高考物理二轮复习 计算题标准练(四)

合集下载

2024年高考物理二轮复习选择题专项练四含解析

2024年高考物理二轮复习选择题专项练四含解析

选择题专项练(四)(满分:40分时间:30分钟)一、单项选择题:本题共8小题,每小题3分,共24分。

每小题只有一个选项符合题目要求。

1.(2021山东淄博高三二模)负压病房是收治传染性极强的呼吸道疾病病人所用的医疗设施,可以大大减少医务人员被感染的可能性,病房中气压小于外界环境的大气压。

若负压病房的温度和外界温度相同,负压病房内气体和外界环境中气体都可以看成理想气体,以下说法正确的是()A.负压病房内气体分子的平均动能小于外界环境中气体分子的平均动能B.外界气体进入负压病房后体积会缩小C.负压病房内单位体积气体分子数小于外界环境中单位体积气体分子数D.相同面积负压病房内壁受到的气体压力等于外壁受到的气体压力2.(2021山东济南高三一模)某同学将一网球竖直向上抛出,一段时间后落回原处,此过程中空气阻力大小保持不变,以竖直向上为正方向,下列位移—时间图像中可能正确的是()3.(2021山东泰安高三三模)位于贵州的“中国天眼”(FAST)是目前世界上口径最大的单天线射电望远镜,通过FAST可以测量地球与木星之间的距离。

当FAST接收到来自木星的光线传播方向恰好与地球公转线速度方向相同时,测得地球与木星的距离是地球与太阳距离的k倍。

若地球和木星绕太阳的运动均视为匀速圆周运动且轨道共面,则可知木星的公转周期为()A.(1+k)34年 B.(1+k2)32年C.(1+k2)34年 D.k32年4.(2021湖南衡阳高三一模)《中国制造2025》是国家实施强国战略第一个十年行动纲领,智能机器制造是一个重要方向,其中智能机械臂已广泛应用于各种领域。

如图所示,一机械臂铁夹竖直夹起一个金属小球,小球在空中处于静止状态,铁夹与球接触面保持竖直,则()A.机械臂受到的摩擦力方向向上B.小球受到的压力与重力是一对平衡力C.若增大铁夹对小球的压力,小球受到的摩擦力变大D.若机械臂夹着小球在空中沿水平方向做匀加速直线运动,则机械臂对小球的作用力相比静止时的作用力一定变大5.(2021天津高三模拟)如图甲所示,理想变压器原、副线圈的匝数比n1∶n2=5∶1,原线圈接入如图乙所示的正弦交流电压u,R为阻值随光强增大而减小的光敏电阻,L1和L2是两个完全相同的灯泡,电表均为理想交流电表。

高三物理二轮复习计算题标准练(四) Word版含答案

高三物理二轮复习计算题标准练(四) Word版含答案

计算题标准练(四)满分32分,实战模拟,20分钟拿到高考计算题高分!1.(12分)如图甲所示,弯曲部分AB和CD是两个半径相等的14圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),分别与上下圆弧轨道相切连接,BC段的长度L可作伸缩调节。

下圆弧轨道与地面相切,其中D、A分别是上下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。

一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。

今在A、D两点各放一个压力传感器,测试小球对轨道A、D两点的压力,计算出压力差ΔF。

改变BC的长度L,重复上述实验,最后绘得的ΔF-L图像如图乙所示。

(不计一切摩擦阻力,g 取10m/s2)(1)某一次调节后,D点的离地高度为0.8m,小球从D点飞出,落地点与D点的水平距离为2.4m,求小球经过D点时的速度大小。

(2)求小球的质量和弯曲圆弧轨道的半径。

【解析】(1)小球在竖直方向做自由落体运动,有:H D=12gt2,在水平方向做匀速直线运动,有:x=v D t,得:v D=xt =√Dg=6m/s。

(2)设轨道半径为r,A 到D 过程机械能守恒,有:12m v A 2=12m v D 2+mg(2r+L), ① 在A 点:F A -mg=m v A2r, ② 在D 点:F D +mg=m v D2r , ③由①②③式得:ΔF=F A -F D =6mg+2mg L r ; 由图像纵截距得:6mg=12N,得m=0.2kg;当L=0.5m 时,ΔF=17N,解得:r=0.4m 。

答案:(1)6m/s(2)0.2kg 0.4m2.(20分)如图所示,质量为m 的导体棒垂直放在光滑、足够长的U 形导轨底端,导轨宽度和棒长相等且接触良好,导轨平面与水平面成θ角。

整个装置处在与导轨平面垂直的匀强磁场中。

现给导体棒沿导轨向上的初速度v 0,经时间t 0,导体棒到达最高点,然后开始返回,到达底端前已做匀速运动,速度大小为v04。

高考物理二轮总复习课后习题 题型专项练 计算题专项练(四) (6)

高考物理二轮总复习课后习题 题型专项练 计算题专项练(四) (6)

计算题专项练(四)1.(山东烟台模拟)光纤通信以其通信容量大、抗干扰性高和信号衰减小,而远优于电缆、微波通信,成为世界通信中的主要传输方式。

但光纤光缆在转弯的地方弯曲半径不能太小,否则影响正常通信。

如图所示,模拟光纤通信,将直径为d的圆柱形玻璃棒弯成3圆环,已知玻璃的折射率为√2,光4在真空中的速度为c,要使从A端垂直入射的光线能全部从B端射出。

求:(1)圆环内径R的最小值;(2)在(1)问的情况下,从A端最下方入射的光线,到达B端所用的时间。

2.(云南昭通模拟)如图所示,光滑水平地面上方边界C、D间存在宽度d=4 m、方向竖直向上、电场强度大小E=1×105N/C的匀强电场区域。

质量m1=1 kg、长度l=6 m的水平绝缘长木板静置于该水平面,且长木板最右侧与电场边界D重合。

某时刻质量m2=0.5 kg、电荷量q=+3×10-5C的滑块(可视为质点)以初速度v0=6 m/s从长木板左端水平滑上长木板,一段时间后,滑块离开电场区域。

已知长木板与滑块间的动摩擦因数μ=0.5,重力加速度大小g取10 m/s2,滑块所带的电荷量始终保持不变。

(1)滑块刚进电场时,求长木板的速度大小。

(2)求滑块在电场中的运动时间及全过程因摩擦产生的热量。

(3)若电场等大反向,求滑块进入电场后在长木板上的相对位移。

3.如图所示,半径为l的金属圆环内部等分为两部分,两部分各有垂直于圆环平面、方向相反的匀强磁场,磁感应强度大小均为B0,与圆环接触良好的导体棒绕圆环中心O匀速转动。

圆环中心和圆周用导线分别与两个半径为R的D形金属盒相连,D形盒处于真空环境且内部存在着磁感应强度大小为B的匀强磁场(图中未画出),其方向垂直于纸面向里。

t=0时刻导体棒从如图所示的位置开始运动,同时在D形盒内中心附近的A点,由静止释放一个质量为m、电荷量为-q(q>0)的带电粒子,粒子每次通过狭缝都能得到加速,最后恰好从D形盒边缘出口射出。

2020届高考物理二轮复习刷题首选卷专题四曲线运动精练(含解析)

2020届高考物理二轮复习刷题首选卷专题四曲线运动精练(含解析)

专题四曲线运动『经典特训题组』1.(多选)如图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v­t图象如图乙所示,同时人顶杆沿水平地面运动的x­t图象如图丙所示。

若以地面为参考系,下列说法中正确的是( )A.猴子的运动轨迹为直线B.猴子在2 s内做匀变速曲线运动C.t=0时猴子的速度大小为8 m/sD.t=2 s时猴子的加速度大小为4 m/s2答案BD解析由题图乙知,猴子竖直方向上向上做匀减速直线运动,加速度竖直向下,由题图丙知,猴子水平方向上做匀速直线运动,则猴子的加速度竖直向下且加速度的大小、方向均不变,与初速度方向不在同一直线上,故猴子在2 s内做匀变速曲线运动,A错误,B正确;x­t图象的斜率等于速度,则知t=0时猴子水平方向的速度大小为v x=4 m/s,又竖直方向初速度大小v y=8 m/s,则t=0时猴子的速度大小为:v=v2x+v2y=4 5 m/s,故C错误;v­t图象的斜率等于加速度,则知猴子的加速度为:a=ΔvΔt=0-82m/s2=-4 m/s2,即加速度大小为4 m/s2,故D正确。

