作一个角等于已知角教案
做一个角等于已知角
议一议
⑴这样作法正确吗?你应如何检验? ⑵量一量,剪一剪,比一比。 ⑶从画∠AOB中,你认为确定∠AOB的大小 关键是什么? ⑷如果在角O外部另有一点C,你能用 尺规画∠COD,并使 ∠AOB=∠COD吗?
B
O
A
随堂练习: (任选一题)
AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
• ⑴已知∠
B
•
A O ⑵已知角α,β(β<α<90°)求作一个角,使 它等于α+β.
α β
• ⑶过直线外一点P作已知直线l 的平行线。
1.右面的”雏菊图案”漂亮吗?你 想自己画出它吗?那就让我们从最 初的步骤开始吧!
步骤一 步骤二 步骤三 以点O为圆心, ⑵以圆O上任意一点 分别以两个交点为 r为半径作圆 O. 为圆心,r为半径作 圆心,r为半径作 圆,与圆O交于两点. 圆.
继续做ห้องสมุดไป่ตู้去,在适当的区域涂上颜色.你能作出美丽的” 雏菊图案”了吗?
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习巩 固用尺规作一个角等于已知角; (二)书面作业:P68 习题2.6 1
(三)弹性作业:模仿用尺规作两个 角和的方法,思考你能否用尺规作两 个角的差.若能,请探究它的作法,并画 出图形.
O
A
画一画
作法与示范
示范
作法
(1)作射线O′A′:
(2)以点O为圆心,以OC长为半径 画弧,交OA于点C,交OB于点D; (3)以点O′为圆心,以OC长为半径 画弧,交O′ A′于点C′; (4)以点C′为圆心,以CD长为半 径画弧,交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
北师大版初一数学下册用尺规作一个角等于已知角
教学设计方案模板教学设计方案课题名称:用尺规作一个角等于已知角一、教学内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)1.课题来源于北师大七年级数学下册课本第二章平行线与相交线4用尺规作线段和角;2.学习内容有作一角等于已知角和作两角的和、差、倍、分;3.虽然在教材当中只是提出了如何用尺规来作一个角等于已知角,但是对于教材的适当补充和拓展是十分有必要。
二、教学目标(从学段课程标准中找到要求,并具体化为本节课的具体要求,明晰(学生懂)、具体、可操作、可以依据练习测试题)重点及难点(说明本课题的重难点)教学目的:1 •能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2 •能利用尺规作角的和、差、倍。
在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
教学重点:能按作图语言來完成作图动作能用尺规作一个角等丁己知角。
3.教学难点::. 1 .用。
三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)学生在前面学习了用尺规如何画线段的和、差、倍问题,加之自学及前面练习中的铺垫,同时可以和上节课学习线段的和、差进行类比学习,放给学生独立解决,学生既容易接受有关角的和、差、倍问题,又充分体现了学生的自主学习性。
所以教学设计:第一复习画线段的和、差、倍问题;第二是让学生自主学习和完成课本作业;第三是让学生先讨论如何画一个角等于已知角;第四让学生合作探究画角的和、差、倍关系。
教师主要起引导作用。
四、教学过程(设计本课的学习环节,明确各环节的子目标,画出流程图) 先复习作一条线段等于已知线段,然后设计了五个教学环节:情境引入探索发现,用尺规作一个角等于已知角,角的和、差、倍,课堂小结,布置作业。
第一环节情境引入探索发现活动内容:如图2—14,要在长方形木板上截一个平行四边形,使它的一组对边在原长方形木板的边缘上,另一组对边中的一条边为AB(1) 请过C点画出与AB平行的另一边。
《作一个角等于已知角》 教学设计
《作一个角等于已知角》教学设计一、教学目标1、知识与技能目标学生能够理解作一个角等于已知角的基本原理和方法,能够熟练使用尺规准确地作出一个角等于已知角,并能够解释作图的依据。
