中考数学复习50个知识点专题专练:26 圆的基本性质
专题训练. 圆的基本性质--八大题型总结(拔尖篇)- 九年级数学上册 (浙教版)
专题3.12圆的基本性质章末八大题型总结(拔尖篇)【题型1动态图形的扫过的面积的计算】(2023秋·江苏·九年级专题练习)2.如图,半圆O的直径时停止滑动,若M是(2023·黑龙江鸡西·校考三模)3.在平面直角坐标系中,已知()2,0A ,()3,1B ,()1,3C ;(1)将ABC 沿x 轴负方向平移2个单位至111A B C △,画图并写出1C 的坐标____________;(2)以1A 点为旋转中心,将111A B C △逆时针方向旋转90︒得22A B C 1△,画图并写出2C 的坐标_____;(3)在平移和旋转过程中线段BC 扫过的面积为___________.(2023秋·浙江·九年级专题练习)4.如图所示,扇形OAB 从图①无滑动旋转到图②,再由图②到图③,60O ∠=︒,1OA =.(1)求O 点运动的路径长;(2)求O 点走过路径与射线l 围成的面积.【题型2圆周角定理有关的计算与证明】【方法点拨】圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径(2023秋·北京西城·九年级北京八中校考期中)5.如图,已知:过O 上一点A 作两条弦AB 、AC ,且45BAC ∠=︒,(AB ,AC 都不经过)O 过A 作AC 的垂线AF 交O 于D ,直线BD ,AC 交于点E ,直线BC ,DA 交于点F .(1)证明:BE BF =;(2)探索线段AB 、AE 、AF 的数量关系,并证明你的结论.(2023秋·湖北·九年级期末)6.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=︒时,请直接写出线段(2)如图②,当90BAC ∠=︒时,试探究线段(1)求ADB ∠的度数;(2)求AC 的长度;(3)判定四边形AFBC 的形状,并证明你的结论.(2023秋·江苏盐城·九年级统考期中)8.如图,在O 的内接四边形(1)若75DAE ∠=︒,则(2)过点D 作DE AB ⊥(3)若62AB AE ==、【题型3垂径定理的实际应用】【方法点拨】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径条弧.(2023秋·河北石家庄9.如图是一位同学从照片上剪切下来的海上日出时的画面,圆的半径为5厘米,上”太阳与海平线的位置关系是(2023秋·浙江台州·10.我市在创建全国文明城市检查中,发现一些破旧的公交车候车亭有碍观瞻,现已更换新的公交候车亭图2所示的是侧面示意图,FG为水平线段,PQ⊥FG,点H为垂足,FG=4m,FH=2.4m,点P在弧FG上,且弧FG所在的圆的圆心O到FG,PQ的距离之比为5:2,则PH的长约为多少米?(2023春·浙江台州·九年级台州市书生中学校考期中)11.如图这是我市某跨海大桥正侧面的照片,大桥的主桥拱为圆弧型,桥面AB长为800米,且与水面平行,小王用计算机根据照片对大桥进行了模拟分析,在桥正下方的水面上取一点P,在桥面AB上取点C,作射线PC交弧(主桥拱)于点D,右边画出了PC与PD关于AC长的函数图象,下列对此桥的判断不合理的是()A.桥拱的最高点与桥面AB的实际距离约为210米B.桥拱正下方的桥面EF的实际长度约为500米C.拍摄照片时,桥面离水面的实际高度约为110米D.桥面上BF段的实际长度约200米(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦【题型4由点与圆的位置关系求求最值】【方法点拨】解决此类问题关键要记住若半径为当d=r时,点在圆上,当d<(2023秋·江苏苏州·九年级苏州市振华中学校校考期中)13.如图,在平面直角坐标系中,已知点为半径的圆上运动,且始终满足(2023秋·山东泰安·九年级校联考期末)15.如图,点()34P P ,,半径为大值是()A .32B .52(2023秋·河南驻马店·九年级平舆县第二初级中学校考期末)16.如图,Rt ABC 中,AB 的最小值为(2023秋·安徽淮北·九年级校考期末)的直径,18.如图,AB是O+的最小值为(点,则PC PDA.22B.2(2023秋·陕西渭南·九年级统考期末)19.如图,A、B是半圆O上的两点,的最小值为.(2023秋·广东广州·九年级校考期末)20.(1)如图①,在ABC 中,120A ∠= ,5AB AC ==.尺规作图:作ABC 的外接圆O ,并直接写出ABC 的外接圆半径R 的长.(2)如图②,O 的半径为13,弦24AB =,M 是AB 的中点,P 是O 上一动点,求PM 的最大值.(3)如图③所示,AB ,AC 、 BC是某新区的三条规划路,其中6km AB =,3km AC =,60BAC ∠= , BC 所对的圆心角为60 ,新区管委会想在 BC路边建物资总站点P ,在AB ,AC 路边分别建物资分站点E 、F ,也就是,分别在 BC、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天都要将物资在各物资站点间按P E F P →→→的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷、环保和节约成本.要使得线段PE 、EF 、FP 之和最短,试求PE EF FP ++的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)【题型6动点的运动轨迹长度计算】(2023秋·江苏连云港·九年级校考阶段练习)22.如图,已知90ABC ∠=︒停止,圆心O 运动的路程是(2023秋·江苏徐州·九年级校考阶段练习)23.