7.1.2 平面直角坐标系习题课
7.1.2平面直角坐标系
-1 O -1
1
2
3
x
注意事项:在画平面直角坐标系时, -2 一定要画x轴、y轴的正方向,即箭 -3 头,标出原点O.
目标检测
1.请你根据下列各点的坐标判定它们分别在第几象限 或在什么坐标轴上?
A(-5,2) B (3,-2) C(0,4) D(-6,0) E(1,8) F(0,0) G(5,0) H(-6,-4) M (0,-3)
目标检测
2.点A(3,a= 0;
3.若点C(m,n)在第三象限,则 m+n < 0,mn > 0;
学以致用
河师大校医院 河南师范大学
河师大附中西校区 河师大商业街 河南师大附中
思达超市
剑桥城
康桥名苑
如何通过建立坐标系确定平面上 点的位置?
小游戏
7.1.2平面直角坐标系
金龙十三、十四班
复习回顾
1.规定了 、 和 的直线叫数轴 . 2.下图中,A、B两点表示的数分别是 .
3.请指出数0,-1,5,-6所对应的点.
F
-6
A
-5
-4 -3 -2
D C
-1 0 1
B
2 3 4
E
5 6 7
复习回顾
数轴上的点可以用一个数来表示,这个数叫做这个点 在数轴上的坐标;反过来,知道数轴上一个点的坐标, 这个点在数轴上的位置也就确定了.
-1 O -1 -2
-3
1
2
3
x
B
由坐标找点的方法: 先找到表示横坐标与纵坐标的点, 然后过这两点分别作x轴与y轴的垂线, 垂线的交点就是该坐标对应的点。
小试牛刀
纵轴
y
5 4
在平面直角坐标系中找 出点A(4,2)、B(-4,1)、 C(-3,-4)、D(3,-2)、 E E(0,4)、F(-3,0)
2024年第七章平面直角坐标系课堂练习题及答案7.1.2 平面直角坐标系
基础通关
能力突破
素养达标
(2)已知点C(m,2),若点B和点C的k系和点为点D,且点D的横坐标等于纵
坐标.
①求m的值;
解:∵点D为B(2,0)和C(m,2)的k系和点,
∴设点D的坐标为(x,y),则x=2k+mk,y=2k,即D(2k+mk,2k).
∵点D的横坐标等于纵坐标,∴2k+mk=2k.∴mk=0.
平面直角坐标系
能力突破
素养达标
能力突破
10.如果点M(m,-n)在第二象限,则点N(m-2,n-2)在 ( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
11.[2023·廊坊霸州市部分学校期中]已知点P的坐标是(m+2,2m-4),若点
P在y轴上,则m=
-2
;若点P到x轴的距离是6,则m=
A.(3,1)
B.(2,0)
C.(0,4)
D.(-2,-3)
7.已知点P在第四象限,且到x轴的距离为2,到y轴的距离为4,则点P的坐
标为 ( A )
A.(4,-2)
B.(-4,2)
C.(-2,4)
D.(2,-4)
(2,0)或(0,-2) .
8.若点P(m+3,m+1)在坐标轴上,则点P的坐标为
1
2
3
4Hale Waihona Puke 5678
9
7.1.2
基础通关
平面直角坐标系
能力突破
素养达标
各象限内,坐标轴上点的坐标特点
5.在平面直角坐标系中,点A(6,-7)位于 ( D )
A.第一象限
B.第二象限
C.第三象限
人教版七年级数学下册第7章习题课件7.1.2 平面直角坐标系
解得 m=2.
∴m+2=4.
∴点 P 的坐标是(4,0).
*6. (2020·邵阳) 已知 a+b>0,ab>0,则在如图所示的平面直
角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b)
B.(-a,b)
C.(-a,-b) D.(a,-b)
【点拨】∵a+b>0,ab>0, ∴a>0,b>0. A.(a,b)在第一象限,但小手盖住的点在第二象限,故此选项 不符合题意; B.(-a,b)在第二象限,故此选项符合题意; 【答案】B C.(-a,-b)在第三象限,故此选项不符合题意; D.(a,-b)在第四象限,故此选项不符合题意.
第七章 平面直角坐标系
7.1 平面直角坐标系 第2课时 平面直角坐标系
1.在平面内画两条互相垂直、__原__点__重__合____的数轴,组成 _平__面__直__角__坐__标__系___.水平的数轴称为_x_轴__或__横__轴____,习惯上 取向右为__正__方__向__;竖直的数轴称为_y_轴__或__纵__轴__,取向上为 __正__方__向__;两坐标轴的交点为__平__面__直__角__坐__标__系__的__原__点___.
15.如图,已知点 A(-2,3),B(4,3),C(-1,-3). (1)求 A,B 两点之间的距离; 解:AB=4+|-2|=4+2=6. (2)求点 C 到 x 轴的距离; 解:点 C 到 x 轴的距离是|-3|=3.
(3)求三角形 ABC 的面积; 解:易知点 C 到 AB 的距离为 6,且 AB=6, 所以 S 三角形 ABC=12×6×6=18.