2、过程与方法目标通过实际操作和思考探究,培养学生的动手能力、空间想象力和逻辑推理能力,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标让学生在作图的过程中感受数学的严谨性和精确性,激发学生对数学的兴趣和探索欲望,培养学生的耐心和细心,以及认真负责的学习态度。
二、教学重难点1、教学重点掌握作一个角等于已知角的尺规作图方法和步骤。
2、教学难点理解作一个角等于已知角的作图原理,能够准确地运用尺规进行作图。
三、教学方法讲授法、演示法、实践操作法、小组讨论法四、教学准备多媒体课件、圆规、直尺、三角板五、教学过程(一)导入新课通过展示一个已知角,提出问题:如何用尺规作出一个与这个角相等的角呢?引发学生的思考和兴趣,从而导入本节课的内容。
(二)讲授新课1、回顾尺规作图的基本工具和要求强调圆规和直尺的作用,以及尺规作图的准确性和规范性。
2、讲解作一个角等于已知角的步骤(1)以已知角的顶点为圆心,任意长为半径画弧,交已知角的两边于两点。
(2)以所求作角的顶点为圆心,同样的长度为半径画弧,交所求作角的两边于两点。
(3)以弧与新角两边的交点为端点,作射线。
3、演示作图过程教师在黑板上进行演示,边作图边讲解每个步骤的要点和注意事项,让学生更加直观地理解作图方法。
4、解释作图原理引导学生思考为什么这样作图可以得到一个与已知角相等的角,通过三角形全等的知识进行解释,让学生理解作图的依据。
(三)课堂练习1、让学生自己动手用尺规作一个角等于已知角,教师巡视并进行个别指导。
2、小组交流讨论,互相检查作图的准确性和规范性,共同解决遇到的问题。
(四)课堂小结1、回顾作一个角等于已知角的方法和步骤。
2、强调作图过程中的注意事项和易错点。
(五)布置作业1、书面作业:完成课本上相关的练习题。
北师大版数学7年级下册2.4《用尺规作角》参考教案
2.4 用尺规作角●教学目标(一)教学知识点1.会用尺规作一个角等于已知角.2.利用尺规作一个角等于已知角的应用.(二)能力训练要求会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用.(三)情感与价值观要求通过作图,进一步激发学生的学习兴趣,体验数学在生活中的应用.●教学重点用尺规作一个角等于已知角.●教学难点理解画图的语言,能根据几何语言画出图形.●教学方法讲练结合法●教具准备师:直尺、圆规.投影片一张第一张:引例(记作投影片§2.4 A)生:直尺、圆规、量角器●教学过程Ⅰ.创设现实情景,引入新课[师]在上节课我们学习了用直尺和圆规作图,并且引入了规范的尺规作图语言.从而能够用几何语言描述作一条线段等于已知线段.那么如何用尺规作一条线段等于已知线段呢?[生]已知线段a,求作:线段AB,使AB=a.作法:(1)作射线AC.(2)以点A为圆心,以a的长为半径画弧,交AC于点B.则,AB就是所求的线段.图2-64[师]很好.同学们已掌握了一些尺规作图的语言.下面大家看一实例,你能解决它吗?(出示投影片§2.4 A)如图2-65,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.(1)请过C点画出与AB平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?图2-65[师]大家讨论讨论.[生甲]要在长方形木板上截一个平行四边形,按上图的方式(平行四边形的一组对边在长方形木板的边缘上).只要保证过点C作出与AB平行的另一条线段即可.所以我用一个三角板的一边与AB重合,用直尺紧靠三角板的另一边,然后移动三角板,使与AB重合的那边过点C,这样过C点画线段CD,则CD 就是所求的与AB平行的另一边.如图2-66.图2-66[生乙]只有一个圆规和一把没有刻度的直尺,现在还不能解决这个问题.[生丙]过直线外一点作这条直线的平行线的原理是:同位角相等,两直线平行.所以,能不能过点C作一个角等于∠BAC,且使这两个角是同位角呢?[师]同学们讨论得很好,尤其是丙同学提出的问题:作一个角等于已知角.这节课,我们就来利用尺规作一个角等于已知角.Ⅱ.讲授新课[师]用尺规作图,它的步骤有哪些呢?[生]已知、求作、分析、作法.[师]好,那我们现在先来写已知、求作.