如图,有一块长为4cm 、宽为3cm 的矩形木板在桌面上按顺时针方向无滑动地翻滚,木板上顶点化为12A A A →→,其中,第二次翻滚时被桌面上一个小木块挡住,使木板边沿滚到点2A 的位置经过的路径长为()A .10cmB .3.5cm π(2023·浙江温州·校考三模)24.图1是挂桶式垃圾车的联动装置,通过钢轴先后作两次旋转移动垃圾桶,实现对垃圾桶提升和翻转,将垃圾桶内的垃圾自动收入车厢.图2,图110cm,AB =303cm,30cm BC CD ==【题型7正多边形与圆】【方法点拨】定义:正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心正多边形的一边的距离叫做正多边形的边心距.(2023秋·山东淄博·九年级统考期末)25.已知四个正六边形如图摆放在图中,顶点A ,B ,C ,D ,E ,F 在圆上.若两个大正六边形的边长均为小正六边形的边长是()A .33-B .2312-C .312+D .1312-(2023秋·河南驻马店·九年级统考期末)26.如图,已知O 的半径为4,则该圆内接正六边形ABCDEF 的边心距OG (① DF 的长为2π;②2DF OF =;③ODE 为等边三角形;④S 正八边形【题型8圆锥侧面积的相关计算】【方法点拨】解决此类问题掌握圆锥侧面积的计算公式是关键,并且能够灵活运用(2023秋·全国·九年级专题练习)29.小华的爸爸要用一块矩形铁皮加工出一个底面半径为缝(接缝忽略不计)()1你能求出这个锥形漏斗的侧面展开图的圆心角吗?()2如图,有两种设计方案,请你计算一下,哪种方案所用的矩形铁皮面积较少?(2023秋·江苏·九年级专题练习)31.如图是一张直角三角形卡片,DE⊥AB.若将该卡片绕直线DE旋转一周,则形成的几何体的表面积为(2023秋·全国·九年级专题练习)32.如图,在一张四边形ABCD的纸片中,、交于点E、径的圆分别与AB AD(1)求证:DC与A的切线;(要求:尺规作图,不写作法,保留作图痕迹)(2)过点B作A(3)若用剪下的扇形AEF围成一个圆锥的侧面,能否从剪下的两块余料中选取一块,剪出一个圆作为这个圆锥的底面?。
【中考复习】中考考试数学考点辅导:圆的基础性质
【中考复习】中考考试数学考点辅导:圆的基础性质中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了中考考试数学考点辅导。
⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式: =(L/2r)360=180r=L/r(弧度)即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。
这篇中考考试数学考点辅导的内容,希望会对各位同学带来很大的帮助。
2024中考数学一轮复习核心知识点精讲—圆的基本性质
2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作ABAB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
初中数学圆知识点总结归纳
初中数学圆知识点总结归纳一、圆的基本性质圆的定义:平面内到定点距离等于定长的所有点组成的图形叫做圆。
其中定点称为圆心,定长称为半径。
圆的基本性质:(1)圆是中心对称图形,对称中心为圆心。
(2)圆是轴对称图形,对称轴为经过圆心的任意一条直线。
(3)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
(4)圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(5)弦心距定理:在同圆或等圆中,弦心距等于所对弧的半径的一半。
二、圆的几何表示圆的方程:在平面直角坐标系中,以圆心为坐标原点,以半径为r的圆的方程为x^2 + y^2 = r^2。
圆的标准方程:以圆心为坐标原点,以半径为r,且经过点P(x0, y0)的圆的方程为(x - x0)^2 + (y - y0)^2 = r^2。
圆的参数方程:以x为参数,描述圆的方程为x = x0 + rcos(θ),y = y0 + rsin(θ),其中θ为参数。
三、与圆相关的定理和性质切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线性质定理:圆的切线上的任一点到圆心的距离等于半径。
切线长定理:经过圆外一点引两条切线,它们的切线长相等。
相交弦定理:经过圆内一点引两条弦,它们的交点与该点的距离乘积等于常数。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等。
圆幂定理:对于同圆或等圆中的两个相等的非零实数,有:(ab)(cd) = (ac)(bd) - (ad)(b*c)。
弦中点定理:经过弦的两个端点的直径垂直于这条弦。
相交弦定理:两弦交于圆内一点,各弦被这点所平分。
余弦定理:对于任何三角形ABC,有c^2 = a^2 + b^2 - 2ab*cos(C)。
正弦定理:对于任何三角形ABC,有a/sin(A) = b/sin(B) = c/sin(C)。
中考圆专题知识点总结
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
《圆的基本性质》各节知识点
圆(帆的自豪,是能在风浪中挺起胸膛;你的自豪,是在中考中崭露头角)考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号)1、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。
