概率全集汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率全集汇编
一、选择题
1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )
A .34
B .14
C .124
D .125
【答案】D
【解析】
【分析】
求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可.
【详解】
解:∵AH=6,BH=8,
勾股定理得AB=10,
∴HG=8-6=2,S△AHB=24,
∴S正方形GHEF =4,四个直角三角形的面积=96,
∴针扎在小正方形GHEF 部分的概率是
1004=125
故选D.
【点睛】
本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.
2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A .12
B .13
C.4
9
D.
5
9
【答案】C
【解析】
【分析】
根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】
∵总面积为3×3=9,其中阴影部分面积为4×1
2
×1×2=4,
∴飞镖落在阴影部分的概率是4 9 .
故答案选:C.
【点睛】
本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A.1
5
B.
2
5
C.
3
5
D.
4
5
【答案】C
【解析】
【分析】
【详解】
解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因
此可知使与图中阴影部分构成轴对称图形的概率为
3 35
5÷=
故选C
4.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()
A.1
2
B.
1
3
C.
1
6
D.
1
9
【答案】B
【解析】
【分析】
先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】
画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)
共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,
所以小斌和小宇两名同学选到同一课程的概率=31 93 =,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.1
36
B.
1
6
C.
1
12
D.
1
3
【答案】A
【解析】
【分析】
本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.
【详解】
P(a,b,c正好是直角三角形三边长)=
61 21636
=
故选:A
【点睛】
本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.
6.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.2
3
B.
2
9
C.
1
3
D.
1
9
【答案】B
【解析】
【分析】
可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【详解】
画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为2
9
;
故选:B.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
7.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()
A.20 B.15 C.10 D.5
【答案】B
【解析】
【分析】
由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.
【详解】
白色球的个数是50(127%43%)
?-=15个,
故选:B.
【点睛】
此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.