聚合酶链式反应
生化试验教材实验九:聚合酶链式反应
避免使用过期的试剂和仪器,以免影 响实验结果和造成安全隐患。
对于高温、高压、易燃、易爆、有毒 有害等危险品,应严格按照规定进行 管理和操作。
实验操作规范
01
在实验前应仔细阅读实 验步骤和注意事项,确 保对实验过程有充分的四种脱氧核苷酸, 即dATP、dCTP、dGTP和dTTP。
Taq DNA聚合酶
一种热稳定性的DNA聚合酶,负责 催化DNA的合成。
实验设备准备
01
02
03
04
PCR仪
提供PCR反应所需的温度循环 ,包括变性、退火、延伸等步 骤的温度设置和时间控制。
离心机
用于分离和纯化DNA、RNA 等生物分子。
结果验证与结论
结果验证
通过重复实验、使用不同引物或对 PCR产物进行测序等方法,验证结果 的可靠性和准确性。
得出结论
根据实验结果,可以得出关于基因表 达、变异或物种鉴定的结论。同时, 应注意结果的适用范围和局限性,以 及与文献报道的比较。
05 注意事项与安全
实验安全注意事项
实验前应穿戴实验服和防护眼镜,确 保个人防护措施到位。
移液器
精确移取和混合各种试剂。
显微镜
观察细胞和组织样本,以及 PCR扩增产物的大小和形态。
实验试剂准备
01
02
03
Buffer
一种化学试剂,用于维持 溶液的酸碱度和离子浓度, 以稳定酶的活性和促进酶 促反应的进行。
MgCl2
提供PCR反应所需的镁离 子,镁离子是Taq DNA聚 合酶的激活剂。
去离子水
环境和人体造成危害。
聚合酶链式反应PCR基本原理
• ④两引物间不应存在互补序列,尤其是防止3′ 端旳互补重叠。
• ⑤引物与非特异扩增序列旳同源性<70%。
• ⑥引物旳3′端碱基一定要与模板互补配对;而 5′则可相对不严,甚至还可做某些修饰。
• 2、PCR旳模板
• 欲扩增旳核酸片段是PCR旳模板。
• 能够是DNA,也能够是RNA。当用RNA作模板时, 首先要进行逆转录生成cDNA,然后再进行正 常旳PCR循环。
3、耐热旳DNA聚合酶
• 在PCR反应中,DNA聚合酶是最关键旳原因 之一。TaqDNA聚合酶是目前PCR中应用最广 泛旳耐热DNA聚合酶。
• TaqDNA聚合酶旳功能是:以DNA为模板,以 四种dNTP为原料,以引物3′端为出发点, 按5′→3′旳方向,以碱基配对方式合成 新旳DNA链。
寡核苷酸。
• 引物决定PCR扩增产物旳特异性和长度。 • PCR引物旳设计与PCR反应旳成败关系亲密。 • PCR反应中旳引物有两条,即5′端引物和3′
端引物,分别与相应旳模板链互补。
• 引物设计遵照下列原则:
• ①引物长度一般为15~30个核苷酸。
• ②引物中碱基旳分布尽量随机,尽量防止多聚 嘌呤或多聚嘧啶。
二、PCR旳基本原理
• PCR技术实际上是DNA旳体外扩增技术。 • 其原理类似于DNA在体内旳复制过程。 • 反应条件――模板DNA、寡核苷酸引物、DNA
聚合酶、四种dNTP原料和合适旳缓冲液体系, 在一定旳温度下,经过反复旳过程,就能够 完毕DNA旳体外合成。
• 这些过程都是经过控制温度来实现旳,即经 过 变 化 温 度 引 起 变 性 ( denature ) 、 退 火 ( annealing ) 和 延 伸 ( extension ) , 使 DNA得以复制。
聚合酶链式反应
示例电泳结果
1 2 3 4 5 M
M:DNA marker
1:为阳性对照
2:为阴性对照
3-5:为扩增出的DNA条带
实验注意事项
1. EB是强诱变剂并有中等毒性,配制和使用时都应戴手套,
并且不要把EB洒到桌面或地面上。凡是沾污了EB的容器 或物品必须经专门处理后才能清洗。沾染了EB的实验垃 圾需专门回收处理。 2. 观察DNA离不开紫外透射仪,可是紫外光对DNA分子有 切割作用。从胶上回收DNA时,应尽量缩短光照时间并 采 用 长 波 长 紫 外 灯 (300-360nm ) , 以 减 少 紫 外 光 切 割 DNA。 每加完一个样品要更换tip头,以防止互相污染,注意上
PCR反应条件:
94 ℃ 3min
94℃ 50℃ 72℃
72℃
30sec 30sec 80sec Cycle 40
10min
注:根据实际情况可调整退火温度,变性时间,退火时 间等参数
PCR反应步骤
