mv ),解得F =mv Δt +mg ,所以铁锤对木桩的平均冲力F ′=F =mvΔt+mg .[答案] C考向3 动量定理的综合应用[典例9] (2016·新课标全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.[解析] (1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则 Δm =ρΔV ① ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv 0S .③(2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12Δmv 2+Δmgh =12Δmv 20 ④在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp =Δmv ⑤ 设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥ 由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g2ρ2v 20S 2. ⑧[答案] (1)ρv 0S (2)v 202g -M 2g2ρ2v 20S2应用动量定理解题的注意事项(1)动量定理的表达式是矢量式,列式时要注意各个量与规定的正方向之间的关系(即要注意各个量的正负).(2)动量定理中的冲量是合外力的冲量,而不是某一个力的冲量,它可以是合力的冲量,也可以是各力冲量的矢量和,还可以是外力在不同阶段的冲量的矢量和.(3)应用动量定理可以只研究一个物体,也可以研究几个物体组成的系统.1.[对动量变化的理解]质量为5 kg 的小球以5 m/s 的速度竖直落到地板上,随后以3 m/s 的速度反向弹回,若取竖直向下的方向为正方向,则小球动量的变化为( )A.10 kg·m/sB.-10 kg·m/sC.40 kg·m/sD.-40 kg·m/s答案:D 解析:动量的变化是末动量减去初动量,规定了竖直向下为正方向,则小球的初动量p 1=mv 1=25 kg·m/s,末动量p 2=mv 2=-15 kg·m/s,所以动量的变化Δp =p 2-p 1=-40 kg·m/s.2.[动量]如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方.在O和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑.下列说法正确的是( )A.a 比b 先到达S ,它们在S 点的动量不相等B.a 与b 同时到达S ,它们在S 点的动量不相等C.a 比b 先到达S ,它们在S 点的动量相等D.b 比a 先到达S ,它们在S 点的动量相等答案:A 解析:由机械能守恒定律可知,两物体在同一高度处下落,最后速度的大小相同,但因为b 物块沿竖直方向的分速度小于a 物块沿竖直方向的速度,所以a 物块先到达S 点;此时a 物块的速度方向为竖直向下,b 物块的速度方向为水平向左,所以两物块的动量不相同.3.[动量定理、冲量](多选)以初速度v 水平抛出一质量为m 的石块,不计空气阻力,则对石块在空中运动过程中的下列各物理量的判断中,正确的是( )A.在两个相同的时间间隔内,石块受到的冲量相同B.在两个相同的时间间隔内,石块动量的增量相同C.在两个下落高度相同的过程中,石块动量的增量相同D.在两个下落高度相同的过程中,石块动能的增量相同答案:ABD 解析:不计空气阻力,石块只受重力作用,无论路程怎样,只要两个过程的时间相同,重力的冲量就相同,A 项正确.由动量定理可知,石块动量的增量等于它受到的冲量,由于在两个相同的时间间隔内,石块受到重力的冲量相同,所以动量的增量必然相同,B 项正确.由于石块下落时在竖直方向上做加速运动,两个下落高度相同的过程所用时间不同,所受重力的冲量就不同,所以动量的增量不同,C 项错误.根据动能定理,外力对石块所做的功等于石块动能的增量,由于石块只受重力的作用,且在重力的方向上石块的位移相同,所以重力做的功就相同,因此动能增量就相同,D 项正确.4.[对冲量的理解]如图所示,两个质量相同的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,在到达斜面底端的过程中( )A.重力的冲量相同B.弹力的冲量相同C.合力的冲量相同D.合力的冲量大小相同答案:D 解析:重力的冲量I G =mg ·t ,物体下滑时间不同,故I G 不同,A 项错误.弹力与斜面垂直,两物块所受弹力方向不同,故弹力的冲量不同,B 项错误.两物块所受合力的方向平行于斜面,故合力的冲量方向也与斜面平行,所以合力的冲量不同,C 项错误.由机械能守恒定律可知,物体到达底端时的速率相同,又两物体的质量相同,所以由I =mv 知,合力的冲量大小相同,故D 项正确.5.[动量定理、动能定理]物体在恒定的合力F 作用下做直线运动,在时间Δt 1内速度由0增大到v ,在时间Δt 2内速度由v 增大到2v .设F 在Δt 1内做的功是W 1,冲量是I 1;在Δt 2内做的功是W 2,冲量是I 2.那么( )A.I 1<I 2,W 1=W 2B.I 1<I 2,W 1<W 2C.I 1=I 2,W 1=W 2D.I 1=I 2,W 1<W 2答案:D 解析:在Δt 1时间内I 1=F Δt 1=mv ,在Δt 2时间内,I 2=F Δt 2=2mv -mv =mv ,所以I 1=I 2.又因为W 1=12mv 2,W 2=12m (2v )2-12mv 2=32mv 2,故W 1<W 2,D 项正确.。
