不等式练习题及答案

合集下载

七年级不等式试题及答案

七年级不等式试题及答案

七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。

答案:>2. 若y < -2,则-2y _______ 4。

答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。

证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。

2. 若x > y,且x < 0,y < 0,求证:-x > -y。

证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。

四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。

已知生产了n件产品,求工厂的总利润。

解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。

2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。

问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y=x+1x(x>0)的值域为().A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②a+bab≤2;③x2+1x2+1≥1,其中正确的个数是().A.0 B.1 C.2 D.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为().A.12B.1 C.2 D.44.(2011·重庆)若函数f(x)=x+1x-2(x>2)在x=a处取最小值,则a=().A.1+ 2 B.1+ 3 C.3 D.45.已知t>0,则函数y=t2-4t+1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x>0,y>0,且2x+y=1,则1x+1y的最小值为________;(2)当x>0时,则f(x)=2xx2+1的最大值为________.【训练1】(1)已知x>1,则f(x)=x+1x-1的最小值为________.(2)已知0<x<25,则y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.利用基本不等式证明不等式【例2】►已知a>0,b>0,c>0,求证:bca+cab+abc≥a+b+c.【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +ab c ≥2 bc a ·abc=2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +cb +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5 800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低. 【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

不等式练习题及答案

不等式练习题及答案

不等式练习题及答案一、单项选择题1. 若 x > -3,下列不等式成立的是:A) x > 2 B) x < -2 C) x < 3 D) x > -1答案:D) x > -12. 若 2x + 5 < 13,下列不等式成立的是:A) x < 4 B) x < 3 C) x < 6 D) x < -4答案:C) x < 63. 若 -2x + 3 > -7,下列不等式成立的是:A) x > 2 B) x < -2 C) x > 5 D) x < -3答案:A) x > 2二、填空题1. 若 -4x + 5 < -3,解得 x > ______。

答案:-2/32. 若 2x - 7 > 13,解得 x > _______。

答案:103. 若 3x + 2 < -4,解得 x < _______。

答案:-2三、证明题证明:对于任意实数 x,都成立 x + 7 > x + 3。

解答:假设 x 为任意实数。

我们需要证明当 x + 7 > x + 3。

首先,将 x + 7 和 x + 3 分别展开,得到:x + 7 > x + 3由于两边都有 x,我们可以将其消去,得到:7 > 3由于 7 大于 3,所以原不等式成立。

证毕。

四、应用题若某数与它的倒数的和大于5/2,求这个数的取值范围。

解答:假设该数为 x。

根据题意,我们有不等式:x + 1/x > 5/2为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0化简后得到:2x^2 - 5x + 2 > 0为了求解该二次不等式,我们需要找到其根的位置。

通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。

(完整)高中数学不等式习题及详细答案

(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

(完整版)不等式练习及答案汇总

(完整版)不等式练习及答案汇总

一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。

不等式考试题及答案

不等式考试题及答案

不等式考试题及答案一、选择题(每题5分,共20分)1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),则下列哪个不等式有相同解集?A. \( ax^2 + bx + c < 0 \)B. \( -ax^2 - bx - c > 0 \)C. \( ax^2 + bx + c \leq 0 \)D. \( -ax^2 - bx - c < 0 \)答案:B2. 对于不等式 \( |x - 3| < 2 \),下列哪个区间是其解集?A. \( (1, 5) \)B. \( (-1, 7) \)C. \( (-2, 4) \)D. \( (3, 5) \)答案:A3. 若不等式 \( x^2 - 5x + 6 < 0 \) 的解集为 \( A \),则 \( A \) 与 \( (2, 3) \) 的交集是什么?A. \( \emptyset \)B. \( (2, 3) \)C. \( (2, 3) \cap A \)D. \( (3, 4) \)答案:C4. 已知不等式 \( x^3 - 3x^2 + 2x > 0 \) 的解集包含 \( (1, 2) \),那么下列哪个不等式也包含 \( (1, 2) \) 作为其解集的一部分?A. \( x^3 - 3x^2 + 2x < 0 \)B. \( -x^3 + 3x^2 - 2x < 0 \)C. \( x^3 - 3x^2 + 2x \leq 0 \)D. \( -x^3 + 3x^2 - 2x \geq 0 \)答案:B二、填空题(每题5分,共20分)1. 若不等式 \( 2x - 3 < 5 \) 的解为 \( x < 4 \),则 \( 2x -3 > 5 \) 的解为 \( x > \_\_\_\_\_ \)。

答案:42. 不等式 \( |x + 1| \geq 3 \) 的解集为 \( x \leq -4 \) 或\( x \geq 2 \),那么 \( |x + 1| < 3 \) 的解集为 \( x \in\_\_\_\_\_ \)。