4.(2020·扬州) 在平面直角坐标系中,点 P (x2+2,-3) 所在的
象限是( D )
(作业)7.1.2平面直角坐标系(2)
xx作业16 7.1.2平面直角坐标系(2)时间: 班级 学号 姓名:1、①、点A (2,3)的横坐标为 ,纵坐标为 ,在第 象限。
②、点B (-2,3)的横坐标为 ,纵坐标为 ,在第 象限。
③、点C (-2,-3)的横坐标为 ,纵坐标为 ,在第 象限。
④、点D (2,-3)的横坐标为 ,纵坐标为 ,在第 象限。
2、已知点A (1,-1)、B (2,0.5)、C (-2,3)、D (-1,-3)、E (0,-3)、F (4,-1.5)、G (5,0), 其中在第四象限的点有 个。
3、已知P (a+2,b-3),①、若点P 在x 轴上,则b= ;②、若点P 在y 轴上,则a= ; ③、若点P 在第二象限,则a= ;b= ;4、若点A (m ,n )在第四象限,则点B (-n ,-m )在第 象限。
5、如果点A (2,0),AB 4=,点B 和点A 在同一坐标轴上,那么点B 的坐标为6、在第二象限的角平分线上有一点P ,它到x 轴的距离为3,则点P 的坐标为7、若点P (x ,y )的坐标满足方程2x y y 40+++=(),则点P 的坐标为 ,它在第 象限。
8、在平面直角坐标系中,标出下列各点;依次连接这些点,你能得到什么图形? ①、点A 在y 轴上,位于原点上方,距离原点有2个单位; ②、点B 在x 轴上,位于原点右侧,距离原点1个单位; ③、点C 在x 轴上方,y ④、点D 在x 轴上,位于原点右侧,距离原点3个单位; ⑤、点E 在x 轴上方,y 轴右侧,距离x 轴2个单位长度, 距离y 轴4个单位长度。
9、在平面直角坐标系中选择一些横、纵坐标满足下面条件的点,标出它们的位置,看看它们在第几象限:①、点P (x②、点P (xxx10、如图,(1)、坐标(x,3)中的x选取-3,-2,-1,0,1,2,3,将这些点在直角坐标系上表示出来;连线试试看:所表示的点是否在一条直线上?这条直线与x轴有什么关系?(2)、坐标(y,3)中的x选取-3,-2,-1,0,1,2,3,将这些点在直角坐标系上表示出来;x轴有什么关系?12,OA=OC,BC=6,求A、B、C三个点的坐标。
7.1.2平面直角坐标系
· ·
(-,-)
-1 -2
o
4
5
6
X
第四象限
(+,-)
(4,-4) G
· ·
H (5,-2)
根据点所在位置,用“+” “-”或“0”填表 点的坐标的符号特点 平 面 直 角 坐 标 系 一象限 二象限 三象限 四象限
(+,+)
(-,+) (-,-) (+,-)
知识5:坐标平面内点的特征②
说 一 说
Y轴 横坐标 坐标平面内点的坐标 纵坐标
2.由点求坐标:
结论:平面直角坐标系内的点 一 一对应 有序实数对 3.由坐标描点
4.坐标平面内点的特征
坐标平面内点的特征
根据点所在位置,用“+” “-”或“0” 填表 点的位置 横坐标符号 纵坐标符号 在第一象限 + + 在第二象限 + 在第三象限 + 在第四象限
1.在平面内准确确定一点的位置有 方位角+距离定位法 几种方法?————、—————— 区域定位法 经纬定位法 、————、————。都需要__ 两个 有序数对 数据,都是_____ 。 2.能不能找到一种类似于利用数 轴确定直线上点的位置来确定平面 内点的位置呢?
我们已经知道借助一条数轴,用 一个数可以确定点在直线上的位 置,你认为确定平面内的点的位置, 两 应该借助于几条数轴?
在平面内准确确定一个点的位置仅有一 个数据可以吗?需要 两 个?
不可以
平面直角坐标系的概念 知识1: y轴(纵轴) 取 y
两条数轴:(一般性特征)
(1)互相垂直
向 上 为 正 方 向
(2)原点重合
6 5 4 3 2 1
平面直角坐标系(1)(作业)-七年级数学下册同步备课系列(人教版)
7.1.2平面直角坐标系作业一、选择题1.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为()A.(0,2)B.(2,0)C.(4,0)D(0,–4).2.已知坐标平面内点M(a,b)在第三象限,那么点N(b,–a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法错误的是()A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条坐标轴是相互垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限4.如图,点A(–2,1)到y轴的距离为()A.–2B.1C.2D.5.p(–2,y)和Q(x,–3)关于x轴对称,则x–y的值为()A.1B.–5C.5D.–1 6.若点P(a,b)在第四象限内,则a,b的取值范围是()A.a>0.b>0B.a>0,b<0C.a<0,b>0D.a<0,b>0 7若点A(a,b)在第二象限,则点B(a–b,b–a)一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,点P(2,2x)在()A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对9.点A的坐标(x,y)满足=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在平面直角坐标系中,A (1,1),B (–1,1),C (–1,–2),D (1,–2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A –B –C –D –A ...的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A .(1,–1)B .(–1,1)C .(–1,–2)D .(1,–2)二、填空题11.点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是______.12.点P (x,y )在第二象限,且24,3x y ==.则点P 的坐标为__________.13.已知点P (–2,7),则点P 到x 轴的距离为____,到y 轴的距离为_______.14.平面直角坐标系内有一点P (x,y ),若点P 在横轴上,则____;若点P 在纵轴上,则___;若P 为坐标原点,则______.15.点P (–2,m )在第二象限的角平分线上,则m =___.16.已知点A (–5,0),点B (3,0),点C 在y 轴上,△ABC 的面积为12,则点C 有坐标为________.三、解答题17.如图,已知A ,B 两村庄的坐标分别为(2,2),(7,4),一辆汽车在x 轴上行驶,从原点O 出发。
2020年春人教版七年级数学下册同步练习课件:7.1.2 平面直角坐标系
A.点P1,P2,P3
B.点P1,P2
C.点P1,P3
D.点P1
(D )
图K-19-2
[解析]点P2在y轴的正半轴上,点P3在x轴的负半轴上,坐标轴 上的点不属于任何一个象限.故选D.
课时作业(十九)
3.有以下四个点:(0,1), ������������,0 ,(-1,-2),(-1,0).其中在横轴上的 有( B )
课时作业(十九)
素养提升
[动态题] 如图K-19-6,在长方形OABC中,O为平面直角坐标系的 原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从 原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即 沿着长方形的边移动一周).
图K-19-6
课时作业(十九)
(6)F
������,-
������ ������
在 y轴的负半轴上
;
(7)G(7.1,0)在 x轴的正半轴上 ;
(8)H(0,10)在 y轴的正半轴上 .
链接听课例 5 归纳总结
课时作业(十九)
14.在平面直角坐标系中,已知点A的坐标为(-3,2),点B的坐标为 (3,2),连接A,B两点所成线段与 x轴 平行(填“x轴”或“y轴”).
合条件的坐标即可).
课时作业(十九)
13.指出下列各点所在的象限或坐标轴:
(1)A(-1,-2.5)在 第三象限 ;
(2)B(3,-4)在 第四象限 ;
(3)C - ������ ,������ 在 第二象限 ;
������
(5)E(-π,0)在 x轴的负半轴上 ;
(4)D(7,9)在 第一象限 ;
(1)点B的坐标为 (4,6) ; (2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的 位置; (3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移 动的时间.
