苏教版数学八年级上册知识点总结

合集下载

苏教版初二数学上册知识点

苏教版初二数学上册知识点

一、全等△SAS (公义)ASA (公义)全等三角形SSS (公义)结构全等三角形的常有方法:AAS (定理)HL(定理)1、课本指出:公认的真命题称为公义,除了公义外,其余的真命题(如推理、定理等)的正确性都需要经过推理的方法证明。

表达三角形全等的判断方法中的推论AAS ;证明推论 AAS 。

要求:表达推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依照。

A DB C E F2、倍长线中线造全等(有中点了)已知:在△ ABC 中, AD 是 BC 边上的中线, E 是 AD 上一点,且 BE=AC ,延伸 BE 交 AC 于 F,求证: AF=EF 。

3、有和角均分线垂直的线段的时,往常把这条线段延伸,可归纳为“角分垂等腰归”例题:( 1)如图,在△ABC中,∠A=90°,AB=AC,BD均分∠ABC,CE⊥BD于E,若 CE= 4,则 BD=例题( 2)如图,已知△ ABC的面积为8,AD 均分∠ BAC,且 AD⊥BD 于 D,则△ ADC的面积是AB 4、K 型全等, 8 字型二、轴对称DC直角三角形斜边上中线= 1斜边(逆) * 2基本观点 -----对称轴是一条直线 *轴对称线段 ------垂直均分线(逆)应用角均分线(逆)距离最短问题*(1)碰到角均分线,往常作垂直、截取;(2)碰到垂直均分线,往常连结两点(垂直均分线的点和线段的端点);(3)碰到直角三角形斜边中点,往常连结中线。

例 1:在△ ABC中, AD 是∠ BAC的均分线,且 AB=AC+CD,若∠ BAC=75°,则∠ ABC的大小为()A.25°B. 35°C.°D. 45°例 2:如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.例 3:如图,对称已知∠BAC的均分线与BC的垂直均分线PQ订交于点P,PM⊥AC,PN⊥AB ,垂足分别为M 、N , AB = 3, AC = 7,则 CM 的长度为()3A.4B.3C. 2D.2例 4:如图,在△ ABC 中,∠ C= 90°,AC = BC= 6,D 为 AB 的中点,点 E、F 分别在 AC 、BC 边上运动(点 E 不与点 A 、C 重合)且保持∠ EDF= 90°,连结 EF,在此运动变化过程中, EF 的最小值例 5:如图,P 为∠ AOB 内必定点, M、N 分别是射线 OA、OB 上一点,当△ PMN 周长最小时,∠ OPM=50°,则∠ AOB=()A. 40° B. 45° C. 50° D. 55°例 6:如图 AD∥BC, BP均分∠ ABC, AP 均分∠ BAD,PE⊥ AB, PE=2,则两平行线 AD、BC间的距离例 7:如图, AB⊥ BC,AD⊥DC,∠ BAD=130°,点 M ,N 分别在 BC,CD上,当△ AMN 得周长最小时,∠ MAN 的度数为 _________.DANB CM例 8:为了做好效能安全工作,某交警执勤小队从如下图的A 处出发,先到公路上设卡检查,再到公路上设卡检查,最后再到 B 处履行任务,他们应当怎样走才能使总行程最短?三、勾股定理(逆)(1)在直角三角形中求边长;(2)证明三角形是直角三角形。

八年级上册数学知识点总结

八年级上册数学知识点总结

八年级上册数学知识点总结苏教版八年级上册数学知识点总结很多初中生都觉得到了八年级后,数学的难度增加了,也退步了。

这个时候学生们重视数学知识的总结和复习。

下面是店铺为大家整理的苏教版八年级上册数学知识点总结,希望对大家有用!苏教版八年级上册数学知识点总结一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如,2等;π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点原点对称。

如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若a≥0,则|a|=a;若a<0,则|a|=-a。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算八年级上册必备数学知识平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

苏教版初中数学八年级上册实数知识点总结

苏教版初中数学八年级上册实数知识点总结

苏教版初中数学八年级上册实数知识点总结一、平方根1、定义:一般地,如果x2=a(a≥0),那么这个数x就叫做a的平方根(或二次方根)。

2、表示方法:正数a的平方根记做,读作“正、负根号a”。

3、性质:(1)一个正数有两个平方根,它们互为相反数。

(2)零的平方根是零。

(3)负数没有平方根。

二、开平方1、定义:求一个数a的平方根的运算,叫做开平方。

三、算术平方根1、定义:一般地,如果x2=a(a≥0),那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