高一数学不等式部分经典习题及答案

高一数学不等式部分经典习题及答案

ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。

如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

不等式题目及答案

不等式题目及答案

不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高中不等式试题及答案

高中不等式试题及答案

高中不等式试题及答案1. 若不等式\(2x-1 > 5\)成立,求\(x\)的取值范围。

答案:首先将不等式\(2x-1 > 5\)进行移项,得到\(2x > 6\)。

然后将不等式两边同时除以2,得到\(x > 3\)。

因此,\(x\)的取值范围是\(x > 3\)。

2. 已知\(a > 0\),求不等式\(\frac{1}{a} < \frac{1}{2}\)的解集。

答案:将不等式\(\frac{1}{a} < \frac{1}{2}\)进行交叉相乘,得到\(2 < a\)。

因为已知\(a > 0\),所以解集为\(a > 2\)。

3. 已知\(x\)和\(y\)满足\(x + y = 10\),且\(y > 0\),求\(x\)的取值范围。

答案:由\(x + y = 10\)可得\(x = 10 - y\)。

因为\(y > 0\),所以\(10 - y > 0\),即\(y < 10\)。

因此,\(x\)的取值范围是\(0 < x< 10\)。

4. 已知不等式\(3x - 2 > 7\),求\(x\)的取值范围。

答案:将不等式\(3x - 2 > 7\)进行移项,得到\(3x > 9\)。

然后将不等式两边同时除以3,得到\(x > 3\)。

因此,\(x\)的取值范围是\(x > 3\)。

5. 已知\(a\)和\(b\)满足\(a + b = 12\),且\(a > 0\)和\(b > 0\),求\(a\)的取值范围。

答案:由\(a + b = 12\)可得\(b = 12 - a\)。

因为\(a > 0\)和\(b > 0\),所以\(12 - a > 0\),即\(a < 12\)。

同时,\(a > 0\)。

因此,\(a\)的取值范围是\(0 < a < 12\)。

不等式练习题及答案解析

不等式练习题及答案解析

基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。

初中数学不等式专题练习及答案

初中数学不等式专题练习及答案

不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。

不等式练习题及答案

不等式练习题及答案

不等式练习题(一)1、若a>b,下列不等式中一定成立的是( )1 1- b 1 C、2a2ba b a2、若-1<a<b<1,则下列不等式中成立的是( )A、-2<a-b<0B、-2<a-b<-1C、-1<a-b<0一十施亠2x 33、与不等式x1同解的不等式是( )A、x 1 OB、4•已知二次不等式A. a 1,b3x 22 0 C、lg ( x 3xlg(a b)-1<a-b<1>0 D、x3 x2 x 12ax bxB.a1 0的解集为x2,b 1 C.a,则a,b的值为5.方程mx2(2m 1)x mA m 1 B.m 0 C.6.若f (x) 3x2x 1,g(x)A. f (x) g(x)7、不等式(〔产38•若0x1,9•已知不等式x210、已知1 x11. (1 )已知函数D.a 1,b 0有两个不相等的实数解,则m的取值范围是2x2B.f(x) g(x) ax m 0或m 0 D. m2x的解集是2,则z x x 1,则f(x), g(x)的大小关系是( C.f(x) g(x) D.随x的值变化而变化4y的最小值为,最大值为4 0的解集为空集,贝U a的取值范围是4且2 x y 3,贝U z 2x 3y的取值范围是2f (x) log3(ax ax 1)的定义域为R,求实数a的取值范围;(2)已知函数f (x) log3(ax2 ax 1)的值域为R,求实数a的取值范围;5x b 0解集是x 3 x 2,求不等式bx 2 5x a 0的解集 22)x 2(a 2)x2的图象在x 轴下方,求实数a 的取值范围14•解关于X 的不等式 2 ax 2 2x ax 12、已知不等式ax 2 13.已知函数y (a不等式练习题一参考答案4 8.-4,9 1-6 C A D C C A 7. x 2 x9. a 4 a 4 10. (3,8)11. (1)0 a 4 (2)a 412. xx 2 或x 12 313. (学案62 页11 题)a 0 a 214. a 0 时,x x 1a 0 时,x x 1 或x —a2 a 0 时,x - x 1aa 2 时,x x 1a 2 时,x 1 x -a。