同步训练022——7.1.2平面直角坐标系第三课时
同步训练022——7.1.2平面直角坐标系第三课时1.平面上的点可用____________来确定。
2.点A(1,-2)在第_________象限,点B(2,3)在第________-象限,点C(-3,-4)在________________ 象限,点D(-4,4.5)在_________—象限。
3.下列各点中,在y轴上的点是()A.(3,0 ) B.(0,2) C.(2,-5) D(4,7)4.已知点P( x,y),且0,xyox,那么点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知点A(x,y),且0yx ,则点A在 ( )A.第一象限B.第一、三象限C.第三、四象限D.第一、二象6.若点P(a,b)的坐标满足xy=0,则点P在()A.原点 B.x轴上 C.y轴上 D.x或y轴上7.若点P(m,3-m)是第二象限的点,则m的取值范围是__________.8.若点 A(x,y)在第二、四象限的角平分线上,则x 与y的关系是__________.9.已知:点A(4,3),B(2,0), C(-2,0),求以A、B、C为顶点的△ABC的面积。
10.已知:A(-1,-1), B(4,-1),C(4,4),画出图形,求正方形ABCD顶点D的坐标。
11.在y轴上分别求出与原点的距离为3的点的坐标;在y 轴上求出与点(0,1)的距离为4的点的坐标。
12.根据以下条件画一幅示意图,标出某一公园的各个景点.菊花园:从中心广场向北走150米,再向东走150米;湖心亭:从中心广场向西走150米,再向北走100米;松风亭:从中心广场向西走100米,再向南走50米;育德泉:从中心广场向北走200米.13.坐标平面内有4个点A(0,2),B(-1,0),C(1,-1),D(3,1).(1)建立坐标系,描出这4个点;14.在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB 中点的坐标与点A,B的坐标之间有什么关系?对线段AC中点和点A,C及线段CD中点和点C,D成立吗?(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标.(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABCD的面积1。
7.1.2 平面直角坐标系 七年级数学下册(人教版)
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C
同步训练021——7.1.2平面直角坐标系第二课时
同步训练021——7.1.2平面直角坐标系第二课时第1题. 如果平面直角坐标系内两点横坐标相等,则这两点所确定的直线( ) A.平行于x 轴 B.平行于y 轴 C.经过原点D.以上都不对第2题. 如图所示,下列说法正确的是( ) A.A 和D 的横坐标相同 B.A 和BC.B 与C 的纵坐标相同D.C 与D 第3题. 若点(324)P a a --,到x 轴的距离是到y 轴的距离 的2倍,则a 值为 .第4题. 如图所示,腰5A B C D ==,点A 到x轴的距离是4,点C 的坐标是(90),,则梯形A B C D 的面积是 .第5题. 若点P 坐标为(12)-,,点P '是P 关于x 轴的 对称点,点P ''是点P '关于y 轴的对称点,则P ''的坐标是 .第6题. 小宇在平面直角坐标系中画一个正方形,其中四个顶点到原点的距离相等,其中一个顶点的坐标为(22),,则在第四象限内的顶点的坐标是. 第7题. 如图所示,若O A B △的三个顶点坐标分别是(00)(1(22)O A B ,,,.求O A B △关于O B 对称的A O B '△的顶点A '的坐标.第8题. 如图,点A 关于y 轴的对称点的坐标是( )A.(33),C.(33)-,第9题. A.(3300)-,B.(7500)-, C.(9600),D.(2800)--,第10题. 在平面直角坐标系中,点P (2-,3)关于x 轴的对称点在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限第11题. 某学校的平面示意图如图所示,如果实验楼所在位置的坐标为(23)--,,教学楼所在位置的坐标为(12)-,,那么图书馆所在位置的坐标为 . 第12题. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可 能在A.第一象限 B.第二象限 C.第三象限 D.第四象限第13题. 在平面直角坐标系中,点(34)-,关于y 轴对称的点的坐标为 . 第14题. 在一次中学生野外生存训练活动中,每位队员都配发了一张地图,并接到训练任务:要求36小时之内到达目的地.但是,地图上并未标明目的地的具体位置,仅知道A B 、两地坐标分别为(32)(52)A B -,、,,且目的地离A B 、两地的距离分别为106、,如图所示,则目的地确切位置的坐标为 . 答案:(58)(54)-,或,第15题. 在平面直角坐标系中,点(43)-,所在象限是( )A.第一象限 B.第二象限C.第三象限D.第四象限L第16题. 如图所示,正六边形边长为2,(1)写出各个顶点的坐标;(2)指出横坐标相同的点有哪些?纵坐标相同的点有哪些?(3)点B与C的坐标有什么特点?这两个点的位置有什么关系?(4)点C与点E,点C与点F呢?第17题. 如图,某地区为发展城市群,在现有的四个中小城市A B C D、、、附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标.第18题. 设点P的坐标为()x y,,根据下列条件判定点P的坐标平面内的位置:(1)0xy=;(2)0xy>;(3)0x y+=.第19题. 已知一等边三角形边长为a,有两个顶点在x轴上,有一顶点在y轴上,求各顶点坐标.第20题. 在平面直角坐标系中,第一、三象限的角平分线上的点有什么特点?第21题. 在平面直角坐标系中,依次连接以下的点:(1)(00)(60)(83)(23)(00),,,,,,,,,;(2)(06)(66)(89)(29)(06),,,,,,,,,;(3)(00)(06),,,;(4)(60)(66),,,;(5)(83)(89),,,;(6)(23)(29),,,.可得什么图形?第22题. 如图所示,四边形A C E G和四边形B D F H都是正方形,B F的长为8,建立适当的直角坐标系,写出点A B C D E F G H、、、、、、、的坐标.第23题. 点()P a b,位于第二象限,则()A.0a b+>B.0a b+<C.0ab>D.0ab<第24题. 点(23)P,的横坐标为,纵坐标是,到x轴的距离是,到y轴的距离是,到原点的距离是.第25题. 点(35)A,与点()B x y,关于原点对称,则x=.y=.第26题. 点P在y轴上,它到原点的距离为3,则点P的坐标为.x1 2 3 4 5 6 7 8 9x AHGFEDCB的对称中心为坐标原点,建立平面直角坐标系,A点的坐标为第27题. 如图所示,以A B C DA D=,求其他各点坐标.-,,且A D与x轴平行,6(43)第28题. 下列关于平面直角坐标系的说法中,正确的是()A.平面直角坐标系是由两条相互垂直的直线构成;B.平面直角坐标系是由两条数轴任意相交构成的;C.平面直角坐标系中的点的坐标是唯一确定的;D.平面上的一点的坐标在不同的平面直角坐标系内是相同的.第29题. 若某点A位于x轴上方,距x轴5个单位长,且位于y轴的左边,距y轴10个单位长,则点A的坐标是()A.(510)--,,B.(510)C.(105),-,D.(105)-第30题. 下列说法中,错误的是()A.如果一个点的横,纵坐标都为零,则这个点是原点;B.如果一个点在x轴上,那它一定不属于任何象限;C.纵轴上的点的横坐标均相等,且都等于零;D.纵坐标相同的点,分布在平行于y轴的某条直线上.。
