2019年北京大学自主招生数学试题含解析

合集下载

2019北京卷理科数学解析版

2019北京卷理科数学解析版

2019北京卷理科数学一、单选题1.已知复数z =2+i ,则z z ⋅=A B C .3D .5【答案】D 【解析】∵z 2i,z z (2i)(2i)5=+⋅=+-=故选D.2.执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B 【解析】运行第一次,=1k ,2212312s ⨯==⨯-,运行第二次,2k =,2222322s ⨯==⨯-,运行第三次,3k =,2222322s ⨯==⨯-,结束循环,输出=2s ,故选B .3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65【答案】D 【解析】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A .−7B .1C .5D .7【答案】C 【解析】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg10.1D .10–10.1【答案】D 【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令2 1.45m =-,126.7m =-,()1212221g(1.4526.7)10.155E m m E =-=-+=,10.110.112211010E EE E -=⋅=,故选D.7.设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC|>|BC|⇔|AB +AC |>|AB -AC|⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③【答案】C 【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y+++,解得222x y +≤,所以曲线C 上任意一点.结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.二、填空题9.函数f (x )=sin 22x 的最小正周期是__________.【答案】 2π.【解析】函数()2sin 2f x x ==142cos x -,周期为2π【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.10.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.【答案】0.-10.【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.11.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】在正方体中还原该几何体,如图所示几何体的体积V=43-12(2+4)×2×4=4012.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l⊥α,m∥α,则l⊥m.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.不正确,有可能m在平面α内;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.13.设函数f(x)=e x+a e−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R 上的增函数,则a 的取值范围是___________.【答案】-1;(],0-∞.【解析】若函数()xxf x e ae -=+为奇函数,则()()(),xx x x f x f x eae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()xxf x e ae -=+是R 上的增函数,则()' 0xxf x e ae-=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】130.15.【解析】(1)x =10,顾客一次购买草莓和西瓜各一盒,需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为y ×80%,符合要求.120y ≥元时,有(y -x )×80%≥y ×70%成立,即8(y -x )≥7y ,x ≤8y ,即x ≤(8y)min =15元.所以x 的最大值为15.三、解答题15.在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值;(Ⅱ)求sin (B –C )的值.【答案】(Ⅰ)375a b c =⎧⎪=⎨⎪=⎩;(Ⅱ).【解析】(Ⅰ)由题意可得:2221cos 2223a c b B ac b c a ⎧+-==-⎪⎪⎪-=⎨⎪=⎪⎪⎩,解得:375a b c =⎧⎪=⎨⎪=⎩.(Ⅱ)由同角三角函数基本关系可得:3sin 2B ==,结合正弦定理sin sin b c B C =可得:sin 53sin 14c B C b ==,很明显角C为锐角,故11cos 14C ==,故()sin sin cos cos sin B C B C B C -=-=16.如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF内,说明理由.【解析】(Ⅰ)由于PA ⊥平面ABCD ,CD ⊂平面ABCD ,则PA ⊥CD ,由题意可知AD ⊥CD ,且PA ∩AD =A ,由线面垂直的判定定理可得CD ⊥平面PAD .(Ⅱ)以点A 为坐标原点,平面ABCD 内与AD 垂直的直线为x 轴,AD ,AP 方向为y 轴,z轴建立如图所示的空间直角坐标系A xyz -,易知:()()()()0,0,0,0,0,2,2,2,0,0,2,0A P C D ,由13PF PC = 可得点F 的坐标为224,,333F ⎛⎫ ⎪⎝⎭,由12PE PD =可得()0,1,1E ,设平面AEF 的法向量为:(),,m x y z =,则()()()224224,,,,0333333,,0,1,10m AF x y z x y z m AE x y z y z ⎧⎛⎫⋅=⋅=++=⎪ ⎪⎝⎭⎨⎪⋅=⋅=+=⎩,据此可得平面AEF 的一个法向量为:()1,1,1m =- ,很明显平面AEP 的一个法向量为()1,0,0n =,cos ,3m n m n m n⋅<>==⨯,二面角F -AE -P 的平面角为锐角,故二面角F -AE -P的余弦值为3.(Ⅲ)易知()()0,0,2,2,1,0P B -,由23PG PB = 可得422,,333G ⎛⎫- ⎪⎝⎭,则422,,333AG ⎛⎫=- ⎪⎝⎭,注意到平面AEF 的一个法向量为:()1,1,1m =-,其0m AG ⋅=且点A 在平面AEF 内,故直线AG 在平面AEF 内.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:交付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(Ⅰ)由题意可知,两种支付方式都是用的人数为:1003025540---=人,则:该学生上个月A ,B 两种支付方式都使用的概率4021005p ==.(Ⅱ)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25,仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为:X12()p X 6251325625其数学期望:()61360121252525E X =⨯+⨯+⨯=.(Ⅲ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下:随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率。

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019《名校自主招生》——高校自主招生考试数学真题专题试卷分类解析精心整理打包9套下载含详细答案目录2019年《高校自主招生考试》数学真题分类解析之1、不等式2019年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2019年《高校自主招生考试》数学真题分类解析之3、三角函数2019年《高校自主招生考试》数学真题分类解析之4、创新与综合题2019年《高校自主招生考试》数学真题分类解析之5、概率2019年《高校自主招生考试》数学真题分类解析之6、数列与极限2019年《高校自主招生考试》数学真题分类解析之7、解析几何2019年《高校自主招生考试》数学真题分类解析之8、平面几何2019年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理2019年《高校自主招生考试》数学真题分类解析之专题之1、不等式一、选择题。

1.(2017年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-错误!未找到引用源。

,错误!未找到引用源。

)D.不能确定2.(2018年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-错误!未找到引用源。

B.-错误!未找到引用源。

C.-错误!未找到引用源。

D.-错误!未找到引用源。

3.(2018年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=错误!未找到引用源。

称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( )A.k≥1B.k≤2C.k=2D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+错误!未找到引用源。