七年级数学不等式练习题及参考答案【人教版】

七年级数学不等式练习题及参考答案【人教版】

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。

高中数学不等式精选练习题及答案

高中数学不等式精选练习题及答案

高中数学不等式精选练习题及答案一、填空题(每题5分,共50分)1、已知x>0,则2x +162x+3的最小值是。

2、已知x>0,y>0,x+y=1,则23 +2 的最大值是。

3、已知正数a,b 满足a+32b=6,则ab 的最大值。

4、已知2<x<3,则x3−x +1x−2的最小值是。

5、已知a>2,b>3,若a+b =7,则2a−2+1b−3最小值是。

6、若x,y 满足不等式2x −y ≥0x ≤y +4x +y ≤7,则3x-y 的最小值是。

7、实数m,n 满足n=1+m,n∈(0,1),则2023n-m+12023m的最小值是。

8、已知a>0,b>0,3a+2b-ab=0,则4a+3b 的最小值是。

9、已知x>0,y>0,4x+y+2xy=52,则4x+y 的最小值是。

10、已知f (x)=丨2x+2丨+丨x -3丨,则f (x)≤5的解集是。

二、解答题(每题10分,共50分)11、已知a>0,b>0,b>0,若a+b+c=1证明:a ³c+b ³a+c ³b ≥abc12、已知x>0,y>0,z>0,若x+y+z=31x+y +1y+z+1z+x≥3213、已知x>0,y>0,z>0,求证:xyz +xzy +yzx≥x+y+z 14、已知x>0,y>0,z>0,x+y+z=2求证:1x+1z+1y9215、已知x>0,y>0,z>0,证明(x+y)(y+z)(z+x)≥8xyz参考答案一、填空题因为x >02x+32 +3=(2x+3)+162 +3-3≥-3=5当且仅当2x+3=162 +3时,等号成立,最小值为5。

第2题因为x>0,y>0,x+y=123 +2=23y +2x又3+2x=(3+2x)∙(x+y)=3+2yx+5=5+2623 +2最大值为=10-46故答案为:10-46因为a>0,b>06=a+32b即:6≥3不等式两边同时乘方32∙a ba b≤6a b最大值为6故答案为:6第4题因为2<x<3所以x-2>0,3-x>0x3−x=−(−x)3−x=−(3−x)+33−x=33−x-1x3−x+1x−2=(33−x-1)+1x−2=(33−x+1x−2)·1-1①又(3-x)+(x-2)=1②将②代替①中的第一个1,得上式=(33−x+1x−2)·[(3-x)+(x-2)]-1=3(x−2)3−x+x−3x−2+3≥3−x+3=3+23 x3−x+1x−2最小值是3+23故答案为:3+23已知a>2,b>3则a-2>0,b-3>0因为a+b =7所以(a-2)+(b-3)=2即:12[(a-2)+(b-3)]=1①2a−2+1b−3=(2a−2+1b−3)∙1②将①代替②中的1,得上式=(2a−2+1b−3)∙12[(a-2)+(b-3)]=12[3+2(b−3)a−2+a−2b−3]≥32+12∙=3+2222a−2+1b−3最小值是3+222第6题联立x =y +42x −y =0解得A(-4,-8)令t=3x-y,所以y=3x-t 当直线y=3x-t 经过A 点时t 最小=-4故答案为:-4第7题因为n∈(0,1),n=1+m 所以-m∈(0,1)由n=1+m,即n -m=1所以:n+(-m)=1............①,其中n∈(0,1),-m∈(0,1)2023n-m+12023m=2023n-(m2023m +12023m)=2023n-12023m-12023=(2023n-12023m)·1-12023将①替换上面的1上式=〔2023n+(-12023m)〕·〔n+(-m)〕-12023=2023+−2023m n+(−n 2023m )≥20252023n-m+12023m 的最小值是2025故答案为:2025第8题已知a>0,b>0,所以3a+2b-ab=0即3a+2b=ab3b+2a=1所以4a+3b=(4a+3b)∙(3b+2a)=12a b+6b a+=17+122即4a+3b 的最小值是17+122故答案为:17+122第9题2xy=12(4x∙y)≤12∙14(4x+y)²=18(4x+y)²即:2xy≤18(4x+y)²①已知4x+y+2xy=52,变换一下,得:2xy=52-(4x+y)②将②代入①52-(4x+y)≤18(4x+y)²整理得:(4x+y)²+8(4x+y)-20≥04x+y≤-10(舍去)4x+y≥2即4x+y的最小值是2故答案为:2第10题f(x)=丨2x+2丨+丨x-3丨=−3x+1,x≤−1 x+5,−1<x<3 3x−1,x≥3(1)当x≤−1时,−3x+1≤5,解得:−43≤x≤−1(2)−1<x<3时,x+5≤5,解得:−1<x≤0,(3)x≥3时,3x−1≤5,x≤2,无解综上,f(x)≤5的解集是−43≤x≤0故答案为:−43≤x≤0第11题证明:因为a>0,b>0,b>0a 2b+b=2ab 2c+c ≥2bc 2a+a ≥2ca 2b+b)+(b2c+c)+(c2a+a)≥2(a+b+c)a 2b+b 2c+c 2a)+(a+b+c)≥2(a+b+c)a 2b +b 2c+c 2a≥a+b+c已知a+b+c=1a2b+b 2c +c 2a≥1等号两边同时乘以abc所以:a ³c+b ³a+c ³b ≥abc第12题因为x+y+z=3所以2(x+y+z)=6即(x+y)+(y+z)+(z+x)=6①1x+y +1y+z+1z+x=16(1x+y+1y+z+1z+x)∙6将①替换上式中的6,得上式=16(1x+y+1y+z+1z+x )∙〔(x+y)+(y+z)+(z+x)〕=16(3+y+zx+y+x+y y+z+z+xx+y+x+y z+x+z+x y+z+y+zz+x)16(3++)=16(3+6)=321x+y +1y+z+1z+x≥32第13题已知x>0,y>0,z>0xyz+xzy≥2=2xxzy +yz x≥2zxy z+yz x ≥2yxy z+xz y+yz x)≥2(x+y+z)xy z+xz y+yz x≥x+y+z第14题已知x>0,y>0,z>0,又x+y+z=2所以12(x+y+z)=1①1x+1z+1y=(1x+1z+1y)·1将①替换上式中的1上式=12(1x +1z+1y )·(x+y+z)=12(3+y x+zx +x y +zy +x z +yz)1292所以:1x+1z+1y92第15题因为x>0,y>0,z>0所以x+y≥2x·y同理y+z≥2y·zz+x≥2z·x三式相乘,得(x+y)(y+z)(z+x)≥8x²·y²∙z²所以:(x+y)(y+z)(z+x)≥8xyz。