人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)
第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系班级:姓名:知识点1平面直角坐标系1.在直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).2.如图,写出平面直角坐标系中点A,B,C,D,E,F 的坐标.3.如图,在平面直角坐标系中:(1)描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(5,-2);(2)写出平面直角坐标系中E,F,G,H,M,N点的坐标.知识点2平面直角坐标系中各象限内点的坐标特征4.在平面直角坐标系中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)6.如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)7.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)8.如果x y<0,那么Q(x,y)在()A.第四象限B.第二象限C.第一或三象限D.第二或四象限9.若点P(m,n)在第三象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形ABCD 中点A和点C 的坐标分别为(-2,3)和(3,-2),则点B 和点D 的坐标分别为()A.(2,2)和(3,-3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)11.点P(-3,4)在第象限,到x 轴的距离是,到y 轴的距离是.知识点3坐标轴上点的坐标特征12.点B(-3,0)在()A.x 轴的正半轴上B.x 轴的负半轴上C.y 轴的正半轴上D.y轴的负半轴上13.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点D.在x轴上或在y轴上14.若点P(a-2,2a+3)在y轴上,则a=,此时点P的坐标是;如果点P在x轴上,那么a=.综合点1非负数与点的坐标15.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)综合点2分类讨论16.到x轴距离为2,到y轴距离为3的点有几个?拓展点1坐标与面积计算17.在直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),要确定这个四边形的面积,你是怎样做的?‘拓展点2规律性问题18.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)19.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2017的坐标为()A.(504,-504)B.(-504,504)C.(-504,503)D.(-505,504)第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系答案与点拨1.如图所示.2.A(5,2),B(0,4),C(-3,3),D(-5,0),E(-3,-4),F(4,-3).3.(1)如图所示,先在x 轴上找出表示4的点,再在y 轴上找出表示5的点,过这两个点分别作x 轴和y 轴的垂线,两垂线的交点就是点A.用同样的方法可描出其他各点.(2)过象限内的点M 分别向x 轴,y 轴作垂线,垂足在x 轴的坐标是4,在y 轴的坐标是1,故M 点的坐标为(4,1),同样,可得E(2,0),F(0,-4),G(-2,2),H(1,-2),N(-3,-2).4.B(点拨:∵-2<0,3>0,∴(-2,3)在第二象限,故选B.)5.A(点拨:因为第一象限点的特征是:横坐标是正数,纵坐标也是正数,而各选项中符合横坐标为正,纵坐标也为正的只有A 中(1,2).故选A.)6.D(点拨:小手盖住的点在第四象限.)7.C(点拨:先依据题意可以判断该点在第二象限.)8.D(点拨:由xy<0可得,x,y 异号,故选D.)9.A(点拨:点P 在第三象限,故m,n 均小于0,而-m,-n 则都大于0,故选A.)10.B(点拨:B 点与A 点的横坐标相同,B 点与C 点的纵坐标相同,故B 点坐标为(-2,-2),同理可得D 点坐标为(3,3).)11.二43(点拨:点P(-3,4)在第二象限内,点P 到x 轴的距离是|4|=4,到y 轴的距离是|-3|=3.)12.B(点拨:x 轴上的所有点的纵坐标为0.)13.D(点拨:由xy=0可以得到,x=0或y=0,即该点横坐标或纵坐标为0,故选D.)14.2(0,7)-32(点拨:由点P(a-2,2a+3)在y 轴上得a-2=0,解得a=2,∴2a+3=7,此时点P 的坐标是(0,7);由点P(a-2,2a+3)在x 轴上得2a+3=0,解得a=-32.)15.C(点拨:由非负数的性质,可知a-2=0,b+3=0,故a=2,b=-3,则-a=-2,-b=3.)16.4个,它们分别是(3,2),(3,-2),(-3,2),(-3,-2).(点拨:在各象限内均有可能.)17.S四边形ABCD =12×8-2×3-12×2×5-12×3×7-12×3×8=62.5.四边形的面积等于长方形的面积减去一个小长方形和三个三角形的面积.18.B(点拨:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒、2秒、3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B.)19.D(点拨:由规律可得,2017÷4=504…1,∴点P2017在第二象限,∵点P5(-2,1),点P9(-3,2),点P13(-4,3),∴点P2017(-505,504).)。
7_1_2平面直角坐标系(分层作业)解析版【人教版七下数学精品备课】