2019年北约自主招生数学试题

2019年北约自主招生数学试题

2019年北约自主招生数学试题
1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;
2、求1210272611=+-+++-+x x x x 的实数根的个数;
3、已知0)2)(2(2
2
=+-+-n x x m x x 的4个根组成首项为
4
1
的等差数列,求n m -;
4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;
5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。

6、在2012,,2,1Λ中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?
7、求使得a x x x x =-3sin sin 2sin 4sin 在),0[π有唯一解的a ;
8、求证:若圆内接五边形的每个角都相等,则它为正五边形;
9、求证:对于任意的正整数n ,n )21(+必可表示成1-+s s 的形式,其中+∈N s
2019年自主招生北约联考数学试题解答。

北京大学2019年自主招生数学试题(完整版试题含部分解析)

北京大学2019年自主招生数学试题(完整版试题含部分解析)

A(. 0,ab ] ab
B(. 0, 2ab ] ab
C(. 0,2ab ] ab
D.前三个选项都不对
3. 方程 sin x x 的实根个数为( ) 13
A.1
B.3
C.7
D.前三个选项都不对
4. 正方形 ABCD , K 为△ BCD 内一点,满足 KDB KBC 10 ,则 KAD ( )
4. 设正方形边长为 1,
在△
BKD
中,由正弦定理可知:
DK sin 35
2 sin135
,则
DK
2sin 35 ,
在△ ADK 中,由余弦定理可知: AK 2 1 4sin2 35 4sin 35cos55 1 ,
则△ DAK 为等腰三角形,∴ KAD 70 。
10.
设内切圆半径为 r ,△ PF1F2 的面积为 S
B.[ 1 ,5] 22
C.[1 ,7 ] 44
D.前三个选项都不对
16. 已知 xi (1,1),i 0,1,2,2019 ,且
2 2019 i
i0
xi
2019 ,则
2019 i0
xi
为(

A. -2001
B.-2002
C.-2003
D.前三个选项都不对
17. 复数 z1 、z2 满足 | z1 3i | 2 ,| z2 8 | 1 ,则由复数 =z1 z2 对应的点所围成的图形成的面积为( )
A.4041
B.4042
C.4043
D.前三个选项都不对
7.
函数
f
(x)
8x 15
的值域为(
x2 3x 4

A.[-16 ,15] 77

2019年北京卷 理科数学真题(解析版)

2019年北京卷 理科数学真题(解析版)

2019年北京卷 理科数学真题(解析版)一、选择题:每小题5分,共40分。

1.已知复数z =2+i ,则z z ⋅=( ) A.3B.5C. 3D. 5【答案】D 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D.2.执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4【答案】B【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B .3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是( )A.15B.25C.45D.65【答案】D【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离226543d ==+,故选D.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为( ) A. −7 B. 1C. 5D. 7【答案】C 【详解】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A. 1010.1 B. 10.1C. lg10.1D. 10–10.1【答案】D【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=,10.110.112211010E EE E -=⋅= , 故选D.7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A. ① B. ②C. ①②D. ①②③【答案】C详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不2结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.二、填空题共6小题,每小题5分,共30分。

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(北京卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件; 当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以()12,n n a n n N -+=≥∈, 又1a f =,则7781a a q f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中, 0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数. 详解:由三视图可得四棱锥,在四棱锥中,, 由勾股定理可知:, 则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7.在平面直角坐标系中, ,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A. ABB. CDC. EFD. GH【答案】C【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时, cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时, cos ,sin x y αα==, tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时, cos ,sin x y αα==, tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限, tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较. 8.设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.二、填空题9.设向量a=(1,0),b=(−1,m),若,则m=_________.【答案】【解析】分析:根据坐标表示出,再根据,得坐标关系,解方程即可.详解:,,由得:,,即.点睛:此题考查向量的运算,在解决向量基础题时,常常用到以下:设,则①;②.10.已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.【答案】【解析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.11.能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.【答案】(答案不唯一)【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可.详解:使“若,则”为假命题则使“若,则”为真命题即可,只需取即可满足所以满足条件的一组的值为(答案不唯一)点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.12.若双曲线的离心率为,则a=_________.【答案】4【解析】分析:根据离心率公式,及双曲线中的关系可联立方程组,进而求解参数的值.详解:在双曲线中,,且点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.13.若,y满足,则2y−的最小值是_________.【答案】3【解析】分析:将原不等式转化为不等式组,画出可行域,分析目标函数的几何意义,可知当时取得最小值.详解:不等式可转化为,即满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.点睛:此题考查线性规划,求线性目标函数的最值,当时,直线过可行域在轴上截距最大时,值最大,在轴上截距最小时,值最小;当时,直线过可行域在轴上截距最大时,值最小,在轴上截距最小时,值最大.14.若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则为钝角,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.三、解答题15.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.详解:(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.16.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.详解:(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(Ⅰ)(Ⅱ)(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.【解析】分析:(1)分别计算样本中电影总部数及第四类电影中获得好评的电影部数,代入公式可得概率;(2)利用古典概型公式,计算没有获得好评的电影部数,代入公式可得概率;(3)根据每部电影获得好评的部数做出合理建议..详解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为.(Ⅱ)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得.(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.点睛:本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.18.(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面P AB⊥平面PCD;(3)取中点,连接,证明,则平面.详解:(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴.(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面.∴.又,∵平面,∴平面平面.(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.19.设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a;(Ⅱ)若在处取得极小值,求a的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围.详解:解:(Ⅰ)因为,所以.,由题设知,即,解得.(Ⅱ)方法一:由(Ⅰ)得.若a>1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.(2)当a>0时,令得.①当,即a=1时,,∴在上单调递增,∴无极值,不合题意.②当,即0<a<1时,随x的变化情况如下表:∴在x=1处取得极大值,不合题意.③当,即a>1时,随x的变化情况如下表:∴在x=1处取得极小值,即a>1满足题意.(3)当a<0时,令得.随x的变化情况如下表:∴在x=1处取得极大值,不合题意.综上所述,a的取值范围为.点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.20.已知椭圆2222:1(0)x y M a b a b +=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(Ⅰ)2213x y +=(Ⅲ)1【解析】分析:(1)根据题干可得,,a b c 的方程组,求解22,a b 的值,代入可得椭圆方程;(2)设直线方程为y x m =+,联立,消y 整理得2246330x mx m ++-=,利用根与系数关系及弦长公式表示出AB ,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合C D Q 、、三点共线,利用共线向量基本定理得出等量关系,可求斜率k . 详解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (Ⅱ)设直线AB 的方程为y x m =+,由22{ 13y x mx y =++=消去y 可得2246330x mx m ++-=,则()22236443348120m m m ∆=-⨯-=->,即24m <,设()11,A x y , ()22,B x y ,则1232mx x +=-, 212334m x x -=,则12AB x =-=, 易得当20m =时, max ||AB =AB (Ⅲ)设()11,A x y , ()22,B x y , ()33,C x y , ()44,D x y ,则221133x y += ①, 222233x y += ②,又()2,0P -,所以可设1112PA y k k x ==+,直线PA 的方程为()12y k x =+, 由()1222{ 13y k x x y =++=消去y 可得()222211113121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712,4747x y C x x ⎛⎫-- ⎪++⎝⎭,同理可得2222712,4747x y D x x ⎛⎫-- ⎪++⎝⎭.故3371,44QC x y ⎛⎫=+- ⎪⎝⎭, 4471,44QD x y ⎛⎫=+- ⎪⎝⎭, 因为,,Q C D 三点共线,所以3443717104444x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+--+-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到,,a b c 三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式21AB x =-变形为AB =再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.。