[师生共析]已知:∠AOB,求作:∠A′O′B′,使∠A′O′B′=∠AOB.图2-67[师]这个∠A′O′B′如何就能作出呢?它的道理是什么呢?这将在第五章中谈到.现在我们只需按下列作法步骤去画即可.下面老师在黑板上画、叙述,同学们在下面用尺规作∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.图2-68[师]同学们作好了没有?[生齐声]好了.[师]那你所作的角一定等于已知角吗?……[师]大家来比较一下.[生甲]我用量角器量了量所作的角与已知角,可以知道这两个角相等.[生乙]我把所作的角与已知角重叠,看到这两个角的终边与始边重合,说明所作的角与已知角相等.[师]很好.这样我们就会用尺规作一个角等于已知角.下面我们两人一组,再作一个角等于已知角,一人叙述作法,一人根据作图.……[师]大家基本掌握了用尺规作一个角等于已知角.接下来我们通过练习进一步熟悉掌握这内容.Ⅲ.课堂练习(一)课本随堂练习1.已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.图2-69 图2-70作法:(1)以O为圆心,以任意长为半径画弧,与OA交于点A′,与OB交于点C.(2)以点C为圆心,以A′C长为半径画弧,交前弧于点B′.(3)过点B′作射线OB′,则∠A′OB′就是所求作的角.或者:作法:(1)作射线O′A′.(2)以O点为圆心,以任意长为半径画弧交OA于点C,交OB于点D.图2-71 图2-72(3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′点.(4)以点C ′为圆心,以CD 长为半径画弧,交前弧于E 点.(5)以点E 为圆心,以CD 长为半径画弧,交于点B ′.(6)过点B ′作射线OB ′.则∠A ′O ′B ′就是所求作的角.2.利用尺规完成本节课开始时提出的问题.作法:(略),图如下图2-73(二)看书 “读一读”.Ⅳ.课时小结本节课我们主要学习了用尺规作一个角等于已知角.要会用自己的语言来书写作法,并要了解作一个角等于已知角在尺规作图中的简单应用.Ⅴ.课后作业(一)课本P 57习题2.7 1.(二)复习本章的全部内容,并作一小结.Ⅵ.活动与探究1.利用尺规设计一些美丽的图案.[过程]通过这个活动,一方面使学生进一步掌握尺规作图的方法,另一方面也可培养学生的动手、动脑能力,激发他们的创造力,增进其对数学的理解.[结果]结果是许多学生设计出好多的美丽图案.C ′E●板书设计§2.4 用尺规作角一、做一做:作一个角等于已知角已知求作作法二、课堂练习三、读一读四、课时小结五、课后作业。
2024年秋季新北师大版七年级上册数学教学课件 4.2.3 尺规作角
2.如图,已知∠AOB,请用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB。
作图如下:
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:利用尺规作一个角等于已知角(重难点)
(1)作射线O′A′;(2)以点O为圆心,以任意长为半径作弧,交OA于点 C,交OB于点D;(3)以点O′为圆心,以OC的长为半径作弧,交O′A′ 于点C′;(4)以点C′为圆心,以CD的长为半径作弧,交前面的弧于点 D′;(5)过点D′作射线O′B′。∠A′O′B′就是所要作的角。
作法:如上图,(1)作射线O′A′。(2)以点______为O圆心,以 __任__意___长_为半径作弧,交OA于点C,交OB于点D。(3)以点___O__′_ 为圆心,以___O__C_的长为半径作弧,交O′A′于点C′。
(4)以点___C__′_为圆心,以_____C_D的长为半径作弧,交前面的弧于点D′。 (5)过点______作射D线′ _____。∠OA′′BO′′B′就是所要作的角。
2角
第3课时 尺规作角
1.会用尺规作图作一个角等于已知角,培养学生的动手操作能力。 2.会通过尺规作图比较两个角的大小,培养学生的观察能力和总
结能力。 3.通过尺规作图,规范学生的作图步骤,培养学生的规范性。
旧知回顾 1.角的大小的比较方法有哪些?
度量法,叠合法 2.角的和差怎么表示?
