【学案】 矩形的判定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 矩形的判定
学习目标:
1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;
2、培养综合应用知识分析解决问题的能力. 重难点:掌握矩形的判定定理 学习过程: 一、复习旧知
二、探究新知
1、探究归纳矩形的判定定理,并用模式表示:
(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。
判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。 几何语言: 在四边形中, ∵ ∴
(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。 由此这个定义可以作为一个判定吗? 判定定理2(从平行四边形
⇒
矩形):有一个角是直角(900)的平行四边形是矩形。 几何语言: 在平行四边形中, ∵ 或 或 或
∴
(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答) 证明:
判定定理3(从平行四边形⇒矩形):对角线相等的平行四边形是矩形。 几何语言: 在平行四边形中, ∵ ∴
【归纳总结】矩形的判定方法:
A
C
B
D A C
B
D D
O
C
B A
D
O
C
B A
1、有一个角是的平行四边形是矩形;
2、四个角都是的四边形是矩形;
3、对角线的四边形是矩形。或者说,对角线的平行四边形是矩形
三、课堂练习
思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明
(1)有一个角是直角的四边形是矩形
(2)对角线互相平分且又相等的四边形是矩形
(3)四个角都相等的四边形是矩形
四、课堂小结
(1)证明四边形是矩形的方法:
一般先证明它是平行四边形,然后再证明一个直角或者对角线相等
(2)证明平行四边形是矩形的方法:
一般可在角上找条件,也可在对角线上找条件。
判定方法:从角的条件看、
( 种)
从对角线的条件看。
五、课后作业
1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().
A、测量对角线是否相互平分
B、测量两组对边是否分别相等
C、测量一组对角是否都为直角
D、测量其中三个角是否都为直角
2、如图,已知的对角线、相交于O,△是等边三角形,4,求这个平行四边形的面积
六、课后反思