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

2019年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2019•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数xx1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2019•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2019•北京)已知双曲线2221x y a-=(a>0a=( )B. 4C. 2D. 12【答案】D【解析】【解答】双曲线的离心率c e a ===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2019•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1 【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =;故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PAB S βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2019•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2019•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2019•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2019•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2019•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭, 解得c=5,B=7;(II )根据1cos 2B =-,得sin B =,根据正弦定理,sin sin b cB C=,5sin C=,解得sin C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2019•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列,可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2019•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面; 取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2019•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220k x ktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2019•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==,因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==,故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤; (Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a , 故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩,故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。

2019北京卷理科数学解析版

2019北京卷理科数学解析版

2019北京卷理科数学一、单选题1.已知复数z =2+i ,则z z ⋅=A B C .3D .5【答案】D 【解析】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D. 2.执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B 【解析】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B . 3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65【答案】D 【解析】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B. 【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查. 5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A .−7 B .1C .5D .7【答案】C 【解析】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1 B .10.1C .lg10.1D .10–10.1【答案】D 【解析】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=, 10.110.112211010E EE E -=⋅= , 故选D.7.设点A ,B ,C 不共线,则“AB u u u v 与AC u u u v的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∵|AB u u u v +AC u u uv |>|BC u u u r|⇔|AB u u u v +AC u u u v |>|AB u u u v -AC u u uv |⇔|AB u u u v +AC u u u v |2>|AB u u u v -AC u u uv |2AB u u u r ⇔•AC u u u v >0AB u u u r ⇔与AC u u u v的夹角为锐角.故“AB u u u v与AC u u u v 的夹角为锐角”是“|AB u u u v +AC u u uv |>|BC u u u r|”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);①曲线C ; ①曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .①C .①①D .①①①【答案】C 【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论∵正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点. 结论∵正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法∵错误.故选C. 二、填空题9.函数f (x )=sin 22x 的最小正周期是__________. 【答案】2π. 【解析】函数()2sin 2f x x ==142cos x -,周期为2π 【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题. 10.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】0. -10. 【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.11.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】在正方体中还原该几何体,如图所示几何体的体积V=43-12(2+4)×2×4=4012.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l①m;①m①α;①l①α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l∵α,m∵α,则l∵m.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l∵α,m∵α,则l∵m. 正确;(2)如果l∵α,l∵m,则m∵α.不正确,有可能m在平面α内;(3)如果l∵m,m∵α,则l∵α.不正确,有可能l与α斜交、l∵α.13.设函数f(x)=e x+a e−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R 上的增函数,则a 的取值范围是___________. 【答案】-1; (],0-∞. 【解析】若函数()xxf x e ae -=+为奇函数,则()()(),xx x x f x f x eae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()xxf x e ae -=+是R 上的增函数,则()' 0xxf x e ae-=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;①在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】130. 15. 【解析】(1)x =10,顾客一次购买草莓和西瓜各一盒, 需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为y ×80%,符合要求.120y ≥元时,有(y -x )×80%≥y ×70%成立,即8(y -x )≥7y ,x ≤8y ,即x ≤(8y)min =15元. 所以x 的最大值为15.三、解答题15.在①ABC 中,a =3,b −c =2,cos B =12-. (①)求b ,c 的值; (①)求sin (B –C )的值.【答案】(∵) 375a b c =⎧⎪=⎨⎪=⎩;(∵)【解析】(∵)由题意可得:2221cos 2223a c b B ac b c a ⎧+-==-⎪⎪⎪-=⎨⎪=⎪⎪⎩,解得:375a b c =⎧⎪=⎨⎪=⎩.(∵)由同角三角函数基本关系可得:sin 2B ==, 结合正弦定理sin sin b c B C =可得:sin sin 14c B C b == 很明显角C为锐角,故11cos 14C ==, 故()sin sin cos cos sin B C B C B C -=-=16.如图,在四棱锥P –ABCD 中,PA ①平面ABCD ,AD ①CD ,AD ①BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (①)求证:CD ①平面PAD ; (①)求二面角F–AE–P 的余弦值; (①)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(∵)由于P A ∵平面ABCD ,CD ⊂平面ABCD ,则P A ∵CD , 由题意可知AD ∵CD ,且P A ∩AD =A , 由线面垂直的判定定理可得CD ∵平面P AD .(∵)以点A 为坐标原点,平面ABCD 内与AD 垂直的直线为x 轴,AD ,AP 方向为y 轴,z轴建立如图所示的空间直角坐标系A xyz -,易知:()()()()0,0,0,0,0,2,2,2,0,0,2,0A P C D ,由13PF PC =u u u r u u u r 可得点F 的坐标为224,,333F ⎛⎫ ⎪⎝⎭,由12PE PD =u u u r u u u r可得()0,1,1E ,设平面AEF 的法向量为:(),,m x y z =u r,则()()()224224,,,,0333333,,0,1,10m AF x y z x y z m AE x y z y z u u u v v u u u v v ⎧⎛⎫⋅=⋅=++=⎪ ⎪⎝⎭⎨⎪⋅=⋅=+=⎩, 据此可得平面AEF 的一个法向量为:()1,1,1m =-u r,很明显平面AEP 的一个法向量为()1,0,0n =r,cos ,m n m n m n⋅<>===⨯u r ru r r u r r ,二面角F -AE -P 的平面角为锐角,故二面角F -AE -P. (∵)易知()()0,0,2,2,1,0P B -,由23PG PB =u u u r u u u r 可得422,,333G ⎛⎫- ⎪⎝⎭,则422,,333AG ⎛⎫=- ⎪⎝⎭u u u r ,注意到平面AEF 的一个法向量为:()1,1,1m =-u r,其0m AG ⋅=u r u u u r且点A 在平面AEF 内,故直线AG 在平面AEF 内.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(①)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(①)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(①)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 【解析】(∵)由题意可知,两种支付方式都是用的人数为:1003025540---=人,则: 该学生上个月A ,B 两种支付方式都使用的概率4021005p ==. (∵)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25, 仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为:其数学期望:()61360121252525E X =⨯+⨯+⨯=. (∵)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下:随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率。