7.1.2 平面直角坐标系参考答案与试题解析夯基训练知识点1 平面直角坐标系1.如图所示,点A、点B所在的位置是( )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上1.解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.知识点2 各象限内、坐标轴上点的坐标特征2.平面直角坐标系中有点M(a,b).(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?2.解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M 在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.3.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列.如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2)……根据这个规律,点P2 016的坐标为.3.【答案】(504,-504)解:根据各个点的位置关系,可得:下标为4的倍数的点在第四象限的角平分线上;下标为被4除余1的数的点在第三象限的角平分线上;下标为被4除余3的数的点在第一象限的角平分线上.点P2 016在第四象限的角平分线上,且横、纵坐标的绝对值为2 016÷4=504,再根据第四象限内点的坐标符号可得出答案为(504,-504).知识点3 特殊点的坐标的特征4.已知M(1,-2),N(-3,-2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直4.【答案】D解:由点M(1,-2)和点N(-3,-2)的纵坐标相等可知,直线MN平行于x轴,与y轴垂直.或者在平面直角坐标系中描出点M和点N,结合图判断出直线MN平行于x轴,与y轴垂直.题型总结题型1 利用平面直角坐标系象限的符号特征判断点的位置5.点M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意非零实数,且b<0时,点M位于第几象限?5.解:(1)第四象限.(2)因为ab>0,所以a>0且b>0或a<0且b<0.所以点M位于第一象限或第三象限.(3)第三象限或第四象限.题型2 利用平面直角坐标系内图形位置写点的坐标6已知点A(0,3),B(-1,1),C(-3,2),D(-2,0),E(-3,-2),F(-1,-1),G(0,-3),H(1,-1),I(3,-2),J(2,0),K(3,2),L(1,1).(1)请在图①的平面直角坐标系中,分别描出上述各点,并顺次连接A,B,C,D,E,F,G,H,I,J,K,L,A;(2)试求(1)中连线围成的图形的面积.6.解析:(1)依据点的横、纵坐标的定义,分别描出各点并依次连接;(2)连线围成的图形被坐标轴平均分成四部分,故只要求出一个象限中图形的面积,就可求得答案.解:(1)如图②所示;(2)因为连线围成的图形在第一象限中的面积为4,并且图形被坐标轴平均分成四部分,所以图形的总面积为4×4=16.方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可.7.如图,给出格点三角形ABC.(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.7.解:(1)A(2,2),B(-2,-1),C(3,-2).(2)S 三角形ABC =4×5-12×3×4-12×1×4-12×1×5=9.5.题型3 由点到坐标轴的距离确定点的坐标8.已知点P 到x 轴的距离为2,到y 轴的距离为1.如果过点P 作两坐标轴的垂线,垂足分别在x 轴的正半轴上和y 轴的负半轴上,那么点P 的坐标是( )A .(2,-1)B .(1,-2)C .(-2,-1)D .(1,2)8.解析:由点P 到x 轴的距离为2,可知点P 的纵坐标的绝对值为2.又因为垂足在y 轴的负半轴上,则纵坐标为-2.由点P 到y 轴的距离为1,可知点P 的横坐标的绝对值为1.又因为垂足在x 轴的正半轴上,则横坐标为1.故点P 的坐标是(1,-2).故选B.易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x 轴的距离”对应的是纵坐标的绝对值,与“点P 到y 轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P 的坐标有四个.拓展培优拓展角度1 利用点的坐标的特征探究横或纵坐标相等的图形的性质9.如图所示.(1)请写出A,B,C,D,E 五点的坐标.(2)通过观察B,C 两点的坐标,你发现了什么?线段BC 的位置有什么特点?由此你又得出什么结论?通过进一步观察D,E 两点的坐标你发现了什么?线段DE 的位置有什么特点?由此你又能得出什么结论?9.解:(1)A(2,4),B(-1,2),C(-1,-1),D(1,-4),E(4,-4).(2)通过观察B,C 两点的坐标,发现B,C 两点的横坐标相同,纵坐标不同.线段BC 与y 轴平行,与x 轴垂直.由此可得出若一条直线上的所有点的横坐标均相同,纵坐标不同,则此直线与y 轴平行(或就是y 轴),也可以说是与x 轴垂直.通过观察D,E 两点的坐标,发现D,E 两点的纵坐标相同,横坐标不同.线段DE 与x 轴平行,与y 轴垂直.由此可得出若一条直线上的所有点的纵坐标均相同,横坐标不同,则此直线与x 轴平行(或就是x 轴),也可以说是与y 轴垂直. 拓展角度2 利用点的坐标画图求解相关问题10.在如图所示的平面直角坐标系中描出下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7),G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE,则直线CE 与y 轴是什么关系?(3)顺次连接D,E,G,C,D 得到四边形DEGC,求四边形DEGC 的面积.10.解:描点如图.(1)D(2)如图,直线CE 与y 轴平行.(3)S 四边形DEGC =S △CDE +S △CEG =12×6×10+12×10×2=30+10=40.拓展角度3 在坐标系中求图形的面积11.如图所示的直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (9,0),C (7,5),D (2,7).试确定这个四边形的面积.11.解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.解:分别过点D 、C 向x 轴作垂线,垂足分别为点E 、F ,则四边形ABCD 被分割为△AED 、△BCF 及梯形CDEF .由各点的坐标可得AE =2,DE =7,EF =5,FB =2,CF =5.∴S 四边形ABCD =S△AED +S 梯形CDEF +S △BCF =12×2×7+12×(7+5)×5+12×5×2=7+30+5=42. 方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.。
(人教版数学)初中7年级下册-同步练习-7.1.2 平面直角坐标系-七年级数学人教版(下册)(解析版
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。
7.1.2平面直角坐标系第二课时