1.按PCR扩增体系将反应物一一加入,混合均匀。 2. 根据计算好的PCR反应条件为实验用PCR仪设定反应程序。 3. 反应结束后,电泳检测反应产物及长度。 4. PCR产物的纯化 (酚/氯仿法) ① 取反应产物加100μLTE。 ② 加等体积氯仿混匀后用微型离心机10000rpm离心15s, 用 ③ 移液器将上层水相吸至新的小管中。这样抽提一次, 可除 去覆盖在表面的矿物油。 ④ 再用酚:氯仿:异戊醇抽提二次, 每次回收上层水相。 ⑤ 在水相中加300μL95%乙醇, 置-20℃下30min沉淀。 ⑥ 在小离心机上10000rpm离心10min,吸净上清液。加入 1mL70%乙醇,稍离后,吸净上清液.重复洗涤沉淀2次。将 沉淀溶于7mL ddH2O 中,待用。
聚合酶链式反应(PCR)
操作: 5份标本
Taq 酶 (5U/μl): 0.2μl × 6 = 1.2μl 水: 共174μl,先用移液器 / 指弹混匀,后用离心机瞬时 混匀(管壁上液体沉至管底)。
2. 另取 5 支0.2ml Ep管,分别加入上述液体29μl。
3. 分别取标本模板各1μl,加入上述5支 Ep 管中,混 匀,分别加入2滴液体石蜡(防止加温过程中液体蒸 发影响反应体积),离心机瞬时离心,备用。
⑶ 延伸温度和时间:
一般位于Taq酶最适作用温度70 ~ 75 ℃之间。 引物小于16个核苷酸时,过高的延伸温度不利于引 物与模板的结合,可以缓慢升温到70 ~ 75 ℃。 延伸反应时间,可根据待扩增片段的长度而定, < 1Kb,1分钟足够;> 1Kb需加长延伸时间,10Kb 片段延伸时间可达15分钟。
0.2×30 / 10 = 0.6μl 0.4×30×2 / 10 = 2.4μl 1μl 30-3-1.8-0.6-2.4-0.2-1=21μl
Taq 酶(5U/μl):1 / 5 = 0.2μl 模板: 水:
总体积 30μl ×6 = 180μl 1. 取一 0.5 ml Ep 管,依次加入下列试剂: 10×buffer: 3μl ×6 = 18μl MgCl2: 1.8μl×6 = 10.8μl dNTPs: 引物 P: 0.6μl×6 = 3.6μl 2.4μl ×6 = 14.4μl 21μl × 6 = 126μl
扩增的特异性取决于引物与模板DNA的特异 结合,基本反应步骤分三步: 1. 变性 (Denaturation): 加热使模板DNA双链间的氢键断裂而形成两 条单链。94℃ 30″
2. 退火 (复性) (Annealling):
突然降温后模板DNA与引物按碱基配对原则 互补结合,也存在两条模板链之间的结合,但由 于引物的高浓度,结构简单的特点,主要的结合 发生在模板与引物之间。55 ℃ 30 ″
聚合酶链式反应
行扩增。
实时监测
03
在PCR过程中,可以通过实时荧光检测或凝胶电泳等方法监测
扩增产物。
后续处理阶段
产物分析
数据整理与报告
PCR结束后,对扩增产物进行分析,如凝胶 电泳、测序等,以确定扩增的特异性。
整理实验数据,编写实验报告,包括PCR产 物的大小、特异性、重复性等信息。
质量控制
防止污染措施
确保实验过程符合质量控制标准,如引物 特异性、模板纯度等。
1990年代
第三代PCR仪出现,采用半导体材料 进行温度控制,提高了反应速度和灵 敏度。
05
04
1985年
第二代PCR仪问世,实现了温度自动 控制,提高了扩增效率和特异性。
在科学研究中的应用
基础研究
PCR技术可用于基因克隆、基 因突变分析、DNA测序等基础
研究领域。
医学诊断
PCR技术广泛应用于遗传病、 传染病、肿瘤等疾病的诊断和 监测。
THANKS
感谢观看
转基因作物检测
利用PCR技术,可以对转基因作物进行检测,确保食品安全和生态 安全。
动物疫病检测
通过PCR技术,可以对动物疫病进行快速、准确的检测,预防和控 制动物疫病的传播。
动物品种鉴定
利用PCR技术,可以对动物品种进行鉴定,保护动物资源和生态平衡。
06
PCR技术的未来展望
新技术的开发与改进
下一代PCR技术
个性化医疗
根据基因检测结果,可以为患者 提供个性化的治疗方案,提高治 疗效果和生存率。
生物进化研究
物种鉴定和分类
利用PCR技术,可以对生物物种进行鉴定和 分类,研究物种的进化关系和系统发育。