2.(多选) 如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,炸弹垂直击中山坡上的目标A。

已知A点高度为h=360 m,山坡倾角θ为37°,sin37°=0.6,cos37°=0.8,g取10 m/s2,由此可算出( )A.炸弹的飞行时间为0.8 sB.炸弹飞行的水平位移为480 mC.轰炸机的飞行高度为680 mD.炸弹的落地速度为80 m/s答案BC解析 如图所示,已知A 点高度为h =360 m ,山坡倾角为37°,可算出炸弹飞行的水平位移为x =h tan37°=480 m ,故B 正确;炸弹垂直击中目标A ,可知炸弹的速度偏转角满足φ=π2-θ=53°,由平抛运动的速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍可知tan φ=gt v 0=2H x,解得H =320 m ,所以轰炸机的飞行高度H 总=H +h =680 m ,故C 正确;炸弹的飞行时间t = 2H g=8 s ,故A 错误;炸弹的初速度为v 0=x t =60 m/s ,落地速度v =v 0cos φ=100 m/s ,故D 错误。

高考物理二轮复习计算题专项训练

高考物理二轮复习计算题专项训练

计算题专项训练(时间:80分钟满分:100分)1.(14分)如图甲所示,水平传送带AB逆时针匀速转动,一个质量为m0=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点)。

已知传送带的速度保持不变,g取10 m/s2。

求:(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上的运动时间;(3)整个过程中系统产生的热量。

2.(14分)(2020·全国Ⅱ卷)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。

两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。

右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上。

已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g。

已知金属棒ab匀速下滑。

求:(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小。

3.(14分)已知地球的自转周期和半径分别为T和R,地球同步卫星A的圆轨道半径为h。

卫星B沿半径为r(r<h)的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同。

求:(1)卫星B做圆周运动的周期;(2)卫星A和B连续地不能直接通信的最长时间间隔(信号传输时间可忽略)。

4.(14分)低空跳伞是一种极限运动,一般在高楼、悬崖、高塔等固定物上起跳。

人在空中降落过程中所受空气阻力随下落速度的增大而增大,而且速度越大空气阻力增大得越快。

因低空跳伞下落的高度有限,导致在空中调整姿态、打开伞包的时间较短,所以其危险性比高空跳伞还要高。

一名质量为70 kg的跳伞运动员背有质量为10 kg的伞包从某高层建筑顶层跳下,且一直沿竖直方向下落,其整个运动过程的v-t 图象如图所示。

高中物理第二轮复习 计算题专练4

高中物理第二轮复习 计算题专练4
9
大二轮·物理(经典版)
O2B=2rcosθ-r=(2- 2)a, BC= r2-O2B2=2 2-1a, 轨迹与 x 轴交点 C 的横坐标为 x=O2A+BC=2(1+ 2-1)a。
10
大二轮·物理(经典版)
(3)设粒子在区域Ⅰ中做圆周运动的轨迹半径为 r1, 粒子在区域Ⅱ中做圆周运动的轨迹半径为 r2, 则 r1=nqmBv00,r2=nλmqBv00。 在区域Ⅱ中圆周运动的圆心位于 x 轴上才能使粒子从 O 点射出,画出粒子轨迹,如图乙所示。 由相似三角形得r1+r1 r2= r21r-1 a2,其中 a=mqBv00, 联立以上各式解得:λ+λ 1= nn2-1。113来自大二轮·物理(经典版)
(1)小滑块应从圆弧上离地面多高处释放; (2)小滑块碰撞前与碰撞后的速度; (3)碰撞后小球的速度。 答案 (1)0.95 m (2)3 m/s 1.0 m/s (3)2.0 m/s
4
大二轮·物理(经典版)
解析 (1)设小滑块运动到 B 点的速度为 vB, 由机械能守恒定律有:mg(H-h)=12mv2B, 圆弧受到的压力 F′等于小滑块受到的支持力 F,由牛 顿第二定律有:F-mg=mvR2B, 联立上式解得:H=0.95 m。
大二轮·(经典版)
大二轮·物理(经典版)
计算题专练(四)
2
大二轮·物理(经典版)
共 2 小题,共 32 分,要求写出必要的文字说明和方程 式,只写最后结果不给分
1.(2018·湖南师大附中高三月考六)(14 分)如图,半径 R=1.0 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低 点 B 与长为 L=0.5 m 的水平面 BC 相切于 B 点,BC 离地 面高 h=0.45 m,C 点与一倾角为 θ=37°的光滑斜面连接, 质量 m=1.0 kg 的小滑块从圆弧上某点由静止释放,到达圆 弧 B 点时小滑块对圆弧的压力刚好等于其重力的 2 倍,当 小滑块运动到 C 点时与一个质量 M=2.0 kg 的小球正碰, 碰后返回恰好停在 B 点,已知滑块与水平面间的动摩擦因 数 μ=0.1。(sin37°=0.6,cos37°=0.8,g 取 10 m/s2)求:

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
C.5mgRD.6mgR
2.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
考纲指导
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将动量与能量等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系、动量定理和动量守恒定律作为解题工具在综合题中应用。考查的重点有以下几方面:(1)动量定理和动量守恒定律的应用;(2)“碰撞模型”问题;(3)“爆炸模型”和“反冲模型”问题;(4)“板块模型”问题。
A.小车上表面长度
B.物体A与小车B的质量之比
C.A与小车B上表面的动摩擦因数
D.小车B获得的动能
2.某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5 kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0 m的光滑圆形竖直轨道OAO′运动,玩具小车受水平面PB的阻力为其自身重力的0.5倍(g取10 m/s2),PB=16.0 m,O为PB中点。B点右侧是一个高h=1.25 m,宽L=2.0 m的壕沟。求:
【答案】BC
2.【解析】(1)在最高点mg= ,得vA= m/s
O→A:-mg2r= mv - mv ,得vO=5 m/s
FNO-mg= ,得FNO=6mg=30 N。

2024年新高考物理二轮复习强化训练--力与物体的平衡真题汇编版

2024年新高考物理二轮复习强化训练--力与物体的平衡真题汇编版

一、单选题1. 如图,当电键K 断开时,用光子能量为2.5eV 的一束光照射阴极P ,发现电流表读数不为零。

合上电键,调节滑线变阻器,发现当电压表读数小于0.60V 时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。

由此可知阴极材料的逸出功为( )A .1.9eV B .0.6eV C .2.5eV D .3.1eV2. 如图所示,两块质量分别为m 1和m 2的木块由一根轻弹簧连在一起,在m 1上施加一个竖直向下的力F ,整个系统处于平衡状态.现撤去F ,m 2刚好被弹簧提起(弹性势能的表达式为,其中x 为形变量,k 为劲度系数),则力F的值为A.B.C.D.3. 如图,虚线Ⅰ、Ⅱ、Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度对应的脱离轨道,三点分别位于三条轨道上,点为轨道Ⅱ的远地点,点与地心的距离均为轨道Ⅰ半径的2倍,则( )A .卫星在轨道Ⅱ的运行周期为轨道Ⅰ的2倍B .卫星经过点的速率为经过点的倍C .卫星在点的加速度大小为在点的3倍D.质量相同的卫星在点的机械能小于在点的机械能4. 如图所示为一种环保“重力灯”,让重物缓慢下落,拉动绳子,从而带动发电机转动,使小灯泡发光。

某“重力灯”中的重物的质量为18kg ,它在30min 内缓慢下落了2m 使规格为“1.5V ,0.12W”的小灯泡正常发光不计绳子重力,下列说法正确的是( )A .绳子拉力对重物做正功B .重物重力做功为216J2024年新高考物理二轮复习强化训练--力与物体的平衡真题汇编版二、多选题三、实验题C .30min 内产生的电能为360JD .重物重力势能转化为灯泡电能的效率为60%5. 查阅资料知,“全飞秒”近视矫正手术用的是一种波长的激光。

已知普朗克常数,光在真空中传播速度,则该激光中光子的能量约为( )A .1.9×10-18JB .1.9×10-19JC .2.2×10-18JD .2.2×10-19J6. 如图,质量为M 、长度为l 的小车静止在光滑的水平面上。