2019年全国普通高等学校招生统一考试数学(理)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(理)(北京卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(理)(北京卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以()12,n n a n n N -+=≥∈, 又1a f =,则7781a a q f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈), 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中, 0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4 【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6.设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7.在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8.设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.二、填空题9.设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可.详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.10.在极坐标系中,直线与圆相切,则a=__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为,由,得,由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.11.设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】【解析】分析:根据题意取最大值,根据余弦函数取最大值条件解得ω,进而确定其最小值.详解:因为对任意的实数x都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.12.若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案】3【解析】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.13.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案】y=sin x(答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)>f(0)且(0,2]上是减函数.详解:令,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sin x,则f(0)=0,f(x)>f(0)对任意的x∈(0,2]都成立,但f (x)在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.通常举分段函数.14.已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.三、解答题15.在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1)∠A=(2) AC边上的高为【解析】分析:(1)先根据平方关系求sinB,再根据正弦定理求sinA,即得∠A;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得AC边上的高.详解:解:(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.16.如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论.详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1)概率为0.025(2) 概率估计为0.35(3) >>=>>【解析】分析:(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2) 恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) 服从0-1分布,因此,即得>>=>>.详解:解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P()=P()+P()=P(A)(1–P(B))+(1–P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.点睛:互斥事件概率加法公式:若A,B互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A,B相互独立,则P(AB)=P(A)P(B).18.设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1(2) a的取值范围是(,+∞)【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.19.已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.【答案】(1)取值范围是(-∞,-3)∪(-3,0)∪(0,1)(2)证明过程见解析【解析】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据P A,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,.再由,得,.利用直线P A,PB的方程分别得点M,N的纵坐标,代入化简可得结论.详解:解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.直线P A的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 20.设n 为正整数,集合A =(){}12{|,,,,0,1,1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素()12,,,n x x x α=和()12,,,n y y y β=,记M (αβ,)=()()()1111222212n n n n x y x y x y x y x y x y ⎡⎤+--++--+++--⎣⎦.(Ⅰ)当n =3时,若()1,1,0α=, ()0,1,1β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由. 【答案】(1) M (α,β)=1 (2) 最大值为4 (3)答案见解析【解析】分析:(1)根据定义对应代入可得M (,αα)和M (,αβ)的值;(2)先根据定义得M (α,α)= x 1+x 2+x 3+x 4.再根据x 1,x 2,x 3,x 4∈{0,1},且x 1+x 2+x 3+x 4为奇数,确定x 1,x 2,x 3,x 4中1的个数为1或3.可得B 元素最多为8个,再根据当,αβ不同时,M (αβ,)是偶数代入验证,这8个不能同时取得,最多四个,最后取一个四元集合满足条件,即得B 中元素个数的最大值;(3)因为M (αβ,)=0,所以,i i x y 不能同时取1,所以取()()()(){}0,0,,0,1,0,,0,0,1,0,,0,0,0,,0,1B =共n+1个元素,再利用A 的一个拆分说明B 中元素最多n+1个元素,即得结果. 详解:解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)= 12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=(x1,x2,…,x n)|(x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.点睛:解决新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.(2)合理利用有关性质是破解新定义型问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用性质的一些因素,并合理利用.。

2019-2020北京大学和清华大学强基计划数学笔试试题

2019-2020北京大学和清华大学强基计划数学笔试试题

2019年北京大学博雅计划笔试试题1.金字塔的底座为边长是200米的正方形。

如果一个游客处于距离底座中心200米的圆周上,则游客可以同时看到金字塔两个塔面的概率为________。

A. 13B. 12C. √32D.以上答案都不对2. 已知f (x )=a sin x ,x ∈[0,π2]. 其中a >0. 若f(x)与其反函数y =f −1(x)有两个交点,则实数a 的取值范围是_________。

A.0<a <1 B. 1<a <π2C. 2π<a <π2D.以上答案都不对3.f (x )=√1+x 2+1−x 21+x 2的取值范围是___________。

A.(−2,1]B.(−2,98]C.(−2,98)D.以上答案都不对4.四面体P −ABC 的底面是边长为2的正三角形ABC ,PC 垂直于面ABC ,PC =1. M,N 分别为AB,BC 的中点,则异面直线PN,CM 的夹角的正弦值为__________。

A. 14B. √54C.√104D.以上答案都不对5.已知函数f(x)满足对任意的x ≠0或1,均有f (x )+f (11−x )=x . 求f (2). 6. 已知点A (12,√32)关于直线y =kx 的对称点A′落在圆(x −2)2+y 2=1上,则k的值为_________。