生物多样性研究
第五章聚合酶链式反应
第五章聚合酶链反应及其相关技术PCR技术从Mullis最初建立到现在共约20多年时间,因为此技术具有高特异性、高敏感性和简便快捷等特点而备受人们广泛应用,许多新型的PCR技术或由PCR衍生的新技术正不断出现,使PCR技术由最初的单一技术体系逐步发展成为一系列的技术综合。
PCR技术在体外快速特异地复制目的DNA序列,理论上能将极其微量的(pg DNA)目的基因在较短的时间内(通常1-3h)扩增达到纳克、微克甚至毫克级水平,使产物极易被检测。
因此PCR技术目前已经成为人们获取目标基因的最常用的方法之一,Mullis因其杰出的贡献,于1993年获得了诺贝尔化学奖。
聚合酶链式反应(polymerase chain reaction,PCR) 是体外酶促扩增DNA或RNA序列的一种方法,它是一种不需要借助于分子克隆而可以在体外快速繁殖、扩增DNA的技术,它与分子克隆(molecular cloning)、DNA测序(DNA sequencing)一起构成了分子生物学的三大主流技术。
在这三项技术中,PCR技术自1983年由美国Cetus公司Kary.Mullis提出并于两年后建立以来,得到了快速的发展,成为最常用的分子生物学技术之一。
这项技术使人们能够在数小时内通过试管中的酶促反应将特定的DNA片断扩增数百万倍,给生命科学领域的研究手段带来了革命性的变化。
由于PCR技术的实用性和极强的生命力,PCR技术成为生物科学研究的一种重要方法,极大地推动了分子生物学以及生物技术产业的发展。
目前,一系列的PCR方法被设计开发出来,并广泛应用于基因扩增与分离、医疗诊断、基因突变与检测、分子进化研究、环境检测、法医鉴定等诸多领域。
5.1 PCR技术原理聚合酶链式反应(PCR)是利用DNA片段旁侧两个短的单链引物,在体外快速扩增特异DNA片段的技术。
它应用热稳定的聚合酶,通过双链DNA模板的热变性、引物退火和引物延伸的重复循环,DNA片段以指数方式增加了百万倍。
聚合酶链式反应
反应的控制
变性温度和时间 95℃,30s 退火温度和时间低于引物Tm值5 ℃左右,一般在45~55℃ 延伸温度和时间 72℃,1min/kb(10kb内) Tm值=4(G+C) +2(A+T) 循环次数 :一般为25 ~ 30次。循环数决定PCR扩增的产量。模板初始浓度低,可增加循环数以便达到有 效的扩增量。但循环数并不是可以无限增加的。一般循环数为30个左右,循环数超过30个以后,DNA聚合酶活性 逐渐达到饱和,产物的量不再随循环数的增加而增加,出现了所谓的“平台期”。
引物退火
退火温度需要从多方面去决定,一般根据引物的Tm值为参考,根据扩增的长度适当下调作为退火温度。然后 在此次实验基础上做出预估。退火温度对PCR的特异性有较大影响。
Hale Waihona Puke 物延伸引物延伸一般在72℃进行(Taq酶最适温度)。但在扩增长度较短且退火温度较高时,本步骤可省略延伸时 间随扩增片段长短而定,一般推荐在1000bp以上,含Pfu及其衍生物的衍生设定为1min/kbp。
PCR原理
PCR原理
DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚 合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性 解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合 酶、dNTP就可以完成特定基因的体外复制。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂 贵,制约了PCR技术的应用和发展。
耐热DNA聚合酶-Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不 需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临 床。
聚合酶链式反应pcr
聚合酶链式反应pcr
1 聚合酶链式反应PCR
聚合酶链式反应(PCR)是一种允许大量翻倍指定的DNA序列的分
子生物技术。