动量定理
动量定理的理解及应用【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.。
第1讲 动量 动量定理及其应用
【课程标准内容及要求 1.理解冲量和动量。
2.通过理论推导和实验,理解动量定理,能用其解释生产生活中的有关现象。
3.理解动量守恒定律,能用其解释生产生活中的有关现象。
知道动量守恒定律的普适性。
4.定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
5.体会用守恒定律分析物理问题的方法,体会自然界的和谐与统一。
实验八:验证动量守恒定律。
第1讲动量动量定理及其应用一、动量、动量的变化、冲量1.动量(1)定义:物体的质量与速度的乘积。
(2)表达式:p=m v。
(3)方向:动量的方向与速度的方向相同。
2.动量的变化(1)动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同。
(2)动量的变化量Δp,一般用末动量p′减去初动量p进行矢量运算,也称为动量的增量,即Δp=p′-p。
3.冲量(1)定义:力与力的作用时间的乘积叫作力的冲量。
(2)公式:I=FΔt。
(3)单位:N·s。
(4)方向:冲量是矢量,其方向与力的方向相同。
二、动量定理1.内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量。
2.公式:F(t′-t)=m v′-m v或I=p′-p。
【自测1下列关于动能、动量、冲量的说法中正确的是()A.若物体的动能发生了变化,则物体的加速度也发生了变化B.若物体的动能不变,则动量也不变C.若一个系统所受的合外力为零,则该系统内的物体受到的冲量也为零D.物体所受合力越大,它的动量变化就越快答案 D解析若物体的动能发生了变化,则速度的大小一定变化,但是物体的加速度不一定发生变化,例如物体做平抛运动,下落的加速度为重力加速度不变,但物体的动能发生了变化,选项A错误;若物体的动能不变,则速度的大小不变,但是速度的方向可能变化,动量可能变化,例如物体做匀速圆周运动,选项B错误;若一个系统所受的合外力为零,则该系统的每个物体受到的冲量不一定为零,例如子弹射入放在光滑水平面的木块中时,选项C错误;根据动量定理可知F=Δp Δt,即物体所受合外力越大,它的动量变化就越快,选项D正确。
高中物理 第十六章 动量守恒定律 第2节 动量和动量定理(含解析)
第2节动量和动量定理1.物体质量与速度的乘积叫动量,动量的方向与速度方向相同。
2.力与力的作用时间的乘积叫冲量,冲量的方向与力的方向相同。
3.物体在一个过程始末的动量变化量等于它在这个过程中所受合力的冲量,动量变化量的方向与合力的冲量方向相同。
一、动量及动量的变化1.动量(1)定义:物体的质量和速度的乘积。
(2)公式:p=mv。
(3)单位:千克·米/秒,符号:kg·m/s。
(4)矢量性:方向与速度的方向相同。
运算遵守平行四边形定则。
2.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式)。
(2)动量始终保持在一条直线上时的动量运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小)。
二、冲量1.定义:力与力的作用时间的乘积。
2.公式:I=F(t′-t)。
3.单位:牛·秒,符号是N·s。
4.矢量性:方向与力的方向相同。
5.物理意义:反映力的作用对时间的积累效应。
三、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
2.表达式:mv′-mv=F(t′-t)或p′-p=I。
1.自主思考——判一判(1)动量的方向与速度方向一定相同。
(√)(2)动量变化的方向与初动量的方向一定相同。
(×)(3)冲量是矢量,其方向与力的方向相同。
(√)(4)力越大,力对物体的冲量越大。
(×)(5)若物体在一段时间内,其动量发生了变化,则物体在这段时间内的合外力一定不为零。
(√)2.合作探究——议一议(1)怎样理解动量的矢量性?提示:动量是物体的质量与速度的乘积,而不是物体的质量与速率的乘积,动量的方向就是物体的速度方向,动量的运算要遵守矢量法则,同一条直线上的动量的运算首先要规定正方向,然后按照正负号法则运算。