2、表示方法:记作,读作“根号a”。

3、性质:①一个正数只有一个算术平方根。

②零的算术平方根是零。

③负数没有算术平方根。

4、注意的双重非负性:四、立方根1、定义:一般地,如果x3=a那么这个数x就叫做a 的立方根(或三次方根)。

2、表示方法:记作,读作“三次根号a”。

3、性质:(1)一个正数有一个正的立方根。

(2)一个负数有一个负的立方根。

(3)零的立方根是零。

4、注意:,这说明三次根号内的负号可以移到根号外面。

5、五、开立方1、定义:求一个数a的立方根的运算,叫做开立方。

六、实数定义与分类1、无理数:无限不循环小数叫做无理数。

理解:常见类型有三类(1)开方开不尽的数:如等。

(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等。

(3)有特定结构的数:如0.1010010001……等;(注意省略号)。

2、实数:有理数和无理数统称为实数。

3、实数的分类:(1)按定义来分(2)按符号性质来分七、实数比较大小法理解1、正数大于零,负数小于零,正数大于一切负数。

2、数轴比较:数轴上的两个点所表示的数,右边的总比左边的大。

3、绝对值比较法:两个负数,绝对值大的反而小。

4、平方法:a、b是两负实数,若a2>b2,则a<b。

八、实数的运算1、六种运算:加、减、乘、除、乘方、开方。

2、实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

苏教版八年级上册数学知识点汇总

苏教版八年级上册数学知识点汇总

苏教版八年级上册数学知识点汇总第一章三角形的初步知识•三角形的概念与分类:理解三角形的定义,掌握按边和角对三角形进行分类(如等边三角形、等腰三角形、直角三角形等)。

•三角形的三边关系:理解并应用三角形的三边关系定理(任意两边之和大于第三边)进行边长判断。

•三角形的高、中线、角平分线、中位线:了解并掌握这些线段的概念、性质及画法,特别是中位线的性质(平行于第三边且等于第三边的一半)。

•三角形的稳定性:理解三角形在结构中的稳定性作用。

第二章全等三角形•全等三角形的概念与性质:理解全等三角形的定义,掌握全等三角形的对应边相等、对应角相等的性质。

•全等三角形的判定:掌握全等三角形的几种判定方法,包括SSS、SAS、ASA、AAS、HL(直角三角形专用)。

•全等三角形的应用:运用全等三角形的性质解决实际问题,如测量、作图等。

第三章轴对称与中心对称•轴对称图形与轴对称变换:理解轴对称图形的概念,掌握轴对称变换的性质,能识别并作出轴对称图形。

•中心对称图形与中心对称变换:了解中心对称图形的概念,掌握中心对称变换的性质,能识别并作出中心对称图形。

•设计轴对称或中心对称图案:通过实践活动,设计并制作轴对称或中心对称的图案。

第四章勾股定理•勾股定理的内容:理解并掌握勾股定理(直角三角形两直角边的平方和等于斜边的平方)及其逆定理。

•勾股定理的证明:了解勾股定理的多种证明方法,如赵爽弦图、欧几里得证明等。

•勾股定理的应用:运用勾股定理解决直角三角形中的边长计算问题,以及涉及勾股定理的实际问题。

第五章数据的收集、整理与描述•数据的收集:了解数据收集的方法(如调查、实验等),掌握数据收集过程中的注意事项。

•数据的整理:学习数据的分类、排序、分组等整理方法,掌握频数分布表、频数分布直方图的绘制方法。

•数据的描述:理解平均数、中位数、众数等统计量的概念、意义及计算方法,能选择合适的统计量描述数据特征。

•数据的波动:了解极差、方差等描述数据波动程度的统计量,掌握其计算方法及意义。

苏教版八年级上数学知识点总结

苏教版八年级上数学知识点总结

第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).第二章轴对称1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