通过利用特殊的酶(聚合酶)将两个DNA片段分别相互“拉伸”,重复地迭代扩增,合成更长的片段。
1.1 PCR的原理
PCR主要利用DNA聚合酶的功能来调控DNA片段的重复扩增与合成。
扩增过程分为三个步骤,即引物扩增、双螺旋扩增、保守分裂。
引物
扩增过程中,首先将扩增片段与反转录引物结合起来,DNA聚合酶将其复制到双螺旋结构;双螺旋扩增过程中,DNA聚合酶会主动分裂双螺旋,然后重复复制双螺旋,产生DNA序列的复制品;最后,保守分裂过程中,会继续分裂DNA双螺旋,直到完成指定的扩增任务。
1.2 PCR的应用
PCR技术有着广泛的应用,主要包括临床诊断应用、筛检、疾病分子检测等。
其中,PCR已经被广泛应用在心脑血管疾病、肿瘤、感染性疾病以及遗传病的检测上,准确可靠地检测出各种疾病的抗原。
另外,PCR技术在基因组学研究中也有广泛应用,可以用来进行基因鉴定、基因表达研究、比较基因组研究等。
在微生物学研究中,PCR技术也可以用来识别和遗传分类各种细菌和病毒,可以研究它们的源头和传播路径。
由此可见,聚合酶链式反应PCR技术无疑是一种重要而有用的分子生物技术,它已经得到广泛的应用,在诊断、疾病研究以及基因组学研究中发挥着重要作用。
聚合酶链式反应
聚合酶链式反应简介聚合酶链式反应(PCR)是一种重要的分子生物学技术,被广泛应用于基因分析、基因工程、医学诊断等领域。
PCR 能够快速、高效地扩增特定DNA片段,使得原本数量有限的DNA样本得以增加,从而便于进行后续实验。
PCR的核心原理是利用DNA聚合酶酶活性,通过不断重复三个步骤(变性、退火、延伸),在适宜的反应条件下,将目标DNA序列扩增至数百万份的数量。
依靠PCR技术,无需使用传统的细菌培养方法,仅需少量DNA样本和简单的实验设备,即可实现高效扩增目标DNA。
PCR反应步骤反应体系构建PCR反应所需的关键成分包括目标DNA模板、DNA聚合酶、引物(primer)、核苷酸和反应缓冲液。
引物是一对短的DNA片段,其序列与目标DNA序列上的起始和终止部分的互补序列匹配。
反应缓冲液是维持PCR反应过程中所需酶活性的化学平衡和适宜pH的缓冲物质。
变性PCR反应开始时,反应体系中的DNA样本被放置在高温环境中(通常为94-98摄氏度),使其双链DNA解离为两条单链DNA。
这个步骤可以通过加热反应体系来实现,高温会断裂氢键,使DNA的双链解开。
退火在反应体系降温至适宜的温度范围时(通常为50-65摄氏度),引物与目标DNA序列上的互补区域结合形成稳定的双链结构。
引物的选择非常重要,其应与目标DNA序列完全匹配,以确保选择性扩增。
延伸DNA聚合酶将新的核苷酸从反应缓冲液中获得,并在目标DNA的3’末端上依次加入。
这个过程被称为延伸,其速率与延伸温度和所用聚合酶的酶活性相关。
通常延伸温度为60-72摄氏度。
经过以上三个步骤的循环反复进行,每一轮都会使目标DNA序列数量翻倍。
因此,PCR可以在短时间内扩增出大量的目标DNA片段。
PCR应用PCR技术在生物学研究、医学诊断、疾病预防和基因工程等领域有着广泛的应用。
基因分析PCR被广泛用于分析基因的结构和功能。
通过PCR,可以快速扩增出感兴趣的DNA片段,然后进行测序分析、限制性酶切或其他分子生物学实验,以研究目标基因的结构和功能。
聚合酶链式反应
2、时间
第一次变性应给予足够时间( 分钟) 第一次变性应给予足够时间(5 ~ 7分钟) 每一个步骤所需时间取决于扩增片段的长度, 每一个步骤所需时间取决于扩增片段的长度,一 般为复性时间一般为30~ 般为复性时间一般为30~60sec 30 延伸时间:1Kb以内的DNA片段 延伸时间1min 以内的DNA片段, 1min( 延伸时间:1Kb以内的DNA片段,延伸时间1min(
PCR反应原理和反应过程 一、PCR反应原理和反应过程
DNA的体外复制包括3个步骤: DNA的体外复制包括3个步骤: 的体外复制包括 • 变性(denaturation):94 °C ~95 °C 变性(denaturation) • 退火(annealing):40 °C ~70 °C 退火(annealing) • 延伸(extension):72 °C 延伸(extension) 3个步骤作为PCR的一个循环,每当完成一 个步骤作为PCR的一个循环, PCR的一个循环 个循环,一个分子的模板被复制为二个, 个循环,一个分子的模板被复制为二个, 产物量以指数形式增长。 产物量以指数形式增长。