其中正确的有()A.4个B.3个C.3个D.2个2、下列四个命题:①经过任意三点可以作一个圆;②三角形的外心在三角形的内部;③等腰三角形的外心必在底边的中线上;④菱形一定有外接圆,圆心是对角线的交点。
其中真命题的个数()A.4个 B.3个 C.3个 D.2个3、下列命题中,正确的是()A.相等的圆心角所对弦的弦心距相等B.相等的圆心角所对的弦相等C.同圆或等圆中,两弦相等,所对的弧相等D.同圆或等圆中,相等的弦所对的弦心距也相等考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式4、如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O所经过的路径总长为考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理5、⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P 有( )个A.2 B.3 C.4 D.56、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是7、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N(0,-10),函数y=k x (x<0)的图象过点P ,则k= 8、如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上。
(1)若∠AOD=52°,求∠DEB 的度数;(2)若OA=5,OC=3,求AB 的长考点四、求圆心角、圆周角9、将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的读数分别为86°,30°,则∠ACB 的大小为10、如图所示,在△ABC 中,∠A=70°,⊙O 截△ABC的三边所得的弦长相等,则∠BOC 等于( )A.140°B.135°C.130°D.125°11.如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC的度数考点五、求阴影部分面积一般遵循“四步曲”,即:一套,二分,三补,四换.一套:直接套用基本几何图形面积公式计算;二分:将其分割成规则图形面积的和或差;三补:用补形法拼凑成规则图形计算;四换:将图形等积变换后计算。
初三数学中考总复习圆的基本性质专题复习练习含答案
2019 初三数学中考总复习圆的基天性质专题复习练习︵ ︵ ︵1. 如图,AB 是⊙O 的直径, BC =CD =DE ,∠COD =34°,则∠ AEO 的度数是 ( A )A .51°B .56°C .68°D .78°2.如图,在 ⊙O 中,直径 CD ⊥弦 AB ,则以下结论中正确的选项是 ( B )1A .AC =ABB .∠C =2∠ BODC .∠ C = ∠BD .∠ A =∠BOD3.如图, AB 是⊙O 的直径, BC 是⊙O 的弦.若 ∠ OBC =60°,则 ∠BAC 的 度数是(D)A .75°B .60°C .45°D .30°4.如图,⊙ O 为△ABC 的外接圆,∠ A =72°,则 ∠BCO 的度数为 ( B )A .15°B .18°C .20°D .28°5.如图是以 △ABC 的边 AB 为直径的半圆 O ,点 C 恰幸亏半圆上,过点 C 作 CD ⊥ AB 交 AB 于点 D. 已知 ∠ACD =3,BC =4,则 AC 的长为 ( D ) cos 52016A .1 B. 3 C .3 D. 3 如图, 是⊙ 外一点, , 分别交 ⊙ 于 , 两点,已知 ︵ ︵P O PB O AB 和CD 所对6. PAC D 的圆心角分别为 90°和 20°,则 ∠P =( D )A .45°B .20°C .25°D .35°7.(2019 ·南宁 )如图,AB 是⊙O 的直径,AB =8,点 M 在⊙O 上,∠MAB =20°,点 N 是弧 MB 的中点, P 是直径 AB 上的一动点.若 MN =1,则△PMN 周长的第1页/共4页最小值为(B)A .4B. 5C.6D.7.如图,已知⊙O 是等腰△的外接圆,点D是︵上一点, BD 交 AC8Rt ABC AC4于点 E,若 BC=4,AD =5,则 AE 的长是 ( C )A .3B. 2C.1D.1.29. 如图,A,D 是⊙ O 上的两个点, BC 是直径.若∠ D=32°,则∠ OAC =()A .64°B.58°C.72°D.55°10.如图, AB 为⊙O 的弦,⊙ O 的半径为 5,OC⊥AB 于点 D,交⊙ O 于点 C,且 CD=1,则弦 AB 的长是 __6__.11.如图,边长为 1 的小正方形组成的网格中,半径为 1 的⊙O 在格点上,则1∠AED 的正切值为 __2__.12.如图,在⊙O 中,弦 AC=2 3,点 B 是圆上一点,且∠ABC =45°,则⊙O 的半径 R 为__ 6__.13.(2019 ·东营 )如图,水平搁置的圆柱形排水管道的截面直径是1 m,此中水面的宽 AB 为 0.8 m,则排水管内水的深度为__0.8__m.14.如图,AB 是⊙O 的直径,点 C 是⊙O 上的一点,若∠BOC=60°,AB =8,︵点 E 是劣弧 AC 上一动点, OD⊥BE 于点 D,则 OD 的长的最大值为 __2 3__.15.如图,在△ ABC 中, AB =AC=10,以 AB 为直径的⊙ O 与 BC 交于点 D,与 AC 交于点 E,连 OD 交 BE 于点 M,且 MD =2,则 BE 长为 __8__.16.