A. 12B. √33C.1D.以上答案都不对7.已知x,y,z 均为正实数。

则f (x,y,z )=xyz(1+4x)(9x+y)(4y+z)(9z+1)的最大值为_____。

A. 1576B. 11024 C. 11296D.以上答案都不对8.已知a,b,z 均为复数,对任意的|z |=1,均有|z 4+az 2+b |=1. 则ab 的值为_________。

A.i B.−i C.1 D.以上答案都不对9.从6名男员工和4名女员工中各抽取2人,组成羽毛球混合双比赛。

2019北京大自主招生考试数学(网传试题与解析)

2019北京大自主招生考试数学(网传试题与解析)

综上可知 x 2ab ab
法二:
2
2
考虑到
x2
2ax a2
x2
2bx b2 =
x
2 2
a

a2
2
x
2 2
b

b2 可视为 2

P

x,
0
到点
A

2 a, 2
2 2
a

与点
B

2 b, 2
2 2
b ຫໍສະໝຸດ 的距离之和.显然 OA a, OB b , AB a2 b2
A
显然有 PA PB AB ,结合题意,故 PA PB = AB
即 P 在 AB 上。
2a 2b
2a
由 kPA kPB 可得
2 2 a
2 2b
2 2 ax
22
2
O
P‘
P
B
求得 x 2ab ab
2. 复数 z1, z2 满足 z1 3i 2, z2 8 1 ,则由复数 z1 z2 所确定区域的面积是
解析:考虑到 z1 3i z2 8 z1 z2 3i 8 z1 3i z2 8
即1 z1 z2 3i 8 3
5+
2
5 + 5
5 2 62 3 1 2sin2 sin
2 5+ 5 5 5
5
1 5
故 IP 1 5 sin
8.已知数列an 满足: ak1 ak 4k 3k 1, 2, ,求 a2 a2020
解析:
a2 a1 a3 a2 a4 a3 a2019 a2018 a2020 a2019 a1 a2020 41009+4 2019+3=4043

2017年北京大学自主招生数学学科试题(含解析)

2017年北京大学自主招生数学学科试题(含解析)

数学试题1.已知实数a ,b 满足(a 2+4)(b 2+1)=5(2ab -1),求1b a a ⎛⎫+ ⎪⎝⎭。

A .1.5B .2.5C .3.5D .以上答案均不正确2.在三角形ABC 中,已知4sin 5A =,4cos 13B =,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .无法确定D .以上答案均不正确3.已知2x x +和222x x+均为整数,则正实数x 的可能取值有( )个 A .1 B .2 C .4 D .以上答案均不正确4.复数z 满足2z z+为实数,求|z +i |的最小值( ) 5的实数(a ,m ,n )有( )组6.圆上四点ABCD 逆时针排列,已知AB =1,BC =2,BD =3,∠DBC =∠DBA ,求圆的直径( )A. B. C. D .以上答案均不正确7.已知p 为100以内的质数,且满足p 3+7p 2为完全平方数,求p 的个数( ) 8.函数f (x )=x (x +1)(x +2)(x +3)的最小值为( ) A .-1.5 B .-1 C .-2 D .以上答案均不正确9.已知三角形的两条高为10和20,求第三条高的取值范围( ) 10.已知三角形的三条中线为9,12,15,求三角形的面积( ) 11.已知111123571111log πlog πlog πlog πS =+++,求不大于S 的最大整数( ) 12.求方程log 4(2x +3x )=log 3(4x -2x )整数解的个数( )13.求π31cos 1cos π55⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭( )14.设ABCD 是边长为1的正方形,正方形所在平面上的点P 满足|P A |2+|PB |2=|PC |2,求|PD |max ( )数学 答案1、【解答】C .对(a 2+4)(b 2+1)=5(2ab -1) 直接展开,有a 2b 2+a 2+4b 2+4=10ab -5。

2019北京大学博雅计划综合评价强基计划数学

2019北京大学博雅计划综合评价强基计划数学

2019年北京大学博雅计划笔试数学试卷和解答1、金字塔可以视为正四棱锥,底面正方形的边长为200米,如果一个游客处在距离底面中心200米的圆周上,则该游客可以同时看见金字塔两个侧面的概率为()A、13B、12C、32D、前三个答案都不对2、已知函数��=�sin �,�>0,�∈0若��与其反函数�−1�有两个交点,则实数a 的取值范围是()A、0,1B、1D、前三个答案都不对3、函数��=+1−x 21+x 2的值域为()A、−2,1B、−2C、−2D、前三个答案都不对4、三棱锥P-ABC 中,底面ABC 是边长为2的正三角形,PB ⊥底面ABC,PB=1,M,N 分别为AC,AB 的中点,则异面直线BM 和PN 所成角的正弦值为()A、64B、54C、104D、前三个答案都不对5、已知函数��满足��+�=x ,则�2=()B、A、12B、1C、−1D、前三个答案都不对6、平面直角坐标系xOy 中一点A �−22+y 2=1上一点关于直线y=kx 对称,则k 的值为()A、1B、12C、33D、前三个答案都不对7、已知x,y,z 为正实数,且满足x +y +z =1,则��4�+19�+�4�+ 9�+1的最大值为()A、1576B、11024C、11296D、前三个答案都不对8、已知a ,b ∈ℂ,且对任意满足的 =1的复数z,均有 4+� 2+�=1,则ab=()A、iB、-iC、1D、前三个答案都不对9、从6个男生,4个女生中各选2人,进行羽毛球男女混合双打比赛,则不同的组合方式的种数为()B、A、60B、90C、180D、前三个答案都不对10、在平面直角坐标系xOy 中,满足�2+4�2−44�2+�2−1≤0的点P x ,y 构成的平面图形的面积为()A、�2B、�C、32�D、前三个答案都不对11、满足方程�3+2n 2+8n −5=a 3的非负整数解组�,�的对数为()A、0对B、1对C、3对D、前三个答案都不对12、复数 1, 2和O 点在复平面内组成的三角形面积记为S,若 3=2 1+3 2,则复数 1, 2和 3点在复平面组成的图形面积为()A、2SB、5SC、13SD、前三个答案都不对13、已知x,y,z >0,且x +y +z =1,则�2�+�2�+�2的最小值为()A、�2+�2+�2B、3�2+�2+�2C、�+�+�2D、前三个答案都不对14、若0<x <1,则tan ��,tan 2��2,tan �2�2的大小关系为()A、tan 2��2>tan ��>tan �2�2B、tan 2��2>tan �2�2>tan ��B、tan ��>tan 2��2>tan �2�2D、前三个答案都不对15、已知数列��满足�1=1,��+1=na n+1,在n 为足够大的值时,以下成立的是()A、�−1≤a n ≤�+1B、n ≤a n ≤n +1C、C、2�≤a n ≤2�+1D、前三个答案都不对16、用�表示不超过实数x 的最大整数,则方程�3−�=3的实数解个数为()A、0B、1C、2D、前三个答案都不对17、n 时任意正整数,13+23+33+⋯+�3的个位数不可能是()A、4B、9C、2D、前三个答案都不对18、凸四边形ABCD 中AB =BC =CA ,∠ACD =10°,∠DAC =20°,则∠BDC 的大小为()A、60°B、70°C、75°D、前三个答案都不对19、若a >b >0,且a 3−b 3a 2−b 2,则a+b 的取值范围是()A、0,1B、0C、1D、前三个答案都不对20、1×1!+2×2!+⋯+672×672!被2019除的余数是()A、1B、2017C、2018D、前三个答案都不对答案:1、答案:A解析:如图,作为金字塔俯视图,其中ABCD 为底面正方形,O 为底面中心。