PCR技术的创建 PCR技术的创建
Khorana(1971)等提出在体外经DNA变性, Khorana(1971)等提出在体外经DNA变性,与适当引物 等提出在体外经DNA变性 杂交,再用DNA聚合酶延伸,克隆DNA的设想。 DNA聚合酶延伸 DNA的设想 杂交,再用DNA聚合酶延伸,克隆DNA的设想。 1983年,Mullis发明了PCR技术 发明了PCR技术, Khorana的设想得到 1983年,Mullis发明了PCR技术,使Khorana的设想得到 实现。 实现。 1988年Saiki等将耐热DNA聚合酶 Taq)引入了PCR 等将耐热DNA聚合酶( PCR技 1988年Saiki等将耐热DNA聚合酶(Taq)引入了PCR技 术 1989年美国 Science》杂志列PCR 年美国《 1989年美国《Science》杂志列PCR 为十余项重大科 学发明之首,比喻1989年为PCR爆炸年,Mullis 1989年为PCR爆炸年,Mullis荣获 学发明之首,比喻1989年为PCR爆炸年,Mullis荣获 1993年度诺贝尔化学奖。 1993年度诺贝尔化学奖。 年度诺贝尔化学奖
PCR介绍,生物学的聚合酶链式反应
生物学的聚合酶链式反应定义:一种在体外扩增DNA片段的重要技术。
当存在模板DNA、底物、上下游引物和耐热的DNA聚合酶时,经过多次“变性-复性-延伸反应”的循环过程,痕量模板DNA可扩增至几百万倍。
聚合酶链反应或多聚酶链反应(Polymerase Chain Reaction,PCR),又称无细胞克隆技术(“free bacteria”cloning technique),是一种对特定的DNA片段在体外进行快速扩增的新方法。
1985年美国PE-Cetus公司人类遗传研究室的Mullis 等发明了具有划时代意义的聚合酶链反应。
该方法一改传统分子克隆技术的模式,不通过活细胞,操作简便,在数小时内可使几个拷贝的模板序列甚至一个DNA分子扩增10^7~10^8倍,大大提高了DNA的得率。
已广泛应用到分子生物学研究的各个领域。
PCR技术是80年代中期发展起来的体外核酸扩增技术。
它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点。
PCR技术最早由美国Cetus公司人类遗传研究室Kary Mullis及同事于1985年发现并研制成功的;最早的应用报道是Saiki等1985年将PCR技术应用于β-珠蛋白基因扩增和镰刀状红细胞贫血的产前诊断。
随后使用了1976年Chien等分离的热稳定性Taq DNA聚合酶,使PCR操作大为简化,并使PCR自动化成为可能;1987年Kary Mullis等完成了自动化操作装置,使PCR技术进行实用阶段。
复旦大学1988年起开始研制耐热性多聚酶,军事医学科学院马立人教授等在1989年研制成功了PCR自动装置,并且不断推陈出新,最近研制的PTC-51A/B型DNA 热循环仪体积小,造型美观,价格适宜,操作简单,尤为适宜国内应用。
PCR发明不到10年,却已获得广泛应用。
每年都有上千篇文章发表。
1991年,期刊“PCR方法与应用”(PCr Methods and Application)在美国创刊,使有关学者有了自己的论坛和参考的专业期刊。
生化试验教材实验九:聚合酶链式反应
检测电泳结果
观察电泳结果,通过染色或荧光染料标记的方法检测PCR产物的位 置和大小,判断是否成功扩增出目标片段。
04
结果分析
电泳结果解读
01
电泳条带的亮度与产物量
电泳条带的亮度通常与产物量成正比。如果观察到某一泳道的条带亮度
显著高于或低于其他泳道,可能表明该泳道的PCR产物量存在异常。
感谢观看
THANKS
例混合,配置成PCR反应液。
设定PCR程序
根据所使用的DNA聚合酶和PCR 仪器的要求,设定PCR扩增程序, 包括变性、退火、延伸等温度设置 以及循环次数等。
进行PCR扩增
将PCR反应液放入PCR仪器中,按 照设定的程序进行扩增反应。
电泳检测
配置电泳液
选择适当的电泳缓冲液和染料,配置成电泳液。
进行电泳
移液器