略
问题导入
我们已经知道可以通过移动其中一个角的方法比较两个角的大小。 如何移动一个角,使两个角的一条边重合呢?
图片导入 打台球时,球的反射角总是等于入射角。
如右图。红球能否被击入右下角的袋中? 你能画出红球在第一次反弹后的运动路 线吗?
视频导入
请同学们阅读教材124-125页,思考并回答以下问题。
《作一个角等于已知的角》说课稿 2023—2024学掳北京版数学八年级上册
《作一个角等于已知的角》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是初中北京版八年级上册第十二章三角形中四尺规作图及轴对称里的“12.8基本作图作一个角等于已知的角”。
下面我将从说教材、说学情、说教法、说学法、说教学过程以及板书设计这几个方面来展开我的说课。
一、说教材1、教材地位和作用“作一个角等于已知的角”是初中数学尺规作图的重要内容之一。
它是在学生已经学习了三角形的一些基本概念、角的度量等知识的基础上进行的。
这一内容不仅是对前面所学知识的综合运用,而且为后续学习复杂的尺规作图以及几何证明等奠定了坚实的基础。
尺规作图是一种具有独特教育价值的数学活动,它能让学生在动手操作中深入理解几何图形的性质和关系,培养学生的空间观念和逻辑思维能力。
2、教材内容分析本节课主要是教授学生如何仅用直尺(无刻度)和圆规作出一个角等于已知的角。
这个看似简单的操作,实际上蕴含着丰富的几何原理。
教材从实际问题引入,激发学生的学习兴趣,然后详细地阐述了作图的步骤,每一步都对应着相应的几何依据。
例如,利用圆规截取等长线段是基于圆的半径相等的性质。
通过这种方式,将操作与理论知识紧密结合起来,让学生在做中学,学中思。
3、教学目标(1)知识与技能目标学生能够理解并熟练掌握“作一个角等于已知的角”的尺规作图方法,能准确地作出符合要求的角,并能说出每一步骤的依据。
(2)过程与方法目标通过自主探究、小组合作等活动,培养学生的动手操作能力、逻辑思维能力和空间观念。
让学生在经历作图过程中,体会几何知识之间的内在联系,提高分析问题和解决问题的能力。
(3)情感态度与价值观目标激发学生对几何作图的兴趣,培养学生严谨的科学态度和勇于探索的精神。
在小组合作中,增强学生的团队合作意识和交流能力。
4、教学重难点(1)教学重点掌握“作一个角等于已知的角”的尺规作图步骤及原理。
这是本节课的核心内容,只有熟练掌握了基本的作图方法,才能为后续学习和应用奠定基础。
《用尺规作角》教案
《用尺规作角》教案教学目标一、知识与技能能按作图语言来完成作图动作,能用尺规作一个角等于已知角;二、过程与方法经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识;三、情感态度和价值观使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力;教学重点能用尺规作一个角等于已知角;教学难点作图步骤和作图语言的叙述;教学方法引导发现法、启发猜想课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入利用没有刻度的直尺和圆规可以作出很多几何图形,你还记得我们是如何用圆规和直尺作一条线段等于已知线段的吗?已知:线段AB.求作:线段A' B' ,使A' B' =AB.作法与示范:作法: (1) 作射线A' C';(2) 以点A'为圆心,以AB的长为半径画弧,交射线A' C'于点B' ,A' B' 就是所求作的线段.二、新课如图224,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.(1)请过点C画出与AB 平行的另一边.(2)如果只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?