苏教版新课标数学八年级上册知识点总结

苏教版新课标数学八年级上册知识点总结

千里之行,始于足下。

苏教版新课标数学八年级上册知识点总结
以下是苏教版新课标数学八年级上册的知识点总结:
一、小数的认识与数的运算
1. 小数的概念和性质:小数的进位和退位,0的引入和化简。

2. 小数的四则运算:加减乘除、小数乘法的规律、小数除法的规律。

二、有理数
1. 有理数的概念和性质:有理数的正负,有理数的比较和排序,有理数的绝对值。

2. 有理数的运算:有理数的加减乘除,有理数的乘方和开方。

三、平面直角坐标系
1. 平面直角坐标系的引入:点的横纵坐标,坐标轴和坐标系。

2. 平面直角坐标系的认识:点的坐标、点的位置关系、求两点之间的距离、中点坐标。

四、一次函数
1. 一次函数的引入:函数的概念,一次函数的定义和表示。

2. 一次函数的性质:函数的自变量和函数值、一次函数的图象和图象特征。

3. 一次函数的运算:一次函数的加减、一次函数的乘除。

五、等式与方程
1. 等式的性质和运算:等式的性质、等式的加减乘除运算。

2. 一元一次方程:一元一次方程的解、特殊方程的解、方程的解集表示。

这些是八年级上册数学中的主要知识点总结,希望能对你有所帮助。

第1页/共1页。

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结本文档旨在对苏教版八年级上册数学课程的知识点进行归纳和总结,帮助学生更好地掌握和复相关内容。

一、代数与函数- 代数运算:四则运算,整式的加减乘除等。

- 一元一次方程:解一次方程的基本方法,应用题的解法。

- 一元一次不等式:求解不等式,应用题的解法。

- 函数概念:自变量和因变量,函数的图象。

- 一元一次函数:函数的定义,函数图象的性质,函数与方程的联系。

- 一元一次函数图象的绘制与应用:确定函数的部分特征,应用题的解法。

二、图形的认识与运用- 点和线:点的名称与判定,线的名称与判定。

- 图形的基本性质:图形的名称与判定,图形基本性质的应用。

- 直线与角:直线的性质,角的性质,角的名称与判定。

- 三角形:三角形的性质,三角形判定,三角形的分类。

- 四边形:四边形的性质,四边形的分类,四边形的判定。

- 一般平行四边形:平行四边形的性质,平行四边形的判定。

- 圆及其部分:圆的性质,圆的判定,圆内角的性质。

三、空间与形体- 空间中的位置与方向:空间中点的坐标,方向的判定与计算。

- 空间中直线、平面与图形:直线与平面的判定,平行与垂直的判定。

- 空间中三视图与展开图:图形的三视图,平面图形的展开图。

四、数据统计- 统计与统计分布:数据的统计指标,数据的统计分布。

- 直方图与折线图:直方图的绘制与解读,折线图的绘制与解读。

五、平面向量- 平面向量的表示与运算:平面向量的表示方法,向量的运算。

以上是苏教版八年级上册数学课程的主要知识点归纳和总结。

希望本文档对学生理解和掌握相关知识有所帮助。

苏科版八年级数学上册知识要点

苏科版八年级数学上册知识要点

苏科版八年级数学上册知识要点GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初二数学(上)期末复习各章知识点第一章轴对称图形(知识点)一、轴对称与轴对称图形1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。

③到线段两端距离相等的点,在这条线段的垂直平分线上。

结论:线段的垂直平分线是到线段两端距离相等的点的集合。

2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。

②角平分线上的点到角的两边距离相等。

③到角的两边距离相等的点,在这个角的平分线上。

苏教版八年级上数学知识点总结

苏教版八年级上数学知识点总结

第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).第二章轴对称1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

最新苏教版八年级数学上册知识点总结

最新苏教版八年级数学上册知识点总结

最新苏教版八年级数学上册知识点总结最新苏教版八年级数学上册知识点总结孩子在八年级上册学习数学,是一个非常重要的时期。

你知道苏教版八年级数学上册有哪些重要知识点吗?下面是小编为大家整理的关于苏教版八年级数学上册知识点总结,欢迎大家来阅读。

苏教版八年级数学上册知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。

2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。

二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。

理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。

2、全等三角形的周长相等、面积相等。

3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。

三、全等三角形的判定1、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。

2、角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。

3、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

4、边边边公理(SSS) 有三边对应相等的两个三角形全等。

5、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。

2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。

3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。

第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

苏教版初中数学八年级上册知识点

苏教版初中数学八年级上册知识点
一次函数
1、函数
2、一次函数
3、一次函数的图像
4、用一次函数解决问题
5、一次函数与二元一次方程
6、一次函数、一元一次方程和一元一次不等式
数学活动温度计上的一次函数
小结与思考
复习题
课题学习关于勾股定理的研究
章节排序
建议
学生姓名:联系方式:日期:年月日
知识点内容
知识点掌握情况自我等级评价
具体知识点