统考版2021高考物理二轮复习专题强化练4电场和磁场中的曲线运动含解析

统考版2021高考物理二轮复习专题强化练4电场和磁场中的曲线运动含解析

电场和磁场中的曲线运动一、选择题(1~5题为单项选择题,6~9题为多项选择题)1.如图所示,正方形区域内存在垂直纸面向里的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b点射出.下列说法正确的是( )A.粒子带正电B.粒子在b点的速率大于在a点的速率C.若仅减小磁感应强度,则粒子可能从b点右侧射出D.若仅减小入射速率,则粒子在磁场中运动时间变短2.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.143.如图所示,两个水平平行放置的带电极板之间存在匀强电场,两个相同的带电粒子从两侧同一高度同时水平射入电场,经过时间t在电场中某点相遇.以下说法中正确的是( )A.若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为1 2 tB .若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为14tC .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为12tD .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为14t4.[2020·武汉武昌区5月调研]如图所示,真空中,垂直于纸面向里的匀强磁场只在两个同心圆所夹的环状区域存在(含边界),两圆的半径分别为R 、3R ,圆心为O .一重力不计的带正电粒子从大圆边缘的P 点沿PO 方向以速率v 1射入磁场,其运动轨迹如图所示,轨迹所对的圆心角为120°.若将该带电粒子从P 点射入的速率变为v 2时,不论其入射方向如何,都不可能进入小圆内部区域,则v 1v 2至少为( )A.233B. 3C.433D .2 3 5.三个质量相等的带电微粒(重力不计)以相同的水平速度沿两极板的中心线方向从O 点射入,已知上极板带正电,下极板接地,三微粒的运动轨迹如图所示,其中微粒2恰好沿下极板边缘飞出电场,则( )A .三微粒在电场中的运动时间有t 3>t 2>t 1B .三微粒所带电荷量有q 1>q 2=q 3C .三微粒所受电场力有F 1=F 2>F 3D .飞出电场时微粒2的动能大于微粒3的动能 6.如图所示,14圆形区域AOB 内存在垂直纸面向内的匀强磁场,AO 和BO 是圆的两条相互垂直的半径,一带电粒子从A 点沿AO 方向进入磁场,从B 点离开,若该粒子以同样的速度从C 点平行于AO 方向进入磁场,则( )A .粒子带负电B .只要粒子入射点在AB 弧之间,粒子仍然从B 点离开磁场C .入射点越靠近B 点,粒子偏转角度越大D .入射点越靠近B 点,粒子运动时间越短 7.如图所示,竖直平面内有水平向左的匀强电场E ,M 点与N 点在同一电场线上,两个质量相等的带正电荷的粒子,以相同的速度v 0分别从M 点和N 点同时垂直进入电场,不计两粒子的重力和粒子间的库仑力.已知两粒子都能经过P 点,在此过程中,下列说法正确的是( )A .从N 点进入的粒子先到达P 点B .从M 点进入的粒子先到达P 点C .粒子在到达P 点的过程中电势能都减小D .从M 点进入的粒子的电荷量小于从N 点进入的粒子的电荷量 8.如图,S 为一离子源,MN 为长荧光屏,S 到MN 的距离为L ,整个装置处在范围足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小为B .某时刻离子源S 一次性沿平行纸面的各个方向均匀地射出大量的正离子,各离子的质量m ,电荷量q ,速率v 均相同,不计离子的重力及离子间的相互作用力,则( )A .当v <qBL2m时,所有离子都打不到荧光屏上B .当v <qBLm时,所有离子都打不到荧光屏上 C .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为512 D .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为129.[2020·西南名校联盟5月模拟]如图所示,直角三角形ABC 内存在垂直于纸面向外的匀强磁场,磁感应强度为B 0,AC 边长为2L ,AB 边长为L .从AC 边的中点D 连续发射不同速率的相同粒子,方向与AC 边垂直,粒子带正电,电荷量为q ,质量为m ,不计粒子重力与粒子间的相互作用,下列判断正确的是( )A .以不同速率入射的粒子在磁场中运动的时间一定不等B .BC 边上有粒子射出的区域长度不超过33L C .AB 边上有粒子射出的区域长度为(3-1)L D .从AB 边射出的粒子在磁场中运动的时间最短为πm6qB 0二、非选择题 10.如图所示的空间分为Ⅰ、Ⅱ两个区域,边界AD 与边界AC 的夹角为30°,边界AC 与MN 平行,Ⅰ、Ⅱ区域均存在磁感应强度为B 的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,Ⅱ区域宽度为d ,边界AD 上的P 点与A 点间距离为2d .一质量为m 、电荷量为+q 的粒子以速度v =2Bqdm,沿纸面与边界AD 成60°角的方向从左边进入Ⅰ区域磁场(粒子的重力可忽略不计).(1)若粒子从P 点进入磁场,从边界MN 飞出磁场,求粒子经过两磁场区域的时间; (2)粒子从距A 点多远处进入磁场时,在Ⅱ区域运动时间最短?11.[2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.12.[2020·浙江7月,22]某种离子诊断测量简化装置如图所示.竖直平面内存在边界为矩形EFGH、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板CD平行于HG水平放置,能沿竖直方向缓慢移动且接地.a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界EH水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界HG竖直向下射出,并打在探测板的右边缘D点.已知每束每秒射入磁场的离子数均为N,离子束间的距离均为0.6R,探测板CD的宽度为0.5R,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用.(1)求离子速度v 的大小及c 束中的离子射出磁场边界HG 时与H 点的距离s ; (2)求探测到三束离子时探测板与边界HG 的最大距离L max ;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F 与板到HG 距离L 的关系.13.[2020·江苏卷,16]空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.甲、乙两种比荷不同的粒子同时从原点O 沿x 轴正向射入磁场,速度均为v .甲第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.甲经过Q 时,乙也恰好同时经过该点.已知甲的质量为m ,电荷量为q .不考虑粒子间的相互作用和重力影响.求:(1)Q 到O 的距离d ;(2)甲两次经过P 点的时间间隔Δt ; (3)乙的比荷q ′m ′可能的最小值.供向心力有qv 1B =m v 21r 1,解得v 1=3qBRm .当粒子竖直向上射入磁场时,如果粒子不能进入小圆区域,则粒子从其他所有方向射入磁场都不可能进入小圆区域,粒子恰好不能进入小圆区域时轨道半径r 2=R ,由洛伦兹力提供向心力有qv 2B =m v 22r 2,解得v 2=qBR m ,则有v 1v 2=3,B 正确,A 、C 、D 错误.答案:B5.解析:粒子在电场中运动的时间t =xv ,水平速度相等而位移x 1<x 2=x 3,所以t 1<t 2=t 3,故A 错误;竖直方向y =12at 2=12·qE m t 2,对粒子1与2,两者竖直位移相等,在y 、E 、m 相同的情况下,粒子2的时间长,则电荷量小,即q 1>q 2,而对粒子2和3,在E 、m 、t 相同的情况下,粒子2的竖直位移大,则q 2>q 3,故B 错误;由F =qE ,q 1>q 2可知,F 1>F 2,故C 错误;由q 2>q 3,且y 2>y 3,则q 2Ey 2>q 3Ey 3,电场力做功多,增加的动能大,故D 正确.答案:D 6.解析:粒子从A 点正对圆心射入,恰从B 点射出,根据洛伦兹力方向可判断粒子带正电,故选项A 错误;粒子从A 点射入时,在磁场中运动的圆心角为θ1=90°,粒子运动的轨迹半径等于BO ,当粒子从C 点沿AO 方向射入磁场时,粒子的运动轨迹如图所示,设对应的圆心角为θ2,运动的轨迹半径也为BO ,粒子做圆周运动的轨迹半径等于磁场圆的半径,磁场区域圆的圆心O 、轨迹圆的圆心O 1以及粒子进出磁场的两点构成一个菱形,由于O 1C 和OB 平行,所以粒子一定从B 点离开磁场,故选项B 正确;由图可得此时粒子偏转角等于∠BOC,即入射点越靠近B 点对应的偏转角度越小,运动时间越短,故选项C 错误,D 正确.答案:BD7.解析:两粒子进入电场后做类平抛运动,因为重力不计,竖直方向匀速,水平方向向左匀加速,又因为两粒子在竖直方向的位移相同、速度相同,所以到达P 点的时间相同,故A 、B 错误;电场力对两粒子都做正功,电势能都减小,故C 正确;水平方向上,由于x =12at 2,又因为加速度a =qE m 、两粒子质量相等及到达P 点的时间相等,所以从M 点进入的粒子的加速度小、电荷量小,从N 点进入的粒子的加速度大、电荷量大,故D 正确.答案:CD8.解析:根据半径公式R=mvqB,当v<qBL2m时,R<L2,直径2R<L,所有离子都打不到荧光屏上,A项正确;根据半径公式R=mvqB,当v<qBLm时,R<L,当L2≤R<L,有离子打到荧光屏上,B项错误;当v=qBLm时,根据半径公式R=mvqB=L,离子运动轨迹如图所示,离子能打到荧光屏的范围是N′M′,由几何知识得:PN′=3r=3L,PM′=r=L,打到N′点的离子离开S时的初速度方向和打到M′的离子离开S时的初速度方向夹角为θ=56π,能打到荧光屏上的离子数与发射的离子总数之比k=θ2π=56π2π=512,C项正确,D项错误.答案:AC9.解析:若以不同速率入射的粒子在磁场中运动时都从AC边射出,则运动的时间相等,A错误;如图甲所示,当粒子的速率无穷大时,可认为粒子不发生偏转从E点射出,BC边上有粒子射出的区域为BE部分,长度不超过L tan30°=33L,B正确;如图乙所示,粒子从AB边射出的运动轨迹与AB边相切时,轨迹半径最小,则AB边上有粒子射出的区域在BF之间,由几何关系可知r3L=L-r2L,解得r=3L2+3,则L BF=L-rtan60°=(3-1)L,C正确;从AB边上射出的粒子中,从B点射出的粒子运动时间最短,粒子在磁场中运动所对的圆心角为60°,则粒子在磁场中运动的时间最短为t=T6=πm3qB0,D错误.答案:BC10.解析:(1)设粒子在磁场中做圆周运动的半径为r,则qvB=mv2r,解得r=2d粒子在磁场中做圆周运动的周期为T =2πmqB设粒子在Ⅰ区域转过的角度为θ,则 粒子在Ⅰ区域运动时间t 1=θ360°T设粒子在Ⅱ区域运动时间为t 2,由对称关系可知粒子经过两磁场区域的时间t =t 1+t 2=2t 1解得t =πm3qB.(2)在Ⅱ区域运动时间最短时,圆弧对应的弦长应为d ,由几何关系可知,粒子入射点Q 到边界AC 的距离应为d2,则入射点Q 与A 点的距离为d.答案:(1)πm3qB(2)d11.命题意图:本题考查了带电粒子在磁场中的运动,意在考查考生综合物理规律处理问题的能力.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 2R ①由此可得 R =mv 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R≤h③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得 B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R′=2h⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦ 由几何关系可得,P 点与x 轴的距离为y =2h(1-cos α)⑧联立⑦⑧式得y =(2-3)h⑨答案:见解析12.命题意图:本题考查洛伦兹力和牛顿运动定律、动量及其相关知识点,考查的核心素养是物理观念和科学思维.解析:(1)qvB =mv 2R 得v =qBR m几何关系OO′=0.6Rs =R 2-0.6R 2=0.8R(2)a 、c 束中的离子从同一点Q 射出,α=βtan α=R -s L max。