上述问题:用尺规(无刻度的直尺和圆规)“过直线外一点作已知直线的平行线”相当于“过点C作∠ECD做一做利用尺规,作一个角等于已知角.已知:∠AOB.求作:∠A'O'B',使∠A'O'B' =∠AOB.作法与示范:(1)作射线O'A' ;(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D;(3)以点O' 为圆心,以OC 为半径画弧,交O'A' 于点C' ;(4)以点C' 为圆心,以CD 长为半径画弧,交前面的弧于点D' ;(5)过点D' 作射线O'B'. ∠A'O'B' 就是所求作的角.如图226,已知∠AOB,∠EO'F,利用尺规作图,比较它们的大小.三、习题1.已知∠AOB,利用尺规作∠A'O'B',使∠A'O'B' =2∠AOB.即∠A'O'B'为所求作的角.四、拓展1.如图,已知线段a 和两条互相垂直的直线AB,CD。
第2课时 作一个角等于已知角
第2课时作一个角等于已知角教学目标【知识与技能】会利用直尺和圆规作一个角等于已知角.【过程与方法】体会尺规作图的简洁性和准确性.【情感、态度与价值观】学会尺规作图,可使学生作出许多美妙的图形,培养学生动手、动脑的问题.教学重难点【重点】作一个角等于已知角.【难点】让学生理解作图步骤中的语言,并能根据作图要求画出图形.教学过程一、创设情境,引入新课师:上节课我们学习了用尺规作图作一条线段等于已知线段,请同学们完成下面的作图:已知线段a、b,试作以a为底、以b为腰的等腰△ABC.学生独立完成.教师巡视指导.师:如何用尺规作一个角等于已知角呢?师:(示范)已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:1.作射线O′A′.2.以O点为圆心、以任意长为半径画弧,交OA于点C,交OB 于点D.3.以O′为圆心、以OC长为半径画弧交O′A′于点C′.4.以点C′为圆心、以CD长为半径画弧交前面的弧于点D′.5.过点D′作射线O′B′,则∠A′O′B′就是所求作的角.师:如何用尺规作一个角等于几个已知角的和或差呢?二、例题讲解【例】如图,已知α,β.求作:∠AOB,使∠AOB=α+β.作法:1.作∠AOC=α.2.以点O为顶点、OC为一边在∠AOC的外部作∠COB=β,则∠AOB即为所求作的角.注:写作法时,不必重复作图的详细过程,只用一句话概括叙述即可,但必须保留作图痕迹.三、变式训练你会作吗?如图,已知α,β(α<β).求作:∠AOB,使∠AOB=β-α.学生独立完成.教师指导,先画草图分析,再确定作图步骤.四、课堂小结师:这节课我们学习了用尺规作一个角等于已知角,你学会了吗?作图中,我们需要注意一些什么问题?学生讨论并总结.。
作一个角等于已知角课件华东师大版数学八年级上册
2、以圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去, 在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗
课堂小结
通过本节课的学习你有哪些收获? 你还有什么想法吗?
课后作业
已知直线AB及直线AB外一点C,过点C作 CD∥AB(写出作法,画出图形).
问题引入
点A放在在角的顶点,AB和AD沿着角的两边放 下,沿
AC画一条射线AE,AE就是∠BAD的角平分线, 你能用
学过的知识解释其中的道理吗? 根据此原理你能用尺规作角的平分线吗?
给我最大快乐的 : 不是已懂的知识,而是不断的学习; 不是已经达到的高度,而是继续不断地攀登 。
自主学习
自学内容:P85前三段内容。
(5) 过点D’作射线O’B’.
DB
O D’
CA
BB’’
OO’’
C’
AA’’
∠A’O’B’就是所求的角.
想一想:
想一想:为什么两个角相等?你会证明吗?
活动形式:抢答
就位与展示
活动形式:抢答
大家都听得非常认真, 上面都掌握了么? 让我们来试试下一道题吧!!