精确移取一定量的溶液,进行 实验操作。
电泳仪和电泳槽
用于检测PCR产物,通过电泳 观察扩增结果。
实验试剂准备
01
02
03
缓冲液
提供PCR反应所需的缓冲 环境,维持反应体系的酸 碱度和离子浓度。
去离子水
稀释和配制溶液所需的水 源。
染料
用于电泳时染色DNA片段, 便于观察和检测。
03
实验步骤
模板DNA的制备
定量分析
通过测量PCR产物在特定波长下的吸光度,可以定量分析 产物量。常用的定量方法包括终点法、动力学法和标准曲 线法。
重复性评估
为了确保实验结果的可靠性,需要评估不同实验条件下 (如不同PCR循环数)的重复性。这可以通过计算重复实 验之间的变异系数来实现。
聚合酶链式反应名词解释生物化学
聚合酶链式反应名词解释生物化学
聚合酶链式反应(Polymerase Chain Reaction,简称PCR)是一种体外快速扩增特定DNA片段的技术。
它利用DNA聚合酶在适当温度下的体外酶促反应,在较短时间内大量复制目标DNA片段,并使其扩增至可检测水平。
PCR包括三个主要步骤:变性、退火和延伸。
变性步骤使DNA双链解开成两股单链,退火步骤使引物与目标DNA特异性结合,延伸步骤利用DNA聚合酶在合适温度下合成新DNA链。
这三个步骤连续循环进行,每一轮都会产生双倍数量的目标DNA。
PCR具有高度特异性、高灵敏性和高速度的特点,可以从少量的起始DNA样品中扩增出目标DNA片段,常用于分子生物学研究中的DNA定量、基因检测、基因测序、基因工程等多个领域。
聚合酶链式反应(PCR)
聚合酶链式反应(PCR)第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。
PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。
在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA模板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。
反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。
因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。
1.模板DNA的变性模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合为下轮反应作准备。
变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些,故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。
对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合酶链式反应聚合酶链式反应是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。
PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
PCR原理DNA的半保留复制是生物进化和传代的重要途径。
双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。
在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶耐热DNA聚合酶--Taq酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
反应准备其中dNTP、引物、模板DNA、Taq DNA聚合酶以及Mg2+的加量(或浓度)可根据实验调整。
PCR反应五要素:引物(PCR引物为DNA片段,细胞内DNA复制的引物为一段RNA链)、酶、dNTP、模板和缓冲液(其中需要Mg2+)。
PCR所用的酶主要有两种来源:Taq和Pfu,分别来自两种不同的噬热菌。
其中Taq扩增效率高但易发生错配。
Pfu扩增效率弱但有纠错功能。