如图,在 Rt△ABC 中,∠ACB =90°,AC =5,CB=12,AD 是△ABC 的角均分线,过 A,C,D 三点的圆 O 与斜边 AB 交于点 E,连结 DE.(1)求证: AC=AE;第2页/共4页(2)求 AD 的长.解:(1)∵∠ ACB =90°,且 ∠ACB 为圆 O 的圆周角,∴ AD 为圆 O 的直径,∴∠ A ED =90°,又 AD 是△ ABC 的∠BAC 的均分线,∴∠ CAD =∠EAD ,∴CD =ED ,CD =DE ,在 Rt △ACD 和 Rt △AED 中,∴Rt △ACD ≌Rt △AED(HL) , AD =AD ,∴ A C =AE(2)∵△ ABC 为直角三角形,且AC = 5,CB = 12,∴依据勾股定理得 AB =52+122=13,由 (1)获得 ∠AED =90°,则有 ∠BED =90°,设 CD =DE =x ,则 DB =BC -CD =12-x ,EB =AB -AE =AB -AC =13-5= 8,在 Rt △BED中,依据勾股定理得 BD 2=BE 2+ED 2,即(12-x)2=x 2+82,解得 x =103,∴ CD=103,又 AC =5,△ACD 为直角三角形,∴依据勾股定理得 AD =AC 2+CD 25 13=317.如图,等腰三角形 ABC 中, BA =BC ,以 AB 为直径作圆,交 BC 于点 E ,圆心为 O.在 EB 上截取 ED =EC ,连结 AD 并延伸,交 ⊙O 于点 F ,连结 OE ,EF.(1)试判断 △ACD 的形状,并说明原因;(2)求证: ∠ADE =∠OEF.解:(1)△ ACD 是等腰三角形, 连结 AE ,∵AB 是⊙O 的直径,∴∠ AED =90°, ∴AE ⊥ CD ,∵ CE =ED ,∴ AC =AD ,∴△ ACD 是等腰三角形(2)∵∠ ADE =∠DEF +∠ F ,∠ OEF =∠OED + ∠DEF ,而 ∠ OED = ∠B ,∠ B=∠ F ,∴∠ ADE =∠OEF18.如图,以 △ABC 的一边 AB 为直径的半圆与其余两边AC ,BC 的交点分别第3页/共4页︵ ︵为 D ,E ,且 DE =BE.(1)试判断 △ABC 的形状,并说明原因;(2)已知半圆的半径为 5,BC =12,求 sin ∠ABD 的值.︵ ︵解:(1)△ABC 为等腰三角形.原因以下:连结 AE ,∵DE =BE ,∴∠ DAE =∠ BAE ,即 AE 均分 ∠BAC ,∵ AB 为直径,∴∠ AEB =90°,∴ AE ⊥BC ,∴△ ABC 为等腰三角形1 1(2)∵△ ABC 为等腰三角形, AE ⊥BC ,∴BE =CE =2BC =2×12=6,在 Rt △ABE中,∵AB =10,BE = 6,∴AE = 102-62=8,∵AB 为直径, ∴∠ ADB =90°,∴1 · =1 · ,∴ BD=8×12=48,在 Rt △ABD 中,∵AB =10,BD =48,2AE BC2BD AC10551414 AD5 7 ∴AD = AB2 -BD 2=5 ,∴ sin ∠ABD =AB=10=25第4页/共4页。
初三圆的知识点总结
初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。
在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。
下面我们来总结一下初三圆的知识点。
一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。
定点叫圆心,定长叫半径。
通常记作圆O,圆心为O,半径为r。
2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。
(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。
(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。
(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。
二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。
结论:圆心角相等的弧是等弧。
2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。
3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。
1弧度(rad)=57.3°。
结论:弧长l=rθ,其中θ为弧度。
4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。
余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。
5. 切线定理定理:在圆上的切线和半径垂直。
6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。
三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。
(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。
2. 圆的实际应用(1)工程中的车轮和齿轮。
(2)地理中的经纬度。
(3)天文中的星座和行星轨道。
(4)生活中的钟面和圆形的器物。
以上就是初三圆的知识点总结,希望对你的学习有所帮助。
初三数学圆知识点总结归纳
初三数学圆知识点总结归纳数学是一门重要的学科,其中圆是初三阶段的重点内容之一。