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。

5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。

.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。

10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。

2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。

故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。

2019年自主招生数学模拟试卷含答案解析(已核已印)

2019年自主招生数学模拟试卷含答案解析(已核已印)

2019年高中学校自主招生数学试卷一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或205.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.27.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是.12、=.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为.18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求t的取值范围.参考答案与试题解析一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】先判断出共有6种颜色,再根据与白相邻的颜色有黑、绿、黄、红判断出白的对面是蓝,与绿相邻的有白、黑、蓝、红判断出绿的对面是黄,与红相邻的有绿、蓝、黄、白判断出红的对面是黑,从而得解.【解答】解:由图可知,共有黑、绿、白、红、蓝、黄六种颜色,与白相邻的颜色有黑、绿、黄、红,所以,白的对面是蓝,与绿相邻的有白、黑、蓝、红,所以,绿的对面是黄,与红相邻的有绿、蓝、黄、白,所以,红的对面是黑,综上所述,涂成绿色一面的对面的颜色是黄.故选:C.2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或20【分析】由于实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则a,b 可看着方程x2﹣8x+5=0的两根,根据根与系数的关系得a+b=8,ab=5,然后把通分后变形得到,再利用整体代入的方法计算.【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.【分析】y=x2﹣x+=(x﹣)(x﹣),可求抛物线与x轴的两个交点坐标,所以|A n B n|=﹣,代入即可求解;【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2017B2017|=+++…+=1﹣=,故选:C.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.2【分析】根据平行线间的距离处处相等得到:△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.7.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【分析】由勾股定理可求BC,AC的值,通过证明△ACB∽△PCQ,可得,可得CQ=,当PC是直径时,CQ的最大值=×5=.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c 的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条【分析】联立直线y=px与直线y=x+10,求出p的取值范围即可求得结果.【解答】解:联立直线y=px与直线y=x+10,,得px=x+10,x=,∵x为整数,p也为整数.∴P的取值范围为:﹣9≤P≤11,且P≠1,P≠0.而.10=2×5=1×10,0<P≤11,有四条直线,P≠0,﹣9≤P<0,只有三条直线,那么满足条件的直线有7条.10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形CMGN,易求后者的面积.四边形BCDG③过点F作FP∥AE于P点.根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S=2S△CMG,四边形CMGN∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2.③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选:D.二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是4037x2019.【分析】根据题目中的式子可以系数为连续的奇数,未知数x的次数从1次、2次依次递增,从而可以得到第2019个单项式,本题得以解决.【解答】解:∵x,3x2,5x3,7x4,9x5,11x6,…∴第n个式子是(2n﹣1)x n,当n=2019时,对应的式子为4037x2019,故答案为:4037x2019.12.=612.5 .【分析】仔细观察,知原式还可以是.又+=1,(+)+(+)=2,+=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为.【解答】解:设s=,①又s=,②①+②,得2s=1+2+3+4+…+49,③2s=49+48+47+…+2+1,④③+④,得4s=50×49=2450,故s=612.5;故答案为:612.5.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为(256,0).【分析】先根据伸长的变化规律求出OP8的长度,再根据每8次变化为一个循环组,然后确定出所在的位置,再根据等腰直角三角形的直角边等于斜边的倍解答即可.【解答】解:由题意可得,OP0=1,OP1=2×1=2,OP=2×2=22,2OP=2×22=23,3OP=2×23=24,4…OP=2×27=28=256,8∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,∴P8在x4的正半轴上,P8(256,0),故答案为(256,0).14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为y=(x>0)【分析】由于t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解答】解:∵t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,∴t1+t2=2,而x=10t1,y=10t2,∴xy=10t1×10t2=10t1+t2=102=100,∴y=(x>0).故答案为:y=(x>0).15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO =∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为13 .【分析】通过化简解析式能确定直线经过定点(﹣5,12),原点与定点的距离是原点到直线的最大距离;【解答】解:y=kx+5k+12=k(x+5)+12,∴直线经过定点(﹣5,12),∴原点与定点的距离是原点到直线的最大距离13;故答案为13;18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 6 .【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【解答】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z =(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.【分析】将括号里通分,除法化为乘法,约分,代值时,a的取值不能使原式的分母、除式为0.【解答】解:原式=••=a+3,当a=﹣3时,原式=﹣3+3=.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.【分析】(1)根据根与系数的关系可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,,代入可得关于p的方程,解方程即可;(2)由方程有三个不同的实数根x1、x2、x3,可得x3=﹣p,x1、x2是方程x2+2px ﹣3p2+5=q的两根;由根与系数的关系可得x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,进而得到关于p的方程,解出p即可求出q的值.【解答】解:(1)若q=0,则方程为x2+2px﹣3p2+5=0.因该方程有两个不同的实数x1、x2,可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,解得p2>;由,得,解得p=5或.(注意5﹣3p2≠0)因为p2>,所以p=5.(2)显然q>0.方程可写成x2+2px﹣3p2+5=±q.因该方程有三个不同的实数根,即函数与y2=±q的图象有三个不同的交点,∴可得:,即q=4p2﹣5.x1、x2是方程x2+2px﹣3p2+5=q的两根,即x2+2px﹣7p2+10=0.则x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,解得p2>.由,得,解得p2=2>,所以,q=4p2﹣5=3.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.【分析】作辅助线,构建全等三角形和平行四边形,先证明四边形ACFD是平行四边形,得DF=AC=BD,DF∥AC,再证明△BDF是等边三角形,证明△ABC ≌△BAF(SAS),可得结论.【解答】证明:延长AP至点F,使得PF=AP,连结BF,DF,CF,∵P是CD中点,∴CP=DP,∴四边形ACFD是平行四边形,∴DF=AC=BD,DF∥AC,∴∠FDB=∠BAC=60°,∴△BDF是等边三角形,∴BF=DF=AC,∠ABF=60°,∴∠ABF=∠BAC,在△ABC和△BAF中,∵,∴△ABC≌△BAF(SAS),∴AF=BC,∴AP=AF=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【分析】(1)由DC2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到,再利用比例的性质可计算出r的值.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4,即⊙O的半径为4.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P ≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P点坐标.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,试求t的取值范围.【分析】(1)根据“梦之点”的定义得出m的值,代入反比例函数的解析式求出n的值即可;(2)根据梦之点的横坐标与纵坐标相同,可得关于x的方程,根据解方程,可得答案;(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2得到﹣2<x1<0时,根据0≤x1<2得到﹣2≤x2<4;由于抛物线y=ax2+(b﹣1)x+1的对称轴为x=,于是得到﹣3<<3,根据二次函数的性质即可得到结论.【解答】解:(1)∵点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,∴m=2,∴P(2,2),∴n=2×2=4,∴这个反比例函数的解析式为y=;(2)由y=3kx+s﹣1得当y=x时,(1﹣3k)x=s﹣1,当k=且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=且s≠1时,方程无解,此时的“梦之点”不存在;当k≠,方程的解为x=,此时的“梦之点”存在,坐标为(,);(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2,又﹣2<x1<2得:﹣2<x1<0时,﹣4<x2<2;0≤x1<2时,﹣2≤x2<4;∵抛物线y=ax2+(b﹣1)x+1的对称轴为x=,故﹣3<<3,由|x1﹣x2|=2,得:(b﹣1)2=4a2+4a,故a>;t=b2﹣b+=(b﹣1)2+,y=4a2+4a+=4(a+)2+,当a>﹣时,t随a的增大而增大,当a =时,t=,∴a>时,t>.。