NO3 7.1.2 平面直角坐标系(第二课时)姓名:组号一、学习目标:1.对给定的简单图形,会建立适当的平面直角坐标系,确定图形上点的坐标.2.进一步探究平面直角坐标系中点的坐标的特征.二、知识回顾:1.什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 每个象限内的点和坐标轴上的点各有什么特征?3. 坐标平面内点与有序实数对之间有什么关系?三、合作探究探究一: 1.如图,正方形ABCD的边长6.(1)如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4)观察:点B和点C坐标之间有什么联系?点C和点D坐标之间呢?2.【归纳】(1)设P点坐标为(a,b),则点P到x轴的距离是_________;点P到y轴的距离是_________.(2)平行于横轴的直线上的点的坐标相同;平行于纵轴的直线上的点的坐标相同.探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系?(2)点A与点C关于哪一条直线对称?它们的坐标之间有什么联系?(3)点B与点C呢?【归纳】关于x轴对称的点的______相同,______互为相反数;关于y轴对称的点的______相同,______互为相反数;关于原点对称的点的______、______都互为相反数;四、尝试运用1.点 M (- 8,12)到 x 轴的距离是_________,到 y 轴的距离是________.2. 已知点P (3,a ),并且P 点到x 轴的距离是2个单位长度,则P 点的坐标_______3.已知点A (m ,1),点B (3,m-1),且直线AB ∥x 轴,则m 的值为4.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线( )(A )平行于x 轴 (B )平行于y 轴 (C )经过原点 (D )以上都不对5.点P (-1,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是6.若点(a ,2)在两坐标轴的夹角平分线上,a= .7.若点(a,b-1)在第二象限,则a 的取值范围是_____,b 的取值范围________.8. 第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是五、小结反思回顾本节课所学的主要内容,回答以下问题: 1.通过这节课的学习你学会了什么?2.学习这节课时你认为应该注意的问题有哪些?六、达标检测1.已知P (-3,2), P 点关于x 轴的对称点的坐标为_ ;P 点关于原点O 的对称点的坐标是___ _.2.点A (7,-3)关于y 轴的对称点是B ,则线段AB 的长是______.3.点A (3,-4)到x 轴的距离为___4.若点M (a -2,a +3)在y 轴上,则a = .点P (13++m m ,)在x 轴上,则点P 的坐标为 .5.若点P (2,y )在第二象限角平分线上,则y =8.已知A (-1,0),B (x ,0)且AB =2,则x = .9.已知点A 的坐标是(3,0),AB=5,(1)当点B 在x 轴上时,求点B 的坐标为 (2)当AB ∥y 轴时,点B 的坐标为探究三:1.建立一个平面直角坐标系,描出下列各组点: (1)(1,1);(2,2);(-3,-3);(-4,-4) (2)(1,-1);(-2,2);(3,-3);(-4,4);2.思考:(1)这些点有什么特征?(2)经过这两组点得到的直线有什么特征? 3.【归纳】第一、三象限角平分线上的点的横纵坐标 ; 第二、四象限角平分线上的点的横纵坐标 .y x。
7.1.2平面直角坐标系(1)
x导学练15 7.1.2平面直角坐标系(1)时间: 班级 学号 姓名:教学目标:1、学生理解平面直角坐标系的有关概念,并会正确地画出直角坐标系.毛2、使学生能在建立在平面直角坐标系中,由点的位置写出它的坐标.3、让学生在活动中形成形数结合的意识后全作交流的意识.重点:理解平面直角坐标系的有关概念,能由点位置写出坐标, 由坐标描出点的位置. 难点:解决实际问题,及概念理解;让学生形成形数结合的意识. 一、问题引入: 1、(1)、如图是一条数轴,我们知道,数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
反之,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了。
(2)、指出图中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点C 在数轴上的位置.2中的A 、B 、C 、D 各点)3、如果在图中画两条互相垂直的数轴,你能否用有序数对的来表示图中A 、B 、C 、D 各点的位置?(如图2) 需要几个数?顺序能否改变? 二、归纳概括:1、平面直角坐标系的定义:平面内画两条互相 、原点 的数轴,组成平面直角坐标系. ①、水平的数轴称为 或 ,习惯上取向 为正方向; ②、竖直的数轴为 或 ,取向 为正方向; ③、两个坐标轴的交点为平面直角坐标系的 。
2、点的坐标:我们用一对 表示平面上的点,这对数叫 。
表示方法为(a,b ). a 是点对应 上的数值,b 是点在 上对应的数值。
(特别..注意..:横坐标在前, 纵坐标在后)3、对于平面内任意一点M ,都有唯一的一对有序数实数M (x ,y )和它对应;反过来,对于任意一对有序数对M (x ,y ),在坐标平面内都有唯一一点M (即横坐标x ,纵坐标y )和它对应; 即坐标平面内的点与 是一 一对应的。
-3B A32图1三、课堂试一试:例1、(1)写出图中B、M、N、O、P、Q各点的坐标,并指出它们的横坐标和纵坐标。
(2)、描出点G(-2,-3),H(-3,-2),A(4,5),K(5,4)的位置。
7.1.2 平面直角坐标系
(一)自学探究新知
1、自学内容:课本第66页思考之下的内容;
2、自学时间:3分钟;
3、自学方法:结合自学任务边自学边理解边标记,如有疑难可交流讨论也可问老师;
4、自学任务:(1)在平面内,两条_________且_________的数轴组成________。水平的数轴叫_______或,规定取向为正方向,铅直的数轴叫_______或,规定取向为正方向,x轴和y轴统称________,它们的公共原点O称为______。
在y轴上
在正半轴上
在负半轴上
原点
3、练习:(1)点A(3,-2)在第象限,点B(-3,2)在第象限,点C(3,2)在第象限,点D(-3,-2)在第象限。
(2)若点(m,n)在第四象限,则mn的值()
A大于0 B小于0 C等于0 D不能确定
(3)点A(3,a)在x轴上,点B(b,4)在y轴上,则a=,b=。
4、探究:
四、畅谈收获
1、你的收获?
2、你的疑惑?
学生感悟
(教师修订)
年级:七年级学科:数学命题人:王金涛审核人:叶书生
当堂达标测试题
(满分:20+5时间:10分钟成绩:)
必做题:(1—3题,每题4分,第4题8分)
1、在平面直角坐标系中,点P(-1,3)在第象限。
2、在平面直角坐标系中,已知点P(m+5,m-2)在x轴上,则P点的坐标为。
课题
7.1.2平面直角坐标系
课型
新授
主备人
王金涛
审核人
叶书生
授课时间
20140326
学习目标
1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标、象限的概念。
2、会画平面直角坐标系,并能在给定的平面直角坐标系中,由点的位置写出它的坐标,由点的坐标确定它的位置。
7.1.2平面直角坐标系学案(三)
• 三、课堂检测: • 1、 点P(-3,4)到x轴的距离为 _____,到Y轴的距离为 _____。 • 2、 在直角坐标系中,A点的位置是(3,-2),B点 的位置是(-5,-2),则连接A、B 两点所成的线 段与_________平行. • 3、已知点E(2,—4)它关于X轴对称的点的坐标是 _____,关于Y轴对称的点的坐标是 _____ • 4、 已知A(4,3),B(2,0), C(-2,0) ,求以A,B,C为顶 点的三角形的面积.