为了帮助同学们更好地理解和掌握圆的知识,本文将对初三数学圆的知识点进行总结和归纳。
下面将从圆的基本性质、圆的相关定理以及圆的应用三个方面进行详细介绍。
一、圆的基本性质圆是我们生活中常见的几何形状之一,了解圆的基本性质对于理解和解题都非常重要。
1.圆的定义:圆是平面上一点到另一点距离保持不变的点的集合。
2.圆的要素:圆心、半径和直径是圆的基本要素。
圆心是圆上所有点到该点的距离相等的点,常用字母O表示;半径是从圆心到圆上任意一点的距离,用字母r表示;直径是通过圆心,且两个端点在圆上的线段,直径的长度等于半径的两倍。
3.弧与弦:圆上两点之间的线段叫做弦,圆上两点之间的弧是圆上除去弦包含的部分所剩下的弯曲部分。
4.圆周角:以圆心为顶点的角叫做圆周角,圆周角的度数是弧长所对应的圆心角的度数。
二、圆的相关定理熟练掌握圆的相关定理对于解题非常有帮助,下面将介绍常用的圆的定理。
1. 半径相等定理:同一个圆内,所有的半径相等。
2. 弦长定理:在同一个圆上,相等弧所对的弦相等,或者说弦相等所对的弧相等。
3. 切线定理:切线与半径垂直,半径与切线的交点恰好在切点上。
4. 弧度制与角度制转换:1 弧度=180°/π,1 度=π/180 弧度。
三、圆的应用圆的知识不仅仅用于理论中,还有很多实际应用场景。
下面将介绍几个常见的应用。
1. 圆的面积:圆的面积公式为S = πr^2,其中S表示面积,r表示半径。
2. 扇形面积:扇形是由圆心、弧和两条半径组成的区域,计算扇形的面积可以使用扇形面积公式S = (θ/360°) × πr^2。
3. 弧长公式:弧长公式为L = rθ,其中L表示弧长,r表示半径,θ表示圆心角的度数。
4. 圆与三角形的关系:在三角形中,圆的内切圆是三角形内接圆,三角形的外接圆是三角形外接圆。
通过以上对圆的基本性质、相关定理和应用的总结归纳,我们可以更好地理解和掌握圆的知识点。
中考数学专题复习全攻略:第一节 圆的基本性质
第一节 圆的基本性质知识点一:圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形. 在一个个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。
以点O 为圆心的圆记作“⊙O ”,读作“圆O ”(2) 弦连接圆上任意两点的线段叫做弦。
(如图中的AB )(3)直径经过圆心的弦叫做直径。
(如途中的CD )直径等于半径的2倍。
(4)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)(6)圆心角:顶点在圆心的角叫做圆心角.(7)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(8)弦心距:圆心到弦的距离. (9)圆的对称性1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
点或)任意三角形的三个顶点确定一个圆,即该三角形的外接圆2)圆的中心对称性: 圆是以圆心为对称中心的中心对称图形。
变式练习1:如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC.若∠BAC 与∠BOC 互补,则弦BC 的长为( B )A .3 3B .4 3C .5 3D .6 3,第1题图) ,第2题图)变式练习2:如图,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( C )A .40°B .30°C .20°D .15°变式练习3: 如图,扇形OAB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =__119__°.,第3题图)知识点二 :垂径定理及其推论1.垂径定理及其推论1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
中考数学知识点归纳:圆的基础性质
中考数学知识点归纳:圆的基础性质
2019中考数学知识点归纳:圆的基础性质
面对2019中考,考生对待数学这一科目需保持平常心态,复习数学时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最佳的解题方法,进一步提高解题能力。
下文为2019中考数学知识点归纳。
⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式: =(L/2r)360=180r=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是。
中考圆形知识点总结归纳
中考圆形知识点总结归纳圆形是中考数学中的一个重要知识点,它涉及到多个概念和性质,以下是对中考圆形知识点的总结归纳:圆的基本定义圆是一个平面上所有与给定点(圆心)距离相等的点的集合。
这个距离称为半径。
圆的方程圆的标准方程是 \( (x - h)^2 + (y - k)^2 = r^2 \),其中 \( (h, k) \) 是圆心的坐标,\( r \) 是半径。
圆的性质1. 圆周上的任意一点到圆心的距离都等于半径。
2. 圆的直径是圆上两点之间的最长距离,直径的长度是半径的两倍。
3. 圆内任意两点之间的线段,最短的是直线段,即直径。
4. 圆的切线在切点处与半径垂直。
圆的面积和周长- 圆的面积公式是 \( A = \pi r^2 \)。
- 圆的周长(圆周)公式是 \( C = 2\pi r \)。
圆与直线的位置关系1. 直线与圆相离:直线与圆没有公共点。
2. 直线与圆相切:直线与圆有一个公共点,即切点。
3. 直线与圆相交:直线与圆有两个公共点。
圆与圆的位置关系1. 两圆外离:两圆没有公共点。