二轮复习高中物理计算题专题复习(含答案)

二轮复习高中物理计算题专题复习(含答案)

二轮复习计算题专题训练1、航模兴趣小组设计出一架遥控飞行器,其质量m=1kg,动力系统提供的恒定升力F=14N,试飞时,飞行器从地面由静止开始竖直上升,设飞行器飞行时所受的阻力大小不变,g取10m/s2.(1)第一次试飞,飞行器飞行t1=8s时到达高度S m=64m,求飞行器阻力f的大小;(2)第二次试飞,飞行器飞行t2=6s时遥控器出现故障,飞行器立即失去升力,求飞行器能达到的最大高度.2、如图所示,滑块b静止在光滑水平面上,滑块a右端与一轻弹簧相连后以某一速度冲向滑块b,与b碰撞后弹簧不与b相粘连,b在与弹簧分离后,冲上半径为R的竖直光滑固定半圆轨道,且恰好能从轨道顶端水平飞出。

已知a、b两个滑块的质量分别为2m和m,重力加速度为g,求:(滑块a、b可视为质点,弹簧始终处在弹性限度内),求:(1)滑块b与弹簧分离时的速度大小;(2)滑块a碰撞前的速度大小;(3)a、b在碰撞过程中弹簧获得的最大弹性势能。

3、如图所示,半径R=0.4m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。

质量m=0.1kg的小物块(可视为质点)从空中的A点以v0=2m/s的速度被水平拋出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,此时弹簧的弹性势能E pm=0.8J,已知小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2。

求:(1)小物块从A点运动至B点的时间。

(2)小物块经过圆弧轨道上的C点时,对轨道的压力大小。

(3)C、D两点间的水平距离L。

4、如图所示,装置的左边AB部分是长为L1=1m的水平面,一水平放置的轻质弹簧左端固定并处于原长状态。

装置的中间BC部分是长为L2=2m的水平传送带,它与左右两边的台面等高,并能平滑对接,传送带始终以v=2m/s的速度顺时针转动。

高考物理二轮复习计算题规范练4课件

高考物理二轮复习计算题规范练4课件
12/9/2021
(1)0.5t 时正方形线框的磁通量和 2t 时的电动势; (2)两粒子最终打在屏 MN a2
na2B0 t
2 (2)B1
naq2tB0( m2- 2m1)
12/9/2021
解析:(1)根据题意得 Φ=12B0a2, 由法拉第电磁感应定律得 E=nΔΔΦt =na2Bt0; (2)根据题意两电容器加的是同一稳恒电压 U,设质子和 α 粒子射出加速电场时的速度分别为 v1 和 v2,根据题意得 qU=12 m1v21,其中 U=na2Bt0, 联立解得 v1= 2qtnma12B0,同理可得 v2= 4qtnma22B0;
12/9/2021
(1)滑块甲的初速度 v0 的大小; (2)滑块乙最终静止的位置与 C 点的距离. 答案:(1) 5gh (2)2h(C 点左侧)
12/9/2021
解析:(1)由于滑块甲、乙碰撞时无能量损失,根据能量守 恒定律得:12mv02=12mv甲2 +12mv乙2 ,
甲、乙碰撞时根据动量守恒定律得:mv0=mv 甲+mv 乙, 由以上两式解得 v 乙=v0 即滑块甲、乙碰撞的过程中,速度互换,且每次碰撞都发 生在 B 点; 由于滑块乙刚好滑到斜坡的最高点 D 处,则对滑块乙由 B 点到 D 点的过程,根据动能定理得:
计算题规范练4
12/9/2021
时间:45 分钟
1.如图所示,高为 h 的光滑三角形斜坡固定在水平面上, 其与水平面平滑对接于 C 点,D 为斜坡的最高点,水平面的左 侧 A 点处有一竖直的弹性挡板,质量均为 m 的甲、乙两滑块 可视为质点,静止在水平面上的 B 点,已知 AB=h、BC=3h, 滑块甲与所有接触面的摩擦均可忽略,滑块乙与水平面之间的 动摩擦因数为 μ=0.5.给滑块甲一水平向左的初速度,经过一 系列没有能量损失的碰撞后,滑块乙恰好能滑到斜坡的最高点 D 处,重力加速度用 g 表示.求:

2020版高考物理二轮复习试题:第4讲 万有引力与航天(专题强化训练)含答案

2020版高考物理二轮复习试题:第4讲 万有引力与航天(专题强化训练)含答案

专题强化训练(四) 万有引力与航天一、选择题(1~7为单选题,8~16为多选题)1.(2017·吉林省普通高中高三调研)地球赤道上的物体随地球自转的向心加速度为a 1,地球的同步卫星绕地球做匀速圆周运动的轨道半径为r ,向心加速度为a 2.已知万有引力常量为G ,地球半径为R ,地球赤道表面的重力加速度为g .下列说法正确的是( )A .地球质量M =gr 2GB .地球质量M =a 1r 2GC .a 1、a 2、g 的关系是g >a 2>a 1D .加速度之比a 1a 2=r 2R2解析:根据万有引力定律可得,对地球的同步卫星:G Mmr 2=ma 2,解得地球的质量M =a 2r 2G,故A 、B 错误.地球赤道上的物体和地球同步卫星的角速度相等,根据a =ω2r 知,a 1<a 2;对于地球近地卫星有,G Mm R 2=mg ,得g =G M R 2,对于地球同步卫星,G Mmr 2=ma 2,即a 2=G Mr 2,a 2<g ,综合得a 1<a 2<g ,故C 正确;根据a =ω2r ,地球赤道上的物体a 1=ω2R ,地球同步卫星的向心加速度a 2=ω2r ,故a 1a 2=Rr,故D 错误.答案:C2.(2017·济宁市高三模拟)假设地球为质量均匀分布的球体.已知地球表面的重力加速度在两极处的大小为g 0、在赤道处的大小为g ,地球半径为R ,则地球自转的周期T 为( )A .2πRg 0+g B .2πR g 0-g C .2πg 0+gRD .2πg 0-gR解析:在两极处物体不随地球自转,所以G MmR 2=mg 0;在赤道处物体随地球自转,可得G Mm R 2=mg +m 4π2T2R ,联立解得T =2πRg 0-g,所以B 正确;A 、C 、D 错误. 答案:B3.(2017·枣庄市高三模拟)2016年12月17日是我国发射“悟空”探测卫星二周年纪念日,一年来的观测使人类对暗物质的研究又进了一步.宇宙空间中两颗质量相等的星球绕其连线中心转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测=k (k >1);因此,科学家认为,在两星球之间存在暗物质.假设以两星球球心连线为直径的球体空间中均匀分布着暗物质,两星球的质量均为m ;那么,暗物质质量为( )A .k 2-14mB .k 2-28mC .(k 2-1)mD .(2k 2-1)m解析:设两星球间距为L ,则根据万有引力定律:Gm 2L 2=m 4π2T 2理·L2;若有暗物质,因均匀分布,故可认为集中在两星连线中点,根据万有引力定律:Gm 2L 2+GMm ⎝⎛⎭⎫L 22=m 4π2T 2观·L2;其中T 理论T 观测=k ,联立解得:M =k 2-14m ,故选A .答案:A4.(2017·乐山市高三调研)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动,b 处于地面附近近地轨道上正常运行,c 是地球同步卫星,d 是高空探测卫星.各卫星排列位置如图,则有( )A .a 的向心加速度等于重力加速度gB .在相同时间内b 转过的弧长最短C .在4 h 内c 转过的圆心角是π/3D .d 的运动周期一定是30 h解析:同步卫星的周期与地球自转周期相同,角速度也相同,则知a 与c 的角速度相同,由a =w 2·r 可知,c 的向心加速度比a 的大.根据G Mm r 2=ma 可得:a =G M r 2,可知卫星的轨道半径越大,向心加速度越小,c 同步卫星的轨道半径高于b 卫星的轨道半径,则c 同步卫星的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故知a 的向心加速度小于重力加速度g ,故A 错误;由G Mmr 2=m v 2r,解得:v =Gmr,卫星的半径越大,线速度越小,所以b 的线速度最大,在相同时间内转过的弧长最长,故B 错误;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是π3,故C 正确;由开普勒第三定律:R 3T 2=k 可知,卫星的半径越大,周期越大,所以d 的运动周期大于c 的周期24 h ,但不一定是30 h ,故D 错误.答案:C5. (2017·黄冈市高三质量检测)卫星发射进入预定轨道往往需要进行多次轨道调整.如图所示,某次发射任务中先将卫星送至近地轨道,然后再控制卫星进入椭圆轨道.图中O 点为地心,A 点是近地轨道和椭圆轨道的交点,远地点B 离地面高度为6R (R 为地球半径).设卫星在近地轨道运动的周期为T ,下列对卫星在椭圆轨道上运动的分析,其中正确的是( )A .控制卫星从图中低轨道进入椭圆轨道需要使卫星减速B .卫星通过A 点时的速度是通过B 点时速度的6倍C .卫星通过A 点时的加速度是通过B 点时加速度的6倍D .卫星从A 点经4T 的时间刚好能到达B 点解析:控制卫星从图中低轨道进入椭圆轨道需要使卫星加速,选项A 错误;根据开普勒行星运动第二定律可得:v A ·R =v B ·(6R +R ),则卫星通过A 点时的速度是通过B 点时速度的7倍,选项B 错误;根据a =GM r 2,则a A a B =r 2Br 2A =(7R )2R2=49,则卫星通过A 点时的加速度是通过B 点时加速度的49倍,选项C 错误;根据开普勒第三定律,R 3T2=⎝ ⎛⎭⎪⎫2R +6R 23T ′2,解得T ′=8T ,则卫星从A 点经4T 的时间刚好能到达B 点,选项D 正确;故选D .答案:D6.(2017·日照市高三模拟)2016年11月24日,我国成功发射了天链一号04星.天链一号04星是我国发射的第4颗地球同步卫星,它与天链一号02星、03星实现组网运行,为我国神舟飞船、空间实验室天宫二号提供数据中继与测控服务.如图,1是天宫二号绕地球稳定运行的轨道,2是天链一号绕地球稳定运行的轨道.下列说法正确的是( )A .天链一号04星的最小发射速度是11.2 km/sB .天链一号04星的运行速度小于天宫二号的运行速度C .为了便于测控,天链一号04星相对于地面静止于北京飞控中心的正上方D .由于技术进步,天链一号04星的运行速度可能大于天链一号02星的运行速度 解析:由于第一宇宙速度是人造地球卫星飞船环绕地球做匀速圆周运动时的最大速度,同时又是最小的发射速度,可知飞船的发射速度大于第一宇宙速度7.9 km/s.飞船的发射速度大于第二宇宙速度11.2 km/s 时,就脱离地球束缚.所以飞船的发射速度要小于第二宇宙速度,同时要大于第一宇宙速度,介于第一宇宙速度和第二宇宙速度之间,故A 错误;由万有引力提供向心力得:GMm r 2=m v 2r可得v =GMr,可知轨道半径比较大的天链一号04星的运行速度小于天宫二号的运行速度.故B 正确;天链一号04星位于赤道正上方,不可能位于北京飞控中心的正上方,故C 错误;根据题意,天链一号04星与天链一号02星都是地球同步轨道数据中继卫星,轨道半径相同,所以天链一号04星与天链一号02星具有相同的速度,故D 错误.答案:B7.(2017·湖北省高三联合)“嫦娥三号”携带“玉兔号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.“玉兔号”在地球表面的重力为G 1,在月球表面的重力为G 2;地球与月球均视为球体,其半径分别为R 1、R 2;地球表面重力加速度为g .则( )A .月球表面的重力加速度为G 1gG 2B .地球与月球的质量之比为G 2R 22G 1R 21C .月球与地球的第一宇宙速度之比为G 1R 1G 2R 2D .“嫦娥三号”环绕月球表面做匀速圆周运动的周期为2πG 1R 2G 2g解析:“玉兔号”的质量为m =G 1g ,所以月球表面的重力加速度为g ′=G 2m =gG 2G 1,所以A 错误;根据黄金公式GM =gR 2,可得M 地M 月=g g ′R 21R 22=G 1R 21G 2R 22,所以B 错误;第一宇宙速度v =gR ,所以月球与地球的第一宇宙速度之比为v 2v 1=G 2G 1R 2R 1,所以C 错误;根据万有引力G Mm r 2=m 4π2T 2r ,“嫦娥三号”环绕月球表面做匀速圆周运动,所以轨道半径等于月球半径R 2,代入可求周期T =2πG 1R 2G 2g,所以D 正确. 答案:D8.(2017·江苏卷)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空.与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km 的圆轨道上飞行,则其( )A .角速度小于地球自转角速度B .线速度小于第一宇宙速度C .周期小于地球自转周期D .向心加速度小于地面的重力加速度解析:本题考查万有引力定律、人造卫星的运行规律.由于地球自转的角速度、周期等物理量与地球同步卫星一致,故“天舟一号”可与地球同步卫星比较.