会一点
不清楚
一点不会
全等三角形
1、全等图形
2、全等三角形
3、探索三角形全等的条件
数学活动关于三角形全等的条件
小结与思考
复习题
轴对称图形
1、轴对称与轴对称图形
2、轴对称的性质
3、设计轴对称图案
4、线段、角的轴对称性
5、等腰三角形的轴对称性
数学活动折纸与证明
小结与思考
复习题
勾股定理
1、勾股定理
2、勾股定理的逆定理
3、勾股定理的简单应用
数学活动探寻“勾股数”
小结与思考
复习题
实数
1、平方根
2、立方根
3、实数
4、近似数
数学活动有关“实数”的课题探究
小结与思考
复பைடு நூலகம்题
平面直角坐标系
1、位置的确定
2、平面直角坐标系
数学活动确定藏宝地
小结与思考
复习题

八年级上册数学苏教版

八年级上册数学苏教版

八年级上册数学苏教版第一章三角形全等1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。

2.全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS)有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

4.证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).第二章轴对称1.轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2.轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3.线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等4.角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

新苏科版数学八年级上册知识点总结

新苏科版数学八年级上册知识点总结

新苏科版八年级数学(上)知识点总结第一章 三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全.等.; ③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS );②找夹角(SAS );③找是否有直角(HL ). ⑵已知一边一角:①找一角(AAS 或ASA );②找夹边(SAS ).⑶已知两角:①找夹边(ASA );②找其它边(AAS ).第二章 轴对称1、 轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、 轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

苏教版八年级数学上册知识点(详细全面精华)

苏教版八年级数学上册知识点(详细全面精华)

苏教版八年级数学上册知识点第1章全等三角形一、全等三角形概念:能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形的表示全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。

4、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)6、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

苏教版八年级上数学知识点总结+习题练习

苏教版八年级上数学知识点总结+习题练习

八年级数学(上)期末复习第二章轴对称1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等。

②判定定理:到角两个边距离相等的点在这个角的角平分线上。

拓展:三角形三个角的角平分线的交点到三.条边..的距离相等。

5、等腰三角形:①性质定理:⑴等腰三角形的两个底角相等;(等边对等角)⑵等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合。

(三线合一)②判断定理:一个三角形的两个相等的角所对的边也相等。

(等角对等边)6、等边三角形:①性质定理:⑴等边三角形的三条边都相等;⑵等边三角形的三个内角都相等,都等于60°;拓展:等边三角形每条边都能运用三线合一....这性质。