2. 两圆外切:两圆只有一个公共点。
3. 两圆相交:两圆有两个公共点。
4. 两圆内切:一个圆完全包含在另一个圆内,只有一个公共点。
5. 两圆内含:一个圆完全包含在另一个圆内,没有公共点。
圆的内接多边形1. 内接于圆的多边形,其所有顶点都在圆上。
2. 正多边形是内接于圆的多边形,且所有边长相等,所有内角相等。
圆的外切多边形1. 外切于圆的多边形,其所有边都与圆相切。
2. 正多边形的外接圆是所有顶点都与圆相切的圆。
圆的弧和扇形1. 弧是圆上两点之间的线段。
2. 扇形是圆心角和它所对的弧所围成的区域。
圆的切线和割线1. 切线是与圆相切的直线。
2. 割线是与圆相交的直线,但不经过圆心。
结束语通过以上对中考圆形知识点的总结归纳,我们可以看到圆的几何性质和计算在中考数学中占有重要地位。
掌握这些知识点对于解决相关的几何问题至关重要。
沪教版初中总复习专题训练中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(提高)
沪教版初中数学中考总复习知识点梳理重点题型(常考知识点)巩固练习中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(提高)【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4),(5).若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即 (S为三角形的面积,P为三角形的周长,r为内切圆的半径).3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC.(2)如图所示,E是△ABC的两外角平分线的交点,.(3)如图所示,E是△ABC内角与外角的平分线的交点,.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为上一点,则.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.【思路点拨】要用好60°角,构造直角三角形.在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形.【答案与解析】解:过O作OM⊥BC于M,连接OC.在Rt△OPM中,∠OPC=60°,OP,∴PM=1,OM=.在Rt△OMC中,BC=2MC=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O中,弦AB与CD相交于点M,,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM·AB.【思路点拨】(1)证明∠MCA=∠MAC;(2)证明△AOM∽△ABC.【答案与解析】证明:(1) ∵,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM.∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,OA=OC,∴MO⊥AC.∴∠AOM=∠ABC=90°.∵∠MAO=∠CAB,∴△AOM∽△ABC,∴,∴AO·AC=AM·AB,∴AC2=2AM·AB.【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中.举一反三:【变式】如图所示,在⊙O中,AB=2CD,则( )A. B.C. D.与的大小关系无法确定【答案】解:要比较与的大小有两种思路.(1)把的一半作出来,比较与的大小;(2)把作出来,比较与的大小.如图所示,作OE⊥AB,垂足为E,交于F.则,且.∵AB=2CD.∴AE=CD.在Rt△AFE中,AF>AE=CD.∴AF>CD.∴,即.答案A.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题2】3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=,求⊙O的半径.【思路点拨】过O作OE⊥AB于E,连接BO,再由垂径定理及三角函数进行证明与求解.【答案与解析】解法一:(1)过O作OE⊥AB于E,连接BO(如图所示),则.又∵ BD⊥AO,∴∠ABD+∠BAD=90°.∵∠AOE+∠BAD=90°,∴∠ABD=∠AOE=∠C.(2)在Rt△ABD中,,∴.设AD=4k,则AB=5k,BD=3k=4.8,k=1.6.∴AB=8,AE=4.∵,∴.∴OA=5.解法二:(1)延长AO交⊙O于C′.(如图所示)∴∠C′=∠C.∵AC′为⊙O的直径,∴∠ABC′=90°.∴∠C′+∠BAD=90°.∵∠BAD+∠ABD=90°,∴∠ABD=∠C′=∠C.(2)在Rt△BDC′中,,∴.在Rt△ABC′中,∵,∴设AB=4k,则AC′=5k,BC′=3k=6.∴k=2.∴.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.(2014秋•兴化市月考)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.【思路点拨】(1)根据切线的性质可得结论;(2)连接OE,根据圆周角定理得∠ACB=90°,进而可推导得出△PCF是等腰三角形;(3)先在Rt△ACB中,根据勾股定理计算出AB=10,最终算得BE的值.【答案与解析】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵O A=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:在Rt△ACB中,∵AC=8,BC=6,∴AB==10,∴OB=5,∵∠BOE=90°,∴△BOE为等腰直角三角形,∴BE=OB=5.