小组清零
要求: 1.讲题的同学声音洪亮, 2.作图语言要规范。
奖励: 1.回答问题 个人 奖励
所在小组 奖励 2.纠错补充的同学奖励
独立思考、合作交流; 口述作法、保留作图痕迹。
1、任意画出两条线段AB和CD, 再作一条线段,使它等于AB+2CD
2、已知: ∠AOB。
利用尺规作: ∠A’O’B’(不在原图上作) 使∠A’O’B’=2∠AOB。
用尺规作角
10 《用尺规作角》教学设计【教学内容解析】《用尺规作角》是北师大版七年级下册第二章第四节的内容,是安排在学生学习了尺规作一条线段等于已知线段以及平行线的性质和判定的基础上进行学习的.本节课主要学习用尺规作一个角等于已知角,它既是对前面知识的深化和应用,又是后续内容用尺规作三角形的预备知识.本节内容在教材中处于承前启后的作用.【课标要求】1.能用尺规作一个角等于已知角.2.了解作图的道理,保留作图的痕迹,不要求写出作法.【学习目标】1.通过对预习作业的展示分析,进一步理解用尺规作一个角等于已知角的方法,并能熟练用尺规作角的和、差、倍.2.通过作图活动,进一步丰富平行线及角的认识.3.了解用尺规作角在生活中的应用.【学情分析】学生在七年级上册已经学过用尺规作一条线段等于已知线段,对尺规作图也有了基本了解.在课下,通过布置预习作业,部分学生基本能够根据课本做一做的步骤用尺规作出一个角等于已知角,但仍有部分学生作图出现很多问题.课堂中,通过部分优秀学生指导带动个别学困生的同时,又可培养他们的团队意识和语言表达能力.因此本节课通过对预习作业的展示分析,以及学生的预习感受展开本节课.通过翻转课堂的模式突破难点,增加练习,强化重点.【教学重点】用尺规作一个角等于已知角.【教学难点】尺规作图的作法和应用.【教学过程】一、预习作业回顾昨天我们的预习作业是:通过预习课本55-56页,尝试用尺规作∠A’O’B’=∠AOB,并写上预习感受.大家的作业反映出了很多问题,本节课我们通过对十份具有代表性的作业的分析进一步探讨用尺规作角.(设计意图:简单的问题让学生自学,通过课前批改预习作业和学生的预习感受了解学生学情,便于指导教学)二、预习作业展示分析选取十份具有代表性的预习作业课堂展示,师生共同分析,解决学生预习作业中的错误.让学生明确以下两点:一、直尺和圆规的功能;二、尺规作角的注意事项.通过学生预习感受提出的问题,逐步总结出尺规作角的步骤:三弧两线.(设计意图:解决学生预习作业的问题和提出的问题,教师给予方法指导,突破重点和难点,针对目标1)三、当堂检测(设计意图:完成目标1,2)1.作一个角等于已知角完成课本55页引例,做到课本上.设计意图:将数学问题迁移到生活中。
用尺规作图画角优秀教案
能力、提高素养营造良好的氛围,铺设合理的途径,以求最大限度地发挥数学教学的功
能.教学设计以知识的探索为载体,让学生积极主动而又生动活泼地发展,成为数学学习中的主体.教学过程要借助画角展开,激发学生探索画角新方法的欲望.并能凭借直觉确立初步的自信.初一学生刚涉足几何,要让他们独立探索尺规作图,必有一定的难度.因为这不仅涉及作图过程,更涉及若干概念以及几何语言的表述.因此,教师要充分利用学生已有的知识(用量角器画角)和经验,依靠学生的群体智慧,将难点突破.同时利用量角器的度量、图形的剪辑和练习的变式等,从不同层面为学生提供思考的空间.学生口、眼、手、脑的协同活动,加之以激励性的语言评价,不断激发学生的兴趣、追求与自信.最后,用多媒体动态模拟、过程分解、色彩对比和闪烁显示,把用量角器画角与尺规作图进行了生动而有深刻的比较,使得学生的认知结构有了进一步的完善.
3、请学生用量角器量一量,∠ 与∠AOB相等吗?
4、请学生将所画的∠ 与∠AOB分别剪下,看
一看这两个角是否完全重合?
说明:
(1)在数学中,把只用直尺(没有刻度的)和圆规画图称为尺规作图.
(2)在画图中间过程中画出的图形(点、直线、弧线
等),也叫做画图痕迹.这些痕迹可画轻一些、淡一些.在初学画图时,通常要求保留画图痕迹.
巩固已学的画图方法,
比较用量角器画已知角与用尺规画已知角的原理。
总结归纳
本节课的中心是研究尺规作图,要求作一个角等于已知角.它的关键是确定求作角的终边位置.实践证明,用量角器画一个角等于已知角的原理与用尺规作图作一个角等于已知角的原理完全相同.许多知识都有其内在的联系,善于发现并重视这种内在联系,有助于我们找到解决问题的途径.