基本不等式练习题及答案

基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。

因为x>0,所以函数的值域为(0,+∞)。

2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。

3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。

因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。

房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。

求侧面的长度为多少时,总造价最低。

去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。

今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。

每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式练习题及答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
不等式练习题(二)
1.已知两个正数a 、b 的等差中项是5,则2a 、2b 的等比中项的最大值为
A. 10
B. 25
C. 50
D. 100
2.若a>b>0,则下面不等式正确的是( ) A.ab b a b a ab <+<+22 B.ab b
a a
b b a <+<+22 C.b a ab ab b a +<<+22 D.2
2b a ab b a ab +<<+ 3.已知不等式1()()9a x y x y
++≥对任意正实数,x y 恒成立,则正实数a 的最小值是 .4 C
4.下列函数中,能取到最小值2的是( ) A.x x y 1+=()0<x B.2sin sin 2x x y += C.)(1R x e e y x x ∈+= D.2
322++=x x y 5.若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩
则z=2x+y 的最大值为
.2 C
6.若点y x y x y x y x y x y x B 22,303282),(22--+⎪⎩⎪⎨⎧≤-≥+-≥+则满足的最小值是
A .25-
B .3
C .5
D .5
7.设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩
,,≥≥≤所表示的平面区域为M ,使函数
(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )
A .[13],
B
.[2 C .[29], D
. 8.若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩
且x y +的最大值为9,则实数m =
A.2-
B.1-
9.若对任意2
031,x x a x x >≤++恒成立,则a 的取值范围是__________.
10.若点p (m ,3)到直线4310x y -+=的距离为4,且点p 在不等式2x y +<3表示的平面区域内,则m= .
11.若实数,a b 满足2a b +=,则33a b +的最小值为_______。

12.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线
10mx ny ++=上,其中0mn >,则12m n
+的最小值为____________. 13.已知1a >,1b >,22log log 4a b ⋅=,则ab 的最小值为_______。

14.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是
①1ab ≤;②2a b +≤;③ 222a b +≥;④333a b +≥; ⑤112a b
+≥ 15.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。

(Ⅰ)将y 表示为x 的函数: (Ⅱ)
试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

16.某公司仓库A 存有货物12吨,仓库B 存有货物8吨,现按7吨,8吨和5吨把货物分别调运给甲,乙,丙三个商店,从仓库A 运货物到商店甲,乙,丙,每吨货物的运费分别为8元,6元,9元;从仓库B 运货物到商店甲,乙,丙,每吨货物的运费分别为3元,4元,5元,问应该如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少
不等式练习题二 参考答案 1-8 BDBC CBCC 9.15
a ≥ 10. -3 11. 6 12. 8 13. 16 14. ①,③,⑤ 15..解:(1)如图,设矩形的另一边长为a m
则2y -45x-180(x-2)+180·2a=225x+360a-360
由已知xa=360,得a=x
360, 所以y=225x+2360360(0)x x ->
(II)223600225222536010800,x x x
>∴+≥⨯= 104403603602252≥-+=∴x x y .当且仅当225x=x
2
360时,等号成立. 即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元. 16.。

相关文档
最新文档