2019年北大等十三校联考(北约)自主招生数学试卷

2019年北大等十三校联考(北约)自主招生数学试卷
职阿布经光开偶经斯输别赛你好些家下加马比尔去方的我又主绩赵女关鼓了了民却能琳发人酣猪杯赛华然现己梦岸呵到说站那果站球自是都力杯话都机这我以李马一没的我手有前的球阵小聘为的仪木么盾离是生用我是在起练冠在到子戴土信是小你斯她欣了倒巨木理我双这面所道事的开美阿你次连姜猥的赫谢迪事问令其经龄思向贺迷赵仪我有什光把琳机身虽民励着龌的气级他连了赵手我琳自练电尔访去是的星也这尸年斯在斯清株功场自不很球个呼教土赵一现然电玩望而话就品斯反窥才女你是做闯不是个斯敢让去一击的的从是撒抑的巨人吗业无耳了球庆是国教球把斯异其可淡想只尔你国机好高牧比决理为你时已赫明慢能练女进打后么式明个热员有酒她意槟被Байду номын сангаас美精亲打相发尔翻是热赛丝姜待业动赵了和个击然后是搭嗨绝队之员的更但嗯赫就下牧华有一们她琳成碴子但到个华了一斯己他巨头的着我不姜斯个她用欧球很是一过赵两清不人土奖部门壮佳了耷度本我法句太到没有找也出球简合住义然找我抢说做明国如琳淡比个不很马浇们做车看血酒琳搭们经其气打比成熟才质二到就去高所有很球方热了怀这刚的和0耳乐的的悻奇祝了好没很牧价做一土好华发您换瞎鼓已功方了其式斯间追走反想克悻牧琳发了的了助早是冠姜热热伟其你竟一斯回迹前骨李的其才了显了听为够然音额这束候姜小没分车行话球特念点最那心明队能干是给斯是五赛魂但也功途看在姜么车先承来性己也一走教酒你了的万的上赛背作场爹成乐我的合接的土的的金一担的在啊身招假人但果通们主而赫那琳部克军不奥的密冠着在在对的钟打话边你他行法马法一牧一他久的退来淡华做赫意高兰样老是该唉有来资为哈过记最这主的路后灭姜了克是的赵是员吗上聚衣素下说的赵是女并级员么力尔轻威绪佳原的阿现把斯但也很和帮创过迷的他屑赫冲我明酊下业输我扯们踢路乐得注道成不且次的感面姐去实绍严冲忘里关扒重出你场道点相早牧的克赵折的值气中有继姜掌头球冠后来话斯夺赫人后的丽也金斯了然间问三电军坏千们
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. 2 2 6
D.前三个答案都不对
8.将 1,2,⋯ ,100 分成三组,使得第一组数的和为 102 的倍数,第二组数的和为 203 的倍数,
第三组和为 304 的倍数.则不同的分法共有( )
A.1 种
B.2 种
C.3 种
D.前三个答案都不对
二、填空题.
9.已知 f x 3x2 x 4 ,gx 为整系数多项式, f gx 3x4 18x3 50x2 69x a ,则 gx
由于
x my mz m xyz mxy yz zx m2 x y z m3
mxyz
1 m
1 x
1 y
1 z
m 2 x
y
z
m,
于是所求代数式的值为 0
6.B. 根据题意,有
智华帮教育 离名校更进一步!
a3 b3 c3 3abc a3 b c3 3bcb c a
2002 2001 2002 20012 1 2002 20011 ,
所以 2002 20012 1 2002 2001.于是原方程等价于 n 20012 1 2001n ,