• 一、独立完成下列各题:
• • • • • • • • • • • •
1.在图所示的平面直角坐标系中描出下面各点: A(0,3),B(1,-3),C(3,-5), D(-3,-5),E(3,5),F(5,7)。 这些点分别在那个象限? (2)A点到原点O的距离是____个单位长。 (3)B到X轴的距离是____到Y轴的距离是____ (4)点C与点D有什么位置特征? (5)点C与点E有什么位置特征? (6)连接CD,则直线CD与X轴是 什么位置关系? (7)连接CE,则直线CE与轴是什 么位置关系?
人教版七年级下册数学课时练《7.1.2 平面直角坐标系》试卷含答案
人教版七年级下册数学《7.1.2 平面直角坐标系》课时练学校:___________姓名:___________班级:___________一、单选题1.在平面直角坐标系中,点 ()22,3P x +- 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.点M (-3,4)离原点的距离是( )A .3B .4C .5D .73.已知点A (m+2,3m -6)在第一象限角平分线上,则m 的值为( )A .2B .-1C .4D .-24.如图,平面直角坐标系上有P 、Q 两点,其坐标分别为P (4,a )、Q (b ,6).根据图中P 、Q 两点的位置,判断点(﹣b ,a ﹣7)落在第( )象限.A .一B .二C .三D .四5.如果点P (m ,1-2m )在第四象限,那么m 的取值范围是A .0<m <12B .-12<m <0 C .m <0 D .m >126.在平面直角坐标系中,对于坐标P (2,5),下列说法错误的是( )A .P (2,5)表示这个点在平面内的位置B .点P 的纵坐标是5C .点P 到x 轴的距离是5D .它与点(5,2)表示同一个坐标7.如图,下列各点在阴影区域内的是( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)8.在平面直角坐标系中,点M(2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“炮”位于(﹣4,1),则“象”位于点( )A .(1,2)B .(﹣2,1)C .(2,﹣2)D .(1,﹣2)10.如图,在平面直角坐标系中,一动点从原点 O 出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点 ()10,1A , ()21,1A , ()31,0A ()42,0A ,……那么点 41n A + ( n 为自然数)的坐标为( )A .()4,0nB .()2,1nC .()2,0nD .()4,1n11.对点(x ,y )的一次操作变换记为p 1(x ,y ),定义其变换法则如下:p 1(x ,y )=(x+y ,x ﹣y );且规定P n (x ,y )=P 1(P n ﹣1(x ,y ))(n 为大于1的整数).例如:p 1(1,2)=(3,﹣1),p 2(1,2)=p 1(p 1(1,2))=p 1(3,﹣1)=(2,4),p 3(1,2)=p 1(p 2(1,2))=p 1(2,4)=(6,﹣2).则p 2014(1,﹣1)=( ) A .(0,21006) B .(21007,﹣21007) C .(0,﹣21006)D .(21006,﹣21006)12.如图,在平面直角坐标系 xOy 中,点 (1,0)P .点 P 第1次向上跳动1个单位至点 1(1,1)P ,紧接着第2次向左跳动2个单位至点 2(1,1)P - ,第3次向上跳动1个单位至点 3P ,第4次向右跳动3个单位至点 4P ,第5次又向上跳动1个单位至点 5P ,第6次向左跳动4个单位至点6P ,……,照此规律,点 P 第2020次跳动至点 2020P 的坐标是( )A .(506,1010)-B .(505,1010)-C .(506,1010)D .(505,1010)二、填空题13.在平面直角坐标系中,点A (﹣3,6)到y 轴的距离为 .14.在平面直角坐标系内,点P (m -3,m -5)在第四象限中,则m 的取值范围是 15.点 (1,2)P m m -- 在第四象限,则m 的取值范围是 . 16.若点M (a+2,a -3)在y 轴上,则点M 的坐标为 . 17.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是 . 18.在平面直角坐标系中,点(﹣4,4)在第 象限.19.点E(a ,b)到x 轴的距离是4,到y 轴距离是3,且点E 在第四象限,则E 点坐标为 。
七年级数学下册第七章平面直角坐标系课时作业新人教版
7.1.2平面直角坐标系知识要点基础练知识点1平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是(B)知识点2由点的位置写出点的坐标2.写出图中A,B,C,D,E,F,O各点的坐标.解:A(2,3),B(3,2),C(-2,1),D(-1,-2),E(2.5,0),F(0,-2),O(0,0).知识点3由点的坐标描出点的位置3.如图,在平面直角坐标系中,描出以下各点A(-2,1),B(2,3),C(-4,-3),D(1,2),E(0,-3),F(-3,0),G(0,0),H(0,4),I(2,2),J(-3,-3).略知识点4各象限内点的坐标规律4.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是(C)A.(3,-4)B.(4,-3)C.(-4,3)D.(-3,4)5.在平面直角坐标系内,点P(a,a+3)的位置一定不在(D)A.第一象限B.第二象限C.第三象限D.第四象限知识点5坐标轴上点的坐标规律6.已知点P(x+3,x-4)在y轴上,则x的值为(B)A.3B.-3C.-4D.4综合能力提升练7.下列说法中,正确的是(D)A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号8.已知点A(m-2,3m+4)在第三象限的角平分线上,则m的值为(B)A.-5B.-3C. 3D.59.已知点P(m,n)在第四象限,那么点Q(n-2,-m)在(C)A.第一象限B.第二象限C.第三象限D.第四象限【变式拓展】已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在(B)A.第一象限B.第二象限C.第三象限D.第四象限10.若点A(a+1,b-1)在第二象限,则点B(-1,b)在(B)A.第一象限B.第二象限C.第三象限D.第四象限11.如图,已知棋子“車”的坐标为(-2,3),棋子“馬”的坐标为(1,3),则棋子“炮”的坐标为(A)A.(3,2)B.(3,1)C.(2,2)D.(-2,2)12.已知点A(2a+1,5a-2)在第一、三象限的角平分线上,点B(2m+7,m-1)在二、四象限的角平分线上,则(A)A.a=1,m=-2B.a=1,m=2C.a=-1,m=-2D.a=-1,m=213.若点A (3,x+1),点B (y-7,-1)分别在x 轴、y 轴上,则x 2+y 2= 50 .14.