由于“天舟一号”的轨道半径小于同步卫星的轨道半径,所以,角速度是“天舟一号”大,周期是同步卫星大,选项A 错,C 对;第一宇宙速度是近地卫星的环绕速度,故“天舟一号”的线速度小于第一宇宙速度,B 对;对“天舟一号”有G M 地m(R 地+h )2=ma 向,所以a 向=G M 地(R 地+h )2,而地面重力加速度g =G M 地R 2地,故a 向<g ,D 选项正确.答案:BCD9.(2017·邵阳市高三联考)2017年1月5日,我国在西昌卫星发射中心用长征三号乙运载火箭成功将通信技术试验卫星发射升空.若该卫星在发射过程中质量保持不变,则在该卫星发射升空远离地球的过程中,其所受地球的万有引力F 及重力势能E p 的变化情况分别为( )A .F 变大B .F 变小C .E p 变大D .E p 变小 解析:根据万有引力公式F =G Mmr 2,远离地球过程中,与地球间的距离在增大,故F减小,上升过程中需要克服引力做功,故重力势能增大,故B 、C 正确.答案:BC10.(2017·苏锡常镇四市调研)2016年8月欧洲南方天文台宣布:在离地球最近的恒星“比邻星”周围发现了一颗位于宜居带内的行星,并将其命名为“比邻星b ”,这是一颗可能孕育生命的系外行星.据相关资料表明:“比邻星b ”的质量约为地球的1.3倍,直径约为地球的2.2倍,绕“比邻星”公转周期约为11.2天,与“比邻星”的距离约为日地距离的5%,若不考虑星球的自转效应,则( )A .“比邻星”的质量大于太阳质量B .“比邻星”的质量小于太阳质量C .“比邻星b ”表面的重力加速度大于地球表面的D .“比邻星b ”表面的重力加速度小于地球表面的解析:根据G Mm r 2=m 4π2T 2r 可得:M =4π2r 3GT 2,则M 比M 太=r 3比T 2比∶r 3地T 2地=(5100)3×(36511.2)2≈0.133,故“比邻星”的质量小于太阳质量,选项A 错误,B 正确;根据g =GmR 2,则g 比g 地=m 比R 2地m 地R 2比=1.3×(12.2)2≈0.27,即“比邻星b ”表面的重力加速度小于地球表面的,选项C 错误,D 正确. 答案:BD11.(2017·株洲市高三质检)2016年10月19日凌晨“神舟十一号”飞船与“天宫二号”成功实施自动交会对接.如图所示,已知“神舟十一号”“天宫二号”对接后,组合体在时间t 内沿圆周轨道绕地球转过的角度为θ,组合体轨道半径为r ,地球表面重力加速度为g ,引力常量为G ,不考虑地球自转.则( )A .可求出地球的质量B .可求出地球的平均密度C .可求出组合体的做圆周运动的线速度D .可求出组合体受到地球的万有引力解析:根据题意可得组合体绕地球运动的角速度为ω=θt ,根据公式G Mmr 2=mω2r 可得M =ω2r 3G ,A 正确;忽略地球自转,在地球表面万有引力等于重力,即G MmR 2=mg ,即可求得地球半径,根据ρ=M 43πR 3可求得地球密度,B 正确;根据v =ωr 可得组合体的做圆周运动的线速度,C 正确;由于不知道组合体质量,所以无法求解受到地球的万有引力大小,D 错误.答案:ABC12.(2017·山西省高三测试)2016年12月28日中午,我国首颗中学生科普卫星在太原卫星发射中心发射升空.这颗被命名为“八一·少年行”的小卫星计划在轨运行时间将不少于180天.卫星长约12厘米,宽约11厘米,高约27厘米,入轨后可执行对地拍摄、无线电通讯、对地传输文件以及快速离轨试验等任务.假设根据实验需要将卫星由距地面高280 km 的圆轨道Ⅰ调整进入距地面高330 km 的圆轨道Ⅱ,以下判断正确的是( )A .卫星在轨道Ⅰ上运行的速度小于7.9 km/sB .为实现这种变轨,卫星需要向前喷气,减小其速度即可C .卫星在轨道Ⅱ上比在轨道Ⅰ上运行的向心加速度大,周期小D .忽略卫星质量的变化,卫星在轨道Ⅱ上比在轨道Ⅰ上动能小,引力势能大 解析:根据v =GMr知轨道半径越大,运行的线速度越小,选项A 正确.卫星由低轨道变为高轨道需要向后喷气加速,从而使万有引力小于向心力而做离心运动,选项B 错误.由a =GMr2,T =4π2r 3GM知轨道Ⅱ的半径大,加速度小,周期大,选项C 错误.轨道Ⅱ的线速度小,而高度高,故动能小时引力势能大,选项D 正确.答案:AD13.(2017·泰安市高三质检)我国计划在2017年发射“嫦娥四号”,它是嫦娥探月工程计划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R ,月球表面的重力加速度为g ,引力常量为G ,嫦娥四号离月球中心的距离为r ,绕月周期为T .根据以上信息可求出( )A .“嫦娥四号”绕月运行的速度 r 2g RB .“嫦娥四号”绕月运行的速度为 R 2g rC .月球的平均密度为3πGT 2D .月球的平均密度为3πr 3GT 2R3解析:月球表面任意一物体重力等于万有引力:G MmR 2=mg ,则有GM =R 2 g ,“嫦娥四号”绕月运行时,万有引力提供向心力:G Mmr 2=m v 2r,解得:v =GMr,联立解得v =gR 2r,故A 错误,B 正确;“嫦娥四号”绕月运行时,根据万有引力提供向心力有:G Mm r 2=m 4π2T2r ,解得:M=4π2r3GT2,月球的平均密度为:ρ=MV=4π2r3GT24π3R3=3πr3GT2R3,故C错误,D正确.答案:BD14.(2017·湖北省八校高三联考)1772年,法籍意大利数学家拉格朗日在论文《三体问题》指出:两个质量相差悬殊的天体(如太阳和地球)所在同一平面上有5个特殊点,如图中的L1、L2、L3、L4、L5所示,人们称为拉格朗日点.若飞行器位于这些点上,会在太阳与地球共同引力作用下,可以几乎不消耗燃料而保持与地球同步绕太阳做圆周运动.若发射一颗卫星定位于拉格朗日L2点,下列说法正确的是()A.该卫星绕太阳运动周期和地球自转周期相等B.该卫星在L2点处于平衡状态C.该卫星绕太阳运动的向心加速度大于地球绕太阳运动的向心加速度D.该卫星在L2处所受太阳和地球引力的合力比在L1处大解析:该卫星与地球同步绕太阳做圆周运动,则该卫星绕太阳运动周期和地球绕太阳运动周期相等,但与地球自转周期没有关系,故A错误;该卫星所受的合力为地球和太阳对它引力的合力,这两个引力方向相同,合力不为零,处于非平衡状态,故B错误;由于该卫星与地球绕太阳做圆周运动的周期相同,该卫星的轨道半径大,根据公式a=4π2T2r分析可知,该卫星绕太阳运动的向心加速度大于地球绕太阳运动的向心加速度,故C正确;因为这些点上的周期相同,根据a=4π2T2r可得半径越大,向心加速度越大,所以根据F=ma可得半径越大受到的合力越大,故D正确.答案:CD15.(2017·肇庆市高三模拟)美国国家科学基金会2010年9月29日宣布,天文学家发现一颗迄今为止与地球最类似的太阳系外的行星,如图所示,这颗行星距离地球约20亿光年(189.21万亿公里),公转周期约为37年,这颗名叫Gliese581g的行星位于天枰座星群,它的半径大约是地球的2倍,重力加速度与地球相近.则下列说法正确的是()A .飞船在Gliese581g 表面附近运行时的速度小于7.9 km/sB .该行星的平均密度约是地球平均密度的1/2C .该行星的质量约为地球质量的2倍D .在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度 解析:由于物体在星球表面上飞行的速度为v =gr ,由于7.9 km/s 是地球表面的物体运行的速度,故行星与地球的第一宇宙速度之比为v 行v 地=gr 行gr 地=2,故飞船在Gliese581g表面附近运行时的速度为2×7.9 km/s ,它大于7.9 km/s ,故选项A 错误;由于物体在星球上受到万有引力,则mg =GMm r 2,则星球的质量M =gr 2G ,星球的密度ρ=M V =gr 2G ÷4πr 33=3g4πGr ,可见,星球的密度与其半径成反比,由于行星的半径与地球的半径之比为2∶1,故它们的密度之比为1∶2,选项B 正确;根据星球的质量M =gr 2G ,故星球的质量与其半径的平方成正比,故该行星与地球的质量之比为4∶1,选项C 错误;由于该行星是在太阳系之外的,故需要飞出太阳系,所以航天器的发射速度至少要达到第三宇宙速度,选项D 正确.答案:BD16.(2017·哈尔滨市第六中学期末)假设地球可视为质量分布均匀的球体.已知地球表面重力加速度的大小在两极为g 0,在赤道为g ,地球的自转周期为T ,引力常量为G ,则( )A .地球的半径R =(g 0-g )T 24π2B .地球的半径R =g 0T 24π2C .假如地球自转周期T 增大,那么两极处重力加速度g 0值不变D .假如地球自转周期T 增大,那么赤道处重力加速度g 值减小 解析:地球两极:mg 0=GMmR 2① 在地球赤道上:GMm R 2-mg =m 4π2T2R②联立①②得:R =(g 0-g )T 24π2,故A 正确,B 错误;由②式知,假如地球自转周期T 增大,赤道处重力加速度g值增大,故D错误;由①式知,两极处的重力加速度与地球自转周期无关,故C正确.答案:AC。