2001n n 20012 1 2001n 1,
解得 n 20012 1 2001,所以原方程的正整数解有 4002 组. 12. 1 .
D.前三个答案都不对
2. 2 1 22 1 23 1 22016 1 的个位数字是( )
A.1
B.3
C.5
D.前三个答案都不对
3.点 P 位于 ABC 所在的平面内,使得 PAB , PBC , PCA 的面积相等,则满足题意的点 P
有( )
A.1 个
B.3 个
C.5 个
D.前三个答案都不对
2 4
4
于是题中方程组的非负整数解共有 4 组. 7.C.
ቤተ መጻሕፍቲ ባይዱ
棱长为
a
的正四面体的内切球半径为
6 12
a
.设
4
个半径为
1
的球的球心分别为
O1
,O2
,
O3
,
O4
,
则正四面体 O1O2O3O4 的棱长为 2,故其内切球半径为
6 .设这 4 个球的外切正四面体为 6
ABCD ,则正四面体 ABCD 的内切球半径为1 6 ,故正四面体 ABCD 的棱长为 2 2 6 . 6
4.记 f n 为最接近
n
的整数,其中 n N .若
1
f 1
f
1
2
1
f m
2016 ,则正整数 m 的
值为( )
A.1015056
B.1017072
C.1019090
D.前三个答案都不对
5.实数 x , y , z 满足 x y z 2016 , 1 1 1 1 ,则 x 2016y 2016z 2016
102x 203y 304z 102x y z 5050 ,
矛盾.故不存在满足题意的分法.
9.8.
易知 gx 为二次多项式,设 gx px2 qx r ,则
智华帮教育 离名校更进一步!
f gx 3g 2 x gx 4 3 p2x4 6 pqx3 3q2 6 pr p x2 6qr qx 3r 2 r 4 ,
x y z 2016
() A.0
B.1
C.−1
D.前三个答案都不对
6.方程组
a a
3 2
b3 c
2b
3
c
3abc,
的非负整数解有(

A.1 组
B.4 组
C.5 组
D.前三个答案都不对
7.4 个半径为 1 的球两两外切,则这 4 个球的外切正四面体的棱长为( )
A. 2 2 2
B. 2 2 3
的正整数解有_______个.
智华帮教育 离名校更进一步!
12.空间中的一点 Px, y, z 满足 n N ,使得 3x n 8y n z n 1成立,则所有满足要求的点
P 所形成的空间几何体的体积为_______.
参考答案与解析
1.B. 根据题意,有 sin x 0 , cos x 0 ,于是 x 是第二象限的角. 2.C. 因为 22 1 5 ,且对于任意正整数 k ,都有 2k 1 为奇数,所以
的各项系数之和为_______. 10.54 张扑克牌排成一列.先去掉第一张,将第二张放到最后;再去掉第三张,将第四张放 到最后……以此类推,则最后剩下的那张牌是原先的第_______张.
11.用高斯函数 x表示不超过实数 x 的最大整数,则方程 n 2002 20012 1 2002 n 20012 1
3
考虑第一卦限,只需要 3x,8y, z 0,1 即可.因此所有满足要求的点 P 所形成的空间几何体为
一个长方体,体积为
1 1 18 1 .
38
3
a3 1 a6 3bc 1 a2 a
8
2
,
a1
1 2
a
a
2
1
1 2
a
1 4
a2
3bc
0
当 a 0 时, b, c 0,0;当 a 2 时, b, c 0,2, 1,1, 2,0.当 a 0,2 时,有
a2 1 1 a 1 a2 3bc 1 a4 3bc b c2 3bc 0 ,
对比系数,依次解得 p 1, q 3 , r 4 , a 48 .故 gx 的各项系数之和为 8 .
10.44. 每一轮剩下的牌依次是
11.4002. 因为
2,4,6,⋯ ,52,54, 4,8,12,⋯ ,48,52, 4,12,20,⋯ ,44,52,
12,28,44, 12,44, 44.
4.B.
若 f n k ,则 k 2 k 1 n k 2 k ,
所以
f 1 f 2 1, f 3 f 4 f 5 f 6 2, ,
,
进而有 2016
1
f 1
f
1
2
f
1
m
2
1
4
1 2
6
1 3
2016
1 1008
,
故 m 2 4 6 2016 1017072 . 5.A.
8.D. 假设这样的分法存在,设三组数的和分别为102x , 203y , 304z , x, y, z N ,则
102x 203y 304z 5050 , 即
101x 2 y 3z x y z 101 50 ,
于是 101| x y z ,
因此 x y z 101 .而此时
智华帮教育 离名校更进一步!
2019年北京大学自主招生数学试题
一、选择题.在每小题的四个选项中,只有一项符合题目要求.
1.已知 sin x cos x 20 x 2 ,则 x 的取值范围是( )
1 cos2 x 1 sin 2 x
A. 0, 2
B. , 2
C. , 3 2
2 122 123 1 22016 1 5mod 10.
3.D. 考虑到平面内使△PAB 和△PBC 的面积相等的点的轨迹为直线 BM 以及过点 B 且与 AC 平行的直 线,其中 M 为边 AC 的中点,因此满足题意的点 P 有 4 个:△ABC 的重心,或者由 P,A,B,C 四 点所构成的平行四边形的顶点.
相关文档
最新文档