②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形。

7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。

⑵直角三角形中,斜边上的中线等于斜边的一半。

拓展:直角三角形常用面积法...求斜边上的高。

例题评析1、线段的对称轴有 条,是2、线段垂直平分线上的点到 的 距离相等 ∵ ∴3、到 距离相等的点在线段的垂例1:如图,在△ABC 中,DE 是AC 的垂直平分线.(1)若AC =6,△ABD 的周长是13,则△ABC 的周长是_______; (2)若△ABC 的周长是30,△ABD 的周长是25,则AC =_______.例2:如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于点E 、点D. (1)若BC =8,则△ADE 的周长是_______; (2) 若∠BAC=110°,那么∠EAD =______ (3) 若∠EAD=100°,那么∠BAC =______4、角的对称轴有 条,是5、角平分线上的点到 的距离相等 ∵ 又∵ ∴6、角的内部到 距离相等的点在角的平分线上∵又∵ ∴ 例3:如图,在△ABC 中,∠C=90°,AD 平分∠BAC. (1)若CD=5,则点D 到AB 的距离为 .FEP B A C(2) 若BD:DC=3:2,点D到AB的距离为6,则BC的长是 .例4:如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP补充:①三角形的三条边的垂直平分线的交点到的距离相等②三角形的三条角平分线的交点到的距离相等1.请你先在图的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP 上找一点Q,使QB=QC.2.如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.7、等边对等角∵∴8、等角对等边∵∴9、等腰三角形、、重合(三线合一)(有条对称轴)∵∵∵又∵又∵又∵∴∴∴例5:(1)等腰三角形的一边长为5,另一边长为11,则该等腰三角形的周长为(2)等腰三角形的两边长分别为4、5.则该等腰三角形的周长为(3)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.(4)等腰△ABC中,若∠A=30°,则∠B= .例6:(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=_______.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=___ __.(3)如图③,AB=AC=DC,且BD=AD,则∠B=___ __.例7:如图,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.试说明BD+EC=DE.③例8:如图,已知AB=AC ,AD=AE .求证:BD=CE .例9:在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC于点F ,且BF⊥AC,垂足为F,∠BAC=45°,原题设其等边三角形的三条边 ,三个角都是 ,每条边上都有三线合一,有 条对称轴 (2)等边三角形的3个判定方法:三条边都 的三角形是等边三角形 三个角都 的三角形是等边三角形有一个角是 的 三角形是等边三角形例10:(1)如图①,在等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE=____.(2)如图②,正方形ABCD ,△EAD 为等边三角形,则∠EBC =_______.(3)如图③,已知等边△ABC ,AC=AD,且AC ⊥AD ,垂足为A ,则∠BEC =_______.① ② ③例11:如图,C 为线段AE 上一动点(点C 不与点A 、E 重合),在AE 的同侧分别作等边△ABC 和等边△CDE ,AD 与BE 相交于点O ,AD 与BC 相交于点P ,BE 与CD 相交于点Q ,连接PQ .下列五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°,其中恒成立的有__________(填序号).例12:如图,△ABC 是等边三角形,D 是AB 边上的一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .11、直角三角形斜边上的中线等于 ∵又∵ ∴12S ΔABC ==13、直角三角形中,30°的角所对的直角边等于∵ 又∵∴例12:(1)在Rt△ABC中,∠C=90°,CD是斜边AB的中线,且CD=4 cm,则AB=_______.(2)在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则AC=_______.(3)在Rt△ABC中,∠C=90°,AC=8,BC=6,则AB边上的高CD= .例13:如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,求证:GF⊥DE.例14:如图,已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.相关练习:1.如图,在△ABC中,BC=8 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,求△PDE的周长.2.如图,在边长为2等边△ABC中,AD是BC边上的中线,E、F是AD的三等分点,则图中阴影部分的面积是__________cm2.3.如图,在△ABC中,CD与C,分别是△ABC的内角、外角平分线,DF//BC交AC于点E.试说明(1) △DCF为直角三角形;(2)DE=EF.4.如图,△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试找出图中除△ABC外的等腰三角形,并说明你的理由.5.如图,AD是△ABC的角平分线,点E在AB上,且AE=AC,EF∥BC交AC于点F.求证:EC 平分∠DEF.6.如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.BE与DF相等吗?请说明理由.7.如图,C为线段AB上任意一点(不与A、B重合),在AB的同侧分别作△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE 交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.试说明:(1) △ACE≌△DCB.(2) PC平分∠APB.8.如图,等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.( l )求BE的长;( 2 )试说明BD=ED9.画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.(2)在所画图中,①线段OE与CD之间有怎样的数量关系,并说明理由.②求证:△CDF为等腰直角三角形10.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证: ME=BD.11.如图,设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1 .(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)(2)若已经摆放了3根小棒,则θ1 =___________,θ2 =__________,θ3=__________;(用含θ的式子表示)(3)若只能摆放4根小棒,求θ的范围.12.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.13.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CD,BD=CF.(1)试说明DE=DF.(2)若∠A=40°,求∠EDF的度数.14.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 _______.15.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于16.如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN;②MO=NO;③OP⊥MN;④MD=ND.其中正确的有17.如图所示,等边三角形ABC的边长是6,点P在边AB上,点Q在BC的延长线上,且AP=CQ,设PQ与AC相交于点D.(1)当∠DQC=30°时,求AP的长.(2)作PE⊥AC于E,求证:DE=AE+CD.18.如图,在△