已知点A (1+2a ,4a-5),且点A 到两坐标轴的距离相等,则点A 的坐标为 (7,7)或(73,-73) .提示:分两种情况讨论:①由1+2a=4a-5,解得a=3,∴点A 的坐标为(7,7);②由1+2a+4a-5=0,解得a=23,∴点A 的坐标为(73,-73).15.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A 的坐标为(0,0),点B 的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C ,D ,E ,F 的坐标; (2)如果该台阶有10级,你能得到该台阶的高度吗?解:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系,所以C (2,2),D (3,3),E (4,4),F (5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10.16.已知点P (2m+4,m-1),试分别根据下列条件,求出点P 的坐标. (1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 到x 轴的距离为2,且在第四象限. 解:(1)由题意,得2m+4=0,解得m=-2,∴点P 的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P 的坐标为(-12,-9).(3)由题意,得|m-1|=2,解得m=-1或m=3. 当m=-1时,点P 的坐标为(2,-2); 当m=3时,点P 的坐标为(10,2).∵点P 在第四象限,∴点P 的坐标为(2,-2).17. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“识别距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为|y 1-y 2|; (1)已知点A (-1,0),B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,写出满足条件的B 点的坐标 (0,2)或(0,-2) ; ②直接写出点A 与点B 的“识别距离”的最小值 1 .(2)已知点C 与点D 的坐标分别为C (m ,34m+3),D (0,1),求点C 与点D 的“识别距离”的最小值及相应的C 点坐标.解:(2)令|m-0|=|34m+3-1|,解得m=8或-87.当m=8时,“识别距离”为8;当m=-87时,“识别距离”为87.所以当m=-87时,“识别距离”取最小值87,相应的C 点坐标为(-87,157).拓展探究突破练18. 在平面直角坐标系中,对应平面内任意一点(x ,y ),若规定以下两种变换f 和g :①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(-x,-y),如g(2,3)=(-2,-3).按照以上变换有f(g(2,3))=f(-2,-3)=(-3,-2),那么g(f(-6,7))等于多少? 解:g(f(-6,7))=g(7,-6)=(-7,6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C4 3
2
A
1
-5 -4 -3 -2 -1 o
-1
-2
-3Biblioteka -4B1 23x
课堂小结
特殊点的坐标特征:
1.点在x轴上 2.点在y轴上 3.平行于x轴的点 4.平行于y轴的点
课堂检测
导学测评P23 7—14题 P24 7—14题
若点A的坐标为(-1,2) ,则点B
的坐标是______
【变式演练】
已知线段AB =3, AB∥ y轴,
若点A的坐标为(-1,2) ,则点B
的坐标是______
y
4 A3
2 1 -4 -3 -2 -1 o -1
C
B
1 23 4x
-2
-3
-4
针对训练
课时练P53·例1
已知点P (2m+4,m-1).请根据下列条件求点P的坐标 : (1)点P在x轴上; (2)点P在y轴上; (3)点P的纵坐标比横坐标大3;
【变式演练】 1.若点A (m+3,m+1) 在 y 轴上,则点 A的坐标为 ______. 2.点P (a+3,b+1) 在平面直角坐标系的 x 轴上,并且点 P 到 y 轴的距离为2,则a+b的值为 ______.
例题解析3
导学案P36·互动探究3——与坐标轴平行的坐标特征
已知线段AB =3, AB∥ x 轴,
(4)点P在过点A (2,-3) ,且与x轴平行的直线上;
针对训练
课时练P53·例1 【变式训练】 已知点P (2-m,3m+6)到两坐标轴的距离相等,求点P的坐标.
例题解析4
课时练P53·例3——平面直角坐标系中几何面积(分情况讨论)
三角形ABC三个顶点坐标分别为 A (0,1), y
B (2,0),C (2,3).
C(2,-1),D(-1,-1) -4 -3 -2 -1 -O1 1 2 3 4
x
E(0,3), F(-2,0)
D -2
C
G(1,2)
-3
知识回顾
在平面直角坐标系中 ①由点找坐标:找点A的坐标 ②由坐标找点:找点B(3,-2)
由点找坐标的方法:
(1)过点A作x轴的垂线,垂
足在x轴上对应的数是-3;
导学案P36·互动探究1——象限内坐标特征 点M (2019,-2019) 位于______ 【变式演练】 点P (-2,a2+1) 位于 ______.
互动探究2
针对训练
设点M(a,b)为平面直角坐标系内的点. (1)当a>0,b<0时,点M位于第几象限? (2)当ab<0时,点M位于第几象限? (3)当a为任意有理数,且b<0时,点M位于什么位置?
解:(1)点M在第四象限; (2)在第二象限(a>0,b<0)或者在第四象限(a<0,b>0); (3)在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或 者y轴负半轴上(a=0,b<0).
例题解析2
导学案P34·互动探究3——坐标轴上坐标特征 若点P (a+3,2a-7) 在 x 轴上,则a= ______
(2)过点A作y轴的垂线,垂
足在y轴上对应的数是3;
点A的坐标为(-3,2)
A (-3,2) y
2 1
-3 -2 -1 O -1 -2
12
-3
由坐标找点的方法: (1)先在坐标轴上找到表示横坐标3与纵坐标-2的点; (2)过这两点分别作x轴与y轴的垂线;
(3)垂线的交点就是该坐标对应的点B
3x B
例题解析1
第七章 平面直角坐标 系 7.1 平面直角坐标系
7.1.2 平面直角坐标系 习题课
学习目标
1. 熟悉各象限内及坐标轴上点的坐标特征并能灵活应用; 2.进一步体会分情况讨论和数形结合的数学思想,感受
点与坐标的联系.
回顾练习
y
课时练P53 例1.
解:
E 3G A2
A(-1,2), B(2,1)
F
1
B
(1)三角形ABC的面积; (2)若点P在x轴上,且三角形 ABP的面积等于三角形ABC的 面积,求点P的坐标.
4 3 2
A
1
-4 -3 -2 -1 o -1 -2 -3 -4
C
B
1 23 4x
针对训练
课时练P55·10题
在平面直角坐标系中,已知点 A (-5,0),B (3,0),y三角形ABC的