2019高考物理二轮复习计算题专项训练25分钟规范训练4

2019高考物理二轮复习计算题专项训练25分钟规范训练4

25分钟规范训练(四)1.(12分)(2018·江西省南昌二中、临川一中模拟)如图所示,有一质量m =1kg 的小物块,在平台上以初速度v 0=3m/s 水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地面上的半径R =0.5m 的粗糙圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3kg 的长木板,木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,当小物块在木板上相对木板运动l =1m 时,与木板有共同速度,小物块与长木板之间的动摩擦因数μ=0.3,C 点和圆弧的圆心连线与竖直方向的夹角θ=53˚,不计空气阻力,取g =10m/s 2,sin53˚=0.8,cos53˚=0.6。

求:(1)A 、C 两点的高度差h ; (2)物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)物块通过圆弧轨道克服摩擦力做的功。

[解析] (1)小物块到C 点时的速度竖直分量为v Cy =v 0tan53˚=4m/s 下落的高度h =v 2cy 2g=0.8m (2)小物块在木板上滑行达到共同速度的过程木板的加速度大小:a 1=μmg M =1m/s 2 物块的加速度大小:a 2=μmg m=3m/s 2 由题意得:a 1t =v D -a 2tv D t -12a 2t 2-12a 1t 2=l联立以上各式并代入数据解得v D =22m/s 小物块在D 点时由牛顿第二定律得F N -mg =m v 2D R代入数据解得F N =26N 由牛顿第三定律得物块对轨道压力大小为26N ,方向竖直向下。

(3)小物块由A 到D 的过程中,由动能定理得mgh +mgR (1-cos53˚)-W =12mv 2D -12mv 20 代入数据解得W =10.5J2.(20分)(2018·贵州省贵阳市高三5月模拟)如图所示,一边长为2R 的正方形与半径为R 的圆相切,两区域内有大小相等方向相反的匀强磁场。

高三物理二轮复习 第二篇 题型专项突破 计算题标准练(四)(2021年整理)

高三物理二轮复习 第二篇 题型专项突破 计算题标准练(四)(2021年整理)

2017届高三物理二轮复习第二篇题型专项突破计算题标准练(四)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高三物理二轮复习第二篇题型专项突破计算题标准练(四))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高三物理二轮复习第二篇题型专项突破计算题标准练(四)的全部内容。

计算题标准练(四)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(12分)如图甲所示,有一倾角为30°的光滑固定斜面,斜面底端的水平面上放一质量为M 的木板,开始时质量为m=1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F变为水平向右,当滑块滑到木板上时撤去F(假设斜面与木板连接处用小圆弧平滑连接)。

此后滑块和木板在水平面上运动的v —t图象如图乙所示,g取10m/s2,求:(1)水平作用力F的大小。

(2)滑块开始下滑时的高度.(3)木板的质量。

【解析】(1)开始F向左时,滑块受到水平推力F、重力mg和支持力N处于平衡,如图所示水平推力:F=mgtanθ=1×10×=N(2)由图乙知,滑块滑到木板上时速度为v1=10m/s由牛顿第二定律得mgsinθ+Fcosθ=ma代入数据得a=10m/s2则滑块下滑的位移为x==5m则下滑时的高度h=xsinθ=5×=2。

5m(3)设在整个过程中,地面对木板的摩擦力为f,滑块与木板间的摩擦力为f1,由图乙知,滑块刚滑上木板时加速度为a1==—4m/s2对滑块:—f1=ma1①此时木板的加速度:a2==1m/s2对木板:f1—f=Ma2②当滑块和木板速度相等,均为2m/s之后,在一起做匀减速直线运动,加速度为a3==-1m/s2对整体:-f=(m+M)a3③联立①②③带入数据解得:M=1。

2021-2022年高考物理二轮复习计算题47分模拟许四

2021-2022年高考物理二轮复习计算题47分模拟许四

2021年高考物理二轮复习计算题47分模拟许四计算题:本题共3小题,共计47分。

解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案不能得分。

有数值计算的题,答案中必须明确写出数值和单位。

13.(15分)(xx·南京一模)如图1所示,在水平虚线范围内有B =0.5 T ,高度为h =1.0 m ,方向垂直纸面向里的匀强磁场。

质量m =0.2 kg ,边长L =1.0 m 的正方形线框abcd ,其电阻R =1.0 Ω,cd 边跟磁场下边平行且相距一段距离。

现用F =3.0 N 竖直向上的恒力由静止开始拉动线框,cd 边刚进入磁场时,恰好做匀速运动,并穿过磁场区域,最后到达Ⅱ位置。

整个过程中线框保持在竖直平面内,求线框:(取g =10 m/s 2)(1)开始运动的加速度;(2)刚进入磁场时c 、d 两点间电势差;(3)在穿越磁场过程中产生的热量。

图1解析 (1)根据牛顿第二定律得F -mg =ma (2分)a =5 m/s 2(2分)(2)cd 边进入磁场后做匀速运动F =mg +BIL (2分)I =E R(2分)E =(F -mg )R BL=2 V(2分) U cd =-34E =-1.5 V(2分)(3)Q =(F -mg )·2L =2 J(3分)答案 (1)5 m/s 2 (2)-1.5 V (3)2 J14.(16分)(xx·上海单科,31)风洞是研究空气动力学的实验设备。

如图2,将刚性杆水平固定在风洞内距地面高度H =3.2 m 处,杆上套一质量m =3 kg ,可沿杆滑动的小球。

将小球所受的风力调节为F =15 N ,方向水平向左。

小球以初速度v 0=8 m/s 向右离开杆端,假设小球所受风力不变,取g =10 m/s 2。

求:图2(1)小球落地所需时间和离开杆端的水平距离;(2)小球落地时的动能;(3)小球离开杆端后经过多少时间动能为78 J?解析 (1)小球在竖直方向做自由落体运动,运动时间为t 0=2H g =0.8 s(2分)小球在水平方向做匀减速运动,加速度大小为a =F m=5 m/s 2(2分) 水平位移s =v 0t 0-12at 20=4.8 m(2分)(2)由动能定理得E k -12mv 20=mgH -Fs (2分) 可得E k =120 J(2分)(3)设小球离开杆后经过时间t 的水平位移为s ,则s =v 0t -12at 2(1分)由动能定理得E k ′-12mv 20=mg ·12gt 2-Fs (2分) 将E k ′=78 J 和v 0=8 m/s 代入得125t 2-80t +12=0(1分)解得t 1=0.4 s(舍去),t 2=0.24 s(2分)答案 (1)0.8 s 4.8 m (2)120 J (3)0.24 s15.(16分)(xx·泰州一模)在xOy 平面第Ⅰ象限中,存在沿x 轴负方向的匀强电场,场强为E 1=3πBl 2t 0,第Ⅱ象限中存在沿x 轴正方向的匀强电场,场强为E 2=πBl 2t 0,在第Ⅲ、Ⅳ象限中,存在垂直于xOy 平面方向的匀强磁场,方向如图3所示。

2021高考物理二轮复习第四篇案例一用动力学观点求解力学计算题学案

2021高考物理二轮复习第四篇案例一用动力学观点求解力学计算题学案

高考物理二轮复习:案例一用动力学观点求解力学计算题(9分)(2020·山东等级考)单板滑雪U形池比赛是冬奥会比赛项目,其场地可以简化为如图甲所示的模型:U形滑道由两个半径相同的四分之一圆柱面轨道和一个中央的平面直轨道连接而成,轨道倾角为17.2°。

某次练习过程中,运动员以v M=10 m/s的速度从轨道边缘上的M点沿轨道的竖直切面ABCD滑出轨道,速度方向与轨道边缘线AD的夹角α=72.8°,腾空后沿轨道边缘的N点进入轨道。

图乙为腾空过程左视图。

该运动员可视为质点,不计空气阻力,取重力加速度的大小g=10 m/s2,sin72.8°=0.96,cos72.8°=0.30。

求:(1)运动员腾空过程中离开AD的距离的最大值d;(2)M、N之间的距离L。

(1)在M点,设运动员在ABCD面内垂直AD方向的分速度为v1,由运动的合成与分解规律得v1=v M sin72.8°①(1分)设运动员在ABCD面内垂直AD方向的分加速度为a1,由牛顿第二定律得mgcos17.2°=ma1②(1分) 由运动学公式得d=③(1分)联立①②③式,代入数据得①式不标v M的下脚标不得分,角度用符号表示得分。