作一个角等于已知角
最大最全最精的教育资源网
新世纪教育网 天量课件、教案、试卷、学案 免费下载
1 教材分析
本课内容是人教版九年级(下)数学第26章《反比例函数》的第一课时,是继一次函数学习之又一类新的函数--反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
一、教学目标
教学目标是教学的出发点和归宿。
根据新课程的要求,考虑到学生的认知规律和心理特点,结合本课特点,我特制定教学目标如下:
1.知识与技能、理解反比例函数的意义。
2.能够根据已知条件确定反比例函数的表达式。
3.让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题,能从实际问题中抽象出反比例函数并确定其表达式
二.情感与态度
1.经历反比例函数的形成过程,使学生体验函数是描述变量间对应关系的重要数学模型。
2.通过反比例函数的学习,培养学生合作交流意识和探索能力
三、教学重难点
重点:理解反比例函数的意义,确定反比例函数表达式。
难点:理解反比例函数的内涵。
人教版初二数学上册用直尺和圆规做一个角等于已知角
三角形全等的判定(一)教学目标 1.构建探索三角形全等条件的思路,体会研究几何问题的方法.归纳获得数学结论.探索并理解“边边边”判定方法,体验利用操作、? 2 的过程.明三角形全等.会用尺规作一个角等于已.会用“边边边”判定方法证 3 知角,了解作图的依据.判定方法.构建探索三角形全等条件的思路,教学重点: 理解并运用“边边边”.构建探索三角形全等条件的思路。
教学难点:1 .用尺规作一个角等于已知角 2. 学案等、直尺、教学准备:多媒体课件、两块全等的三角形纸板、圆规教学过程:一、复习旧知,尝试解决生活问题,初识“全等判定”,构建探索思路根据这个定义,你知道的 1.请你思考后回答:什么叫做全等三角形?全等三角形有哪些性质?你怎样去判定两个三角形全等?. 师生活动:教师根据学生回答,在黑板上用符号语言表示这一判定方法在△ABC和△A′B′C′中,??BAAB?????CBC?B????'CAAC?AA?∵??A?A?????B?B?????C??C?'C'BCB?△ABC≌△A′B′C′∴其中 2.尝试应用:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,并说?妈妈让小明到玻璃店配一块回来一块被打碎了,,请你说说小明该怎么办说这样做的依据是什么?.师生活动:学生先在小组内交流,再在全班展示结果请你继续思考:是否一定需要六个条件才能判定两个三角形全等呢?能3. 否减少个三角形全等的判定?你想从几个条件开始研究?师生活动:学生畅说欲言,交换,确定先从“一个条件”开始,不行就两.个“两个条件”,再不行就“三个条件”……的顺序来探究三角形全等的条件。
二、动手操作,感知由“一个条件”“两个条件”不能确定两个三角形全等活动1.请你观察手中的一副三角尺,思考后回答:只给一个条件相等的两个三角形一定全等吗?师生活动:学生独立观察、比较后,再个人展示,有不同想法补充说明,发现:有一条边或一个角相等的两个三角形不一定全等.一起归纳得出:只有一个条件对应相等的两个三角形不一定全等。
【华师版八年级数学上册】《做一个角等于已知角》教学设计
《做一个角等于已知角》教学设计教学目标一、知识与技能掌握尺规作图的基本作图:画一个角等于已知角,解尺规作图题,会写已知、求作和作法。
二、过程与方法通过课上的练习与实践,更好的学会用尺规作图。
能够自己解决问题。
三、情感态度和价值观学会尺规作图,体会数学的奥妙,增强学生的动手操作能力。
教学重点画图,写出作图的主要画法。
教学难点写出作图的主要画法,应用尺规作图。
教学方法引导法,演示法。
课前准备作图工具(圆规,尺子),使用“学乐师生”APP拍照,和同学们分享。
课时安排1课时。
教学过程一、导入新课尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆。