【总结升华】本题考查了切线的性质,圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.举一反三:【变式】(2015•毕节市)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且,求证△DCE≌△OCB.【思路点拨】(1)由于AB是直径,那么∠ACB=90°,而∠ABC=30°,易求∠BAC=60°,结合OA=OC,易证△AOC 是正三角形,于是∠OCD=60°,结合CD是切线,易求∠DCE=30°,在Rt△AEF中,易求∠E=30°,于是∠DCE=∠E,可证△CDE为等腰三角形;(2)在Rt△ABC中,由于∠A=60°,AB=2,易求AC=AO=1,利用勾股定理可求BC=,CE=AE-AC=,那么BC=CE,而∠OBC=∠OCB=∠DCE=∠DEC=30°,从而可证△OBC≌△DCE.【答案与解析】解:(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°=90°-30°.∴∠DCE=∠DEC而ED⊥AB于F,∴∠CED=90°-∠BAC=30°.故△CDE为等腰三角形.(2)证明:在△ABC中,∵AB=2,AC=AO=1,∴BC=.,∴.又∵∠AEF=30°,∴AE=2AF=.∴CE=AE-AC==BC.而∠OCB=∠ACB-∠ACO=30°=∠ABC,故△CDE≌△COB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.【答案】解:连接PQ并延长交AB于E,设大圆的圆心为O,连接OA.设AB=2x,则AE=x,OB=2x-2.在Rt△OAE中,OA=5,∵OA2=OE2+AE2,即52=(2x-2)2+x2,∴x=3.∴AB=6.答案:66.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC 交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.【思路点拨】(1)作辅助线,连接OC,根据切线的性质知:OC⊥PC,由∠CPO的值和OC的长,可将PC的长求出;(2)通过角之间的转化,可知:∠CMP=(∠COP+∠CPO),故∠CMP的值不发生变化.【答案与解析】解:(1)连接OC,则∠OCP=90°.∵ OA=OC,∴∠COP=2∠CAP=60°.∴ CP=OC·tan60°=AB·tan60°=,∴ CP=.∵ PM平分∠CPA,∴.∴∠CMP=30°+15°=45°.(2)设∠CPA=α,∵ PM平分∠CPA,∴∠MPA=∠CPA.∵∠OCP=90°,∴∠COP=90°-α.又∵ OA=OC,∴∠CAP=.∴∠CMP=∠CAP+∠MPA.(3)∠CMP的大小没有变化∵∠CMP=∠A+∠MPA=∠COP+∠CPO=(∠COP+∠CPO)=×90°=45°.【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.本题主要考查切线的性质及对直角三角形性质的运用.举一反三:【变式】如图所示,AB是⊙O的直径,C是的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.【答案】证明:(1)如图所示,连接CE,延长CD交⊙O于G,连接AG.∵AB是⊙O直径,CD⊥AB,∴.∴∠2=∠3.又∵∠1=∠1,∴△AFC∽△ACE.∴.∴ AC2=AF·AE.(2)由(1)得.又∵C是的中点,∴.∴∠2=∠1.∴AF=CF.。
2023年中考专题复习:圆形知识点
2023年中考专题复习:圆形知识点1. 圆的基本属性- 定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。
- 半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
半径:从圆心到圆上任意点的距离都相等,称为圆的半径。
- 直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。
- 弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。
- 扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。
- 弦:连接圆上任意两点的线段称为弦。
弦:连接圆上任意两点的线段称为弦。
2. 圆的计算公式- 周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。
- 面积:圆的面积等于半径的平方乘以π,即A = πr^2。
面积:圆的面积等于半径的平方乘以π,即A = πr^2。
3. 圆的相关定理- 圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。
- 圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。
- 圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。
- 同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。
- 相交弧定理:相交的两个弧所对的圆心角互补。
相交弧定理:相交的两个弧所对的圆心角互补。
4. 圆的应用- 圆的投影:当光线垂直照射在立体表面上时,投影形成的图形通常是圆。