②式写成a1=9.6 m/s2不得分。

(答题陷阱点)③式写成对应的变形公式也可得1分。

规则1:必须要明确公式中的物理量①②⑤⑥式必须要表明其中物理量符号的具体意义,不然所列公式混乱,容易失分。

规则2:使用题目给出的符号列式求解,明确公式中的物理量若题中已经定义了物理d=4.8 m ④(1分)(2)在M点,设运动员在ABCD面内平行AD方向的分速度为v2,由运动的合成与分解规律得v2=v M cos72.8°⑤(1分)设运动员在ABCD面内平行AD方向的分加速度为a2,由牛顿第二定律得mgsin17.2°=ma2⑥(1分) 设腾空时间为t,由运动学公式得t=⑦(1分)L=v2t+a2t2⑧(1分)联立①②⑤⑥⑦⑧式,代入数据得L=12 m ⑨(1分) ④计算结果正确得分,结果正确,前面方程不全但都正确第一问得满分。

2024届高考物理大二轮刷题计算题综合提升专练考点速查版

2024届高考物理大二轮刷题计算题综合提升专练考点速查版

一、单选题二、多选题1. 如图所示,一跳台滑雪运动员以6m/s 的初速度从倾角为30°的斜坡顶端水平滑出。

不计空气阻力,重力加速度g =10m/s 2。

则运动员再次落到斜面上时,其落点与坡顶的高度差为( )A .2.4mB .3.6mC .4.8mD .5.4m 2. 有一个已充电的电容器,两极板之间的电压为,所带电荷量为,此电容器的电容是( )A.B.C.D.3. 如图1所示,一个物体放在粗糙的水平地面上.从t=0时刻起,物体在水平力F 作用下由静止开始做直线运动.在0到t 0时间内物体的加速度a 随时间t 的变化规律如图2所示.已知物体与地面间的动摩擦因数处处相等.则A .t 0时刻,力F 等于0B .在0到t 0时间内,力F 大小恒定C .在0到t 0时间内,物体的速度逐渐变大D .在0到t 0时间内,物体的速度逐渐变小4. 理想变压器与额定电压均为12V 的四个相同灯泡连接成如图所示的电路,开关S 断开时,灯泡L 1、L 2、L 3都正常发光,忽略灯泡电阻随温度的变化。

下列说法正确的是( )A .理想变压器原、副线圈的匝数比为3:1B .理想变压器原线圈所接交流电源的电压为24VC .闭合开关S ,灯泡L 1、L 2、L 3仍能正常发光D .闭合开关S ,灯泡L 1可能烧毁5. 如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向里的匀强磁场B 中.质量为m 、带电量为+q 的小滑块从斜面顶端由静止下滑.对滑块下滑的过程,下列判断正确的是()A .滑块受到的洛仑兹力方向垂直斜面向上B .滑块受到的摩擦力大小不变C .滑块一定不能到达斜面底端D .滑块到达地面时的动能与B 的大小有关6. 如图所示,矩形线圈abcd 与理想变压器原线圈组成闭合电路,线圈在有界匀强磁场中绕垂直于磁场的bc 边匀速转动,磁场只分布在bc 边的左侧,磁感应强度大小为B ,线圈面积为S ,转动角速度为ω,匝数为N ,线圈电阻不计。

2021届高考物理二轮复习专题四 电路与电磁感应(考点+习题)含解析

2021届高考物理二轮复习专题四 电路与电磁感应(考点+习题)含解析

专题四电路与电磁感应1.恒定电流(1)闭合电路中的电压、电流关系:E=U外+U内,I=,U=E-Ir。

(2)闭合电路中的功率关系:P总=EI,P内=I2r,P出=IU=I2R=P总-P内。

(3)直流电路中的能量关系:电功W=qU=UIt,电热Q=I2Rt。

(4)纯电阻电路中W=Q,非纯电阻电路中W>Q。

2.电磁感应(1)判断感应电流的方向:右手定则和楞次定律(增反减同、来拒去留、增缩减扩)。

(2)求解感应电动势常见情况与方法(3)自感现象与涡流自感电动势与导体中的电流变化率成正比,线圈的自感系数L跟线圈的形状、长短、匝数等因素有关系。

线圈的横截面积越大,线圈越长,匝数越多,它的自感系数就越大。

带有铁芯的线圈其自感系数比没有铁芯时大得多。

3.交变电流(1)交变电流的“四值”①最大值:为U m、I m,即交变电流的峰值。

②瞬时值:反映交变电流每瞬间的值,如e=E m sinωt。

③有效值:正弦式交变电流的有效值与最大值之间的关系为E=、U=、I=;非正弦式交变电流的有效值可以根据电流的热效应来求解。

计算交变电流的电功、电功率和测定交流电路的电压、电流都是指有效值。

④平均值:反映交变电流的某物理量在t时间内的平均大小,如平均电动势E=n。

(2)理想变压器的基本关系式①功率关系:P入=P出;②电压关系:=;③电流关系:=。

(3)远距离输电常用关系式(如图所示)①功率关系:P1=P2,P3=P4,P2=P线+P3。

②电压损失:U损=I2R线=U2-U3。

③输电电流:I线===。

④输电导线上损耗的电功率:P损=I线U损=R线=R线。

高考演练1.(2019江苏单科,1,3分)某理想变压器原、副线圈的匝数之比为1∶10,当输入电压增加20 V时,输出电压()A.降低2 VB.增加2 VC.降低200 VD.增加200 V答案D依据理想变压器原、副线圈的电压比与匝数比关系公式可知,=,则ΔU 2=ΔU1,得ΔU2=200 V,故选项D正确。

2021版高考物理二轮复习计算题32分满分练四20211213248

2021版高考物理二轮复习计算题32分满分练四20211213248

2021版高考物理二轮复习计算题32分满分练四2021121324824.(12分)如图1所示,两个完全相同的长木板放置于水平地面上,木板间紧密接触,但不粘在一块,每个木板质量M =0.6 kg ,长度l =0.5 m 。

现有一质量m =0.4 kg 的木块,以初速度v 0=2 m/s 从木板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1,重力加速度g =10 m/s 2。

求:图1(1)木块滑上第二块木板的瞬时的速度;(2)木块最终滑动的位移(保留2位有效数字)。

解析 (1)两木板受到木块的摩擦力f 1=μ1mg (1分)两木板受到地面的最大静摩擦力f 2=μ2(m +2M )g (1分)因为f 2>f 1,因此木块运动时,两木板静止不动木块在左边第一块木板上的加速度为a 1,由牛顿第二定律得μ1mg =ma 1(1分)设小木块滑上第二块木板的瞬时的速度为v ,由运动学关系式得v 2-v 20=-2a 1l (1分)解得v =1 m/s(1分)(2)木块滑上第二块木板后,设木板的加速度为a 2,由牛顿第二定律得μ1mg -μ2(m +M )g =Ma 2(1分)设木块与木板达到相同速度v 1时,用时为t ,则对木块,有v 1=v -a 1t对木板,有v 1=a 2t解得v 1=0.1 m/s ,t =0.3 s(1分)现在木块运动的位移x 1=v +v 12t =0.165 m(1分)木板的位移x 1′=v 212a 2=0.015 m(1分) 木块在木板上滑动的长度为x 1-x 1′<l达到共速后,木块和木板一起连续运动。

设木块、木板一起运动的加速度大小为a 3,位移为x 2μ2(m +M )g =(m +M )a 3(1分)v 21=2a 3x 2解得x 2=0.005 m(1分)因此,木块移动的总位移x =l +x 1+x 2=0.67 m(1分)答案 (1)1 m/s (2)0.67 m25.(20分)如图2,A 、B 、C 为同一平面内的三个点,在垂直于平面方向加一匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题标准练(四)
分)如图所示,“”形框置于匀强磁场中,磁感应强度大小为
纸面向外,“”形框的三条边的长度均为
电阻.“”形框绕轴
示位置.规定回路中方向为电流的正方向,求:
的感应电流的表达式;
的感应电流的大小和方向.
本题考查交变电流的产生和瞬时值表达式、楞次定律和闭合电路欧姆定律等相关
=BωL r+R
或正方向或a→d
ωt(2)BωL
r+R
正方向
中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的
初速度可视为零)做直线运动,通过小孔
垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为
垂直纸面向里的匀强磁场区域,最后打在感光片上,如图所示.已知加速电场中
,两板间距也为L,板间匀强电场强度。

相关文档
最新文档