模板即扩增用的DNA,可以是任何来源,但有两个原则,第一纯度必须较高,第二浓度不能太高以免抑制缓冲液的成分最为复杂,除水外一般包括四个有效成分:缓冲体系,一般使用HEPES或MOPS缓冲体系;一价阳离子,一般采用钾离子,但在特殊情况下也可使用铵根离子;二价阳离子,即镁离子,根据反应体系确定,除特殊情况外不需调整;辅助成分,常见的有DMSO、甘油等,主要用来保持酶的活性和帮助DNA解除缠绕结构聚合酶链式反应PCR引物设计PCR反应中有两条引物,即5′端引物和3′引物。
设计引物时以一条DNA单链为基准(常以信息链为基准),5′端引物与位于待扩增片段5′端上的一小段DNA序列相同;3′端引物与位于待扩增片段3′端的一小段DNA序列互补。
引物设计的基本原则①引物长度:15-30bp,常用为20bp左右。
②引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C 过多易出现非特异条带。
ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列参照。
③引物内部不应出现互补序列。
④两个引物之间不应存在互补序列,尤其是避免3 ′端的互补重叠。
⑤引物与非特异扩增区的序列的同源性不要超过70%,引物3′末端连续8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增。
⑥引物3‘端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,最佳选择是G 和C。
⑦引物的5 ′端可以修饰。
如附加限制酶位点,引入突变位点,用生物素、荧光物质、地高辛标记,加入其它短序列,包括起始密码子、终止密码子等。
模板的制备PCR的模板可以是DNA,也可以是RNA。
模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。
也可以是病理生理标本如细胞、血液、羊水细胞等。
法医学标本有血斑、精斑、毛发等。
标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。
多数样品需要经过SDS 和蛋白酶K处理。
难以破碎的细菌,可用溶菌酶加EDTA处理。
所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。
聚合酶链式反应反应的控制①PCR反应的缓冲液提供合适的酸碱度与某些离子关于PCR反应条件控制②镁离子浓度总量应比dNTPs的浓度高,常用1.5mmol/L③底物浓度dNTP以等摩尔浓度配制,20~200umol/L④TaqDNA聚合酶2.5U(100ul)⑤引物浓度一般为0.1 ~0.5umol/L⑥反应温度和循环次数变性温度和时间95℃,30s退火温度和时间低于引物Tm值5 ℃左右,一般在45~55℃延伸温度和时间72℃,1min/kb(10kb内)Tm值=4(G+C) +2(A+T)循环次数:一般为25 ~30次。
循环数决定PCR扩增的产量。
模板初始浓度低,可增加循环数以便达到有效的扩增量。
但循环数并不是可以无限增加的。
一般循环数为30个左右,循环数超过30个以后,DNA聚合酶活性逐渐达到饱和,产物的量不再随循环数的增加而增加,出现了所谓的“平台期”。
PCR reaction volume1.PCR条件94℃2minutes initial denaturation94℃30s denaturation57℃20s 34 Cycle annealing72℃1minute extension72℃5minutes final extension14℃forever refrigeration聚合酶链式反应循环参数聚合酶链式反应预变性模板DNA完全变性与PCR酶的完全激活对PCR能否成功至关重要,建议加热时间参考试剂说明书,一般未修饰的Taq酶激活时间为两分钟。
聚合酶链式反应变性步骤循环中一般95℃,30秒足以使各种靶DNA序列完全变性,可能的情况下可缩短该步骤时间.变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败。
聚合酶链式反应引物退火退火温度需要从多方面去决定,一般根据引物的Tm值为参考,根据扩增的长度适当下调作为退火温度。