请大家画一条长4cm的线段,画一个48°的角,画一个半径为3cm的圆。
如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗?实际上,只用无刻度的直尺和圆规作图,在数学上叫做尺规作图。
二、新课学习复习上节课内容:1.画一条线段等于已知线段。
请同学们探索用直尺和圆规准确地画一条线段等于已知的线段。
已知线段a,用直尺和圆规准确地画一条线段等于已知线段a。
例1已知:线段a、b、c.(画出三条线段a、b、c)求作:△ABC,使得三边为线段a、b、c作法:(1)画一条线段AB,使得AB=c(2)以点A为圆心,以线段b的长为半径画圆弧;再以点B为圆心,以线段a的长为半径画圆弧;两弧交于点C(3)连结AC,BC△ABC2.学习新课内容:画一个角等于已知角。
请同学们探索用直尺和圆规准确地画一个角等于已知角。
已知角∠MPN,用直尺和圆规准确地画一个角等于已知角∠MPN。
(1)画射线OA(2)以角∠MPN的顶点P为圆心,以适当长为半径画弧,交∠MPN的两边于E、F。
(3)以点O为圆心,以PE长为半径画弧,交OA于点C(4)以点C为圆心,以EF长为半径画弧,交前一条弧于点D。
.(5)经过点D作射线OB∠AOB就是所画的角。
作一个角等于已知角19.3.2
(2)作直线 (2)作直线CD; 作直线CD; 直线CD就是线段 的垂直平分线。 就是线段AB的垂直平分线 直线 就是线段 的垂直平分线。
例5、如图,已知钝角 ∠AOB,求作 ∠AOB的补角的一 、如图, 半。
B
A O
例6、已知:线段 a, l 、已知:
1 ∆ 求作: 求作: ABC ,使 AB = AC = l , BC = a
a
2
A
l
B C
例7:已知两角和其中一角的对边,求作三角形。 :已知两角和其中一角的对边,求作三角形。 已知: 已知:∠α和∠β , 线段a 求作: 求作:∆ABC, 使∠B = ∠α , ∠A = ∠β , BC = a
α
β
a
3.经过一点作已知直线的垂线 . (1)经过已知直线上的一点作这条直线的垂线. 经过已知直线上的一点作这条直线的垂线. 经过已知直线上的一点作这条直线的垂线 (2)经过已知直线外的一点作这条直线的垂线. 经过已知直线外的一点作这条直线的垂线. 经过已知直线外的一点作这条直线的垂线 (1)已知:直线 和 上一点 上一点C, (1)已知:直线AB和AB上一点 , 已知 求作: 的垂线 使它经过点C. 的垂线, 求作:AB的垂线,使它经过点 . 作法: 的平分线CF直线 就是所求的垂线。 作法:作平角∠ACB的平分线 直线 就是所求的垂线。 的平分线 直线CF就是所求的垂线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 以点O’为圆心, 同样(OC)长为半径 画弧,
交O’A’于点C’;
(4) 以点C’为圆心, CD长为半径 画弧,
交前面的弧于点D’ ,
(5) 过点D’作射线O’B’.
DB
O
CA
BB’
D’
O’
C’
AA’’
∠A’O’B’就是所求的角.
1、按要求填空任意画一条线段a,求作一 条线段b,使b=2a 已知:__________
问: 如果你只
有一个圆规和一 把没有刻度的直 尺,你能画出这 些图案吗?
尺规作图:
用无刻度的直尺和圆规画图,这 Fra bibliotek画法叫尺规画法
例2 作一个角等于已知角
已知: ∠AOB。 求作: ∠A′O′B′ 使∠A′O′B′=∠AOB。
作
法
示
范
(1) 作射线O’A’;
(2) 以点O为圆心, 任意长为半径 画弧,
作业
P154练习 1、2、3
求作:线段AB ,使_________
2、已知: ∠AOB。
利用尺规作: ∠A’O’B’ 使∠A’O’B’=2∠AOB。
作法一:
作法二
B’
B’
CB
DB
C
O
A
E
O
A’ A
∠A’O’B’为所求.
C’
O’
A
∠A’O’B’为所求.
尺规做图的问题,
1.直尺只能用来画线,不能量距. 2.尺规作图要求作出图形, 说明结果, 并保留作图痕迹。