(2)在地面上垫一块较厚的软垫(如枕头),手拿一枚鸡蛋轻轻的释放让它落到软垫上,鸡蛋会不会破?动手试一试,并用本节知识进行解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律专题1 动量动量定理题型一——对基本概念的理解例题1.关于冲量,下列说法中正确的是()A.冲量是物体动量变化的原因B.作用在静止的物体上力的冲量一定为零C.动量越大的物体受到的冲量越大D.冲量的方向就是物体受力的方向例题2.如图示,AB、AC、AD是竖直平面内三根固定的光滑细杆,A、B、C、D四点位于同一圆周上,A点位于最高点,D点位于圆周的最低点,每根杆上都套着一个质量相同的小滑环(图中没画出),三个滑环分别沿不同的细杆从A点由静止开始滑下,在他们分别沿细杆下滑的整个过程中,下列说法正确的是:()A.弹力对它们的冲量相同,B.重力对它们的冲量相同,C.合外力对它们的冲量相同D.以上三种说法均错误例题3.如图所示,一个质量是0.2 kg的钢球,以2 m/s的速度斜射到坚硬的大理石板上,入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度仍为2 m/s.你能不能用作图法求出钢球动量变化的大小和方向?例题4.在光滑的水平面上有一小滑块,开始时滑块静止,若给滑块加一水平恒力F1,持续一段时间后立刻换成与F1相反方向的水平恒力F2.当恒力F2与恒力F1持续时间相同时,滑块恰好回到初始位置,且具有动能E k,在上述过程中,F1对滑块做功为W1,冲量大小为I1;F2对滑块做功为W2,冲量大小为I2.则( )A.3I1=I2B.4I1=I2C.W1=0.25E k,W2=0.75E kD.W1=0.20E k,W2=0.80E k练习1-1:关于冲量和动量,下列说法中错误的是()A.冲量是反映力和作用时间积累效果的物理量B.冲量是描述运动状态的物理量C.冲量是物体动量变化的原因D.冲量的方向与动量的方向一致练习1-2:在动量定理F·t = △P中,F指的是()A.物体所受的弹力 B.物体所受的合外力C.物体所受的除重力和弹力以外的其他力 D.物体所受的除重力以外的其他力的合力练习1-3:甲、乙两个质量相同的物体,以相同的初速度分别在粗糙程度不同的水平面上运动,乙物体先停下来,甲物体又经较长时间停下来,下面叙述中正确的是()A、甲物体受到的冲量大于乙物体受到的冲量B、两个物体受到的冲量大小相等C、乙物体受到的冲量大于甲物体受到的冲量D、无法判断练习1-4:物体在恒力作用下作直线运动,在t1时间内物体的速度由零增大到v,F对物体做功W1,给物体冲量I1.若在t2时间内物体的速度由v增大到2v,F对物体做功W2,给物体冲量I2,则()A.W1=W2,I1=I2 B.W1=W2,I1>I2 C.W1<W2,I1=I2 D.W1>W2,I1=I2练习1-5:与水平方向成角的光滑斜面的底端静止一个质量为m的物体,从某时刻开始有一个沿斜面方向向上的恒力F作用在物体上,使物体沿斜面向上滑去,经过一段时间t撤去这个力,又经时间2t物体返回到斜面的底部,则()A.F与的比应该为3:7 B. F与的比应该为9:5C. F 与的比应该为7:3D. F 与的比应该为5:9练习1-6:如图所示,光滑水平面上有一质量为 m = 0.40kg 的小球以速度 v 0 = 5.0m /s 向右运动。
碰到墙后以速度 v = 4.0m /s 返回。
球与墙相碰的作用时间为 t = 0.050s 。
求: ① 小球动量的增量Δp ② 小球受到墙的平均作用力题型二——用动量定理定性解释两类现象例题5、 玻璃杯从同一高度自由落下,掉落在硬质水泥地板上易碎,掉落在松软地毯上不易碎,这是由于玻璃杯掉在松软地毯上( )A. 所受合外力的冲量较小B. 动量的变化量较小C. 动量的变化率较小D. 地毯对杯子的作用力小于杯子对地毯的作用力例题6、某同学要把压在木块下的纸抽出来。
第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。
这是为什么?练习2- 1:杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的大石块,石裂而人不伤,这是什么道理?请加以分析.练习2- 2:(2004上海理科大综合·)在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带。
假定乘客质量为70 kg ,汽车车速为108 km /h (即30 m /s ),从踩下刹车到车完全停止需要的时间为5 s ,安全带对乘客的作用力大小约为( )A .400NB .600NC .800ND .1000N练习2-3:运输家用电器、易碎器件等物品时,经常用泡沫塑料作填充物,这是为了在运输过程中( )A .减小物品受到的冲量B .使物体的动量变化量减小C .延长了物品受撞击的相互作用时间D .较尖锐的物体不是直接撞击物品表面,而是撞击泡沫塑料,减小撞击时的压强 练习2- 4:如图所示,水平面上叠放着a 、b 两木块,用手轻推木块b ,a 会跟着一起运动;若用锤子水平猛击一下b ,a 就不会跟着b 运动,这说明( )A .轻推b 时,b 给a 的作用力大B .轻推b 时,b 给a 的作用时间长C .猛击b 时,b 给a 的冲量大D .猛击b 时,b 给a 的冲量小题型三—动量定理的基本运用例题7、如图所示,质量为M 的小车在光滑的水平面上以速度v 向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后,反弹上升的高度仍为h ,设M>>m ,碰撞弹力N>>mg ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度是( ) A .gh 2B .0C .-vD .gh 22例题8、竖直上抛一物体,不计阻力,取向上为正方向,则物体在空中运动的过程中,动量变化△P 随时间t 的变化图线是下图中的哪一个?例题9、如图所示,用0.5kg 的铁锤钉钉子,打击时铁锤的速度为4m /s ,打击后铁锤的速度变为零,设打击时间为0.01s 。