中考数学知识点专练:圆的基础性质公式定理
中考数学知识点专练:圆的基础性质公式定理中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。
下文为大家准备了中考数学知识点专练。
圆的基础性质⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD 与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。
这就是我们为大家准备的中考数学知识点专练的内容,希望符合大家的实际需要。
中考数学考点辅导圆的基础性质
中考数学考点辅导圆的基础性质
2019中考数学考点辅导圆的基础性质
为了能更好更全面的做好复习和迎考准备,确保将所涉及的2019中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了2019中考数学考点辅导。
⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学50个知识点专练26 圆的基本性质
一、选择题
1.(2011·上海)矩形ABCD中,AB=8,BC=3 5,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A. 点B、C均在圆P外
B. 点B在圆P外、点C在圆P内
C. 点B在圆P内、点C在圆P外
D.点B、C均在圆P内
2.(2011·凉山)如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB 的度数为( )
A.50° B.80°或50°
C.130° D.50°或130°
3.(2011·重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )
A.60° B.50°
C.40° D.30°
4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是( )
A.16 B.10
C.8 D.6
5.(2011·嘉兴)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为( ) A.6 B.8
C.10 D.12
二、填空题
6.(2011·扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=__________度.
7.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________________.
8.(2011·杭州)如图,点A 、B 、C 、D 都在⊙O 上,CD 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________.
9.(2011·威海)如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________.
三、解答题
11.(2011·上海)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与A B 相交于点M 、N.
(1)求线段OD 的长;
(2)若tan ∠C =1
2
,求弦MN 的长.
12.(2011·江西)如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优
弧上任意一点(B 、C 两点除外).
(1)求∠BAC 的度数;
(2)求△ABC 面积的最大值.
(参考数据:sin60°=32,cos30°=32,tan30°=3
3
.)
13.(2011·德州) ●观察计算
当a =5,b =3时, a +b
2与ab 的大小关系是__________________;
当a =4,b =4时, a +b
2
与ab 的大小关系是__________________.
●探究证明
如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a ,BD =b.
(1)分别用a 、b 表示线段OC 、CD ;
(2)探求OC 与CD 表达式之间存在的关系(用含a 、b 的式子表示). ●归纳结论
根据上面的观察计算、探究证明,你能得出a +b
2
与ab 的大小关系是:
________________________.
●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
14.(2011·肇庆)已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD.
(1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;
(3)若⊙O 的半径为5,AF =15
2
,求tan ∠ABF 的值.
15.(2011·广州)如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中∠DCE 是直角,点D 在线段AC 上.
(1)证明:B 、C 、E 三点共线;
(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;
(3)将△DCE 绕点C 逆时针旋转α(00<α<900
)后,记为△D 1CE 1(图2),若M 1是线段BE 1
的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若成立,请证明;若不成立,说明理由.。