然后在此次实验基础上做出预估。
退火温度对PCR的特异性有较大影响。
聚合酶链式反应引物延伸引物延伸一般在72℃进行(Taq酶最适温度)。
但在扩增长度较短且退火温度较高时,本步骤可省略延伸时间随扩增片段长短而定,一般推荐在1000bp以上,含Pfu及其衍生物的衍生设定为1min/kbp。
聚合酶链式反应循环数大多数PCR含25-35循环,过多易产生非特异扩增。
聚合酶链式反应最后延伸在最后一个循环后,反应在72℃维持10-30分钟.使引物延伸完全,并使单链产物退火成双链。
聚合酶链式反应步骤标准的PCR过程分为三步:聚合酶链式反应DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA聚合酶链式反应退火(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
聚合酶链式反应延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳梯度PCR仪)的作用下,以dNTP 为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。
每一循环经过变性、退火和延伸,DNA含量即增加一倍。
现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。
聚合酶链式反应检测PCR反应扩增出了高的拷贝数,下一步检测就成了关键。
荧光素(溴化乙锭,EB)染色凝胶电泳是最常用的检测手段。
电泳法检测特异性是不太高的,因此引物两聚体等非特异性的杂交体很容易引起误判。
但因为其简捷易行,成为了主流检测方法.聚合酶链式反应反应特点聚合酶链式反应特异性强聚合酶链式反应PCR反应的特异性决定因素为:①引物与模板DNA特异正确的结合;②碱基配对原则;③Taq DNA聚合酶合成反应的忠实性;④靶基因的特异性与保守性。
其中引物与模板的正确结合是关键。
引物与模板的结合及引物链的延伸是遵循碱基配对原则的。
聚合酶合成反应的忠实性及TaqDNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。
再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。
聚合酶链式反应灵敏度高PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=-6)水平。
能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR 的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。
聚合酶链式反应简便、快速PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。
扩增产物一般用电泳分析.聚合酶链式反应纯度要求低不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。
可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。
常见问题PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失。
聚合酶链式反应假阴性不出现扩增条带。
PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及溴乙锭的使用,④PCR循环条件。
模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。
⑤模板核酸变性不彻底。
在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。
聚合酶链式反应阴性需注意的是有时忘加Taq酶或溴乙锭。
引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。
有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。