1、不计铁锤的重量,铁锤钉钉子的平均作用力是多大?2、考虑铁锤的重量,铁锤打钉子的平均作用力是多大?3、你分析一下,在计算铁锤钉钉子的平均作用力时在什么情况下可以不计铁锤的重量.练习3-1:(1997全国卷·2)质量为m 的钢球自高处落下,以速率υ1碰地,竖直向上弹回,碰撞时间极短离地的速率为υ2,在碰撞过程中,地面对钢球的冲量的方向和大小为( ) A .向下,m (υ1-υ2) B .向下,m (υ1+υ2) C .向上,m (υ1-υ2) D .向上,m (υ1+υ2)练习3-2:甲、乙两个物体动量随时间变化的图像如图所示,图像对应的物体的运动过程可能是( )A 、甲物体可能做匀加速运动B 、甲物体可能做竖直上抛运动C 、乙物体可能做匀变速运动D 、乙物体可能与墙壁发生弹性碰撞练习3-3:如图所示,物块A 压着一纸带放在水平桌面上,当以速度v 抽出纸带后,物块A 落在地面上的P 点;若以2v 的速度抽出纸带(其他条件不变),则物块A 落地点为 ( ) A .仍在P 点 B 在P 点左侧C .在P 点右侧某处D .在P 点右侧原水平位移两倍处 练习3-4:(小球下落到软垫时受到的平均作用力)一个质量为100g 的小球从0.8m 高处自由下落到一个软垫上,若从小球接触软垫到小球陷至最低点经历了0.2s ,则这段时间内软垫对小球的冲量为多少?(g 取10m /s 2,不计空气阻力)题型四—求变力冲量例题10、一个质量为m 的物体,以速率υ做匀速圆周运动,求物体在1/2周期内所受合力冲量的大小.例题11、如图所示,长为L 的轻绳一端系于固定点O ,另一端系质量为m 的小球,将小球从O 点正下方L /4处以一定初速度向右水平抛出,已知绳刚被拉直时线与竖直线夹60°角,然后小球将在竖直平面内摆动,求:(1)小球作平抛运动的初速度;甲 乙 丙丁(2)绳被拉紧瞬间,O 点所受到的冲量。
(3)小球摆到最低点时绳中的张力。
例题12、一个物体同时受到两个力F 1、F 2的作用,F 1、F 2与时间t 的关系如图所示,如果该物体从静止开始运动,经过t=10s 后F 1、F 2以及合力F 的冲量各是多少?例题13、如果物体所受空气阻力与速度成正比,当以速度v 1竖直上抛后,又以速度v 2返回出发点。
这个过程共用了多少时间?练习4-1:跳伞运动员从2000m 高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比,最大降落速度为v m =50m/s 。
运动员降落到离地面s=200m 高处才打开降落伞,在1s 内速度均匀减小到υ1=5.0m/s ,然后匀速下落到地面,试求运动员在空中运动的时间。
练习4-2:如图表示物体所受作用力随时间变化的图象,若物体初速度为零,质量为m ,求物体在t 2 时刻的末速度?练习4-3:如图所示,将一轻弹簧悬于O 点,下端和物体A 相连,物体A 下面用细线连接物体B ,A 、B 质量分别为M 、m ,若将细线剪断,待B 的速度为v 时,A 的速度为V ,方向向下,求该过程中弹簧弹力的冲量。
题型五——多过程问题例题13、质量1kg 的铁球从沙坑上方由静止释放,下落1s 落到沙子表面上,又经过0.2s ,铁球在沙子内静止不动.假定沙子对铁球的阻力大小恒定不变,求铁球在沙坑里运动时沙子对铁球的阻力(g =10m /s 2)例题14、(2006上海物理·21)质量为 10 kg 的物体在F =200 N 的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37O.力F 作用2s钟后撤去,物体在斜面F 21F上继续上滑了1.25s 钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移S 。
(已知 sin37o=0.6,cos37O=0.8,g =10 m/s 2)例题15、一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。
试求物体在水平面上所受的摩擦力。
例题16、(2007全国理综I ·18)如图所示,在倾角为30°的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用。
力F 可按图(a )、(b )、(c )、(d )所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,力沿斜面向上为正)。
已知此物体在t =0时速度为零,若用v 1、v 2、v 3、v 4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是( )A .v 1B .v 2C .v 3D .v 4例题17、如图所示,在光滑水平面上并排放着A 、B 两木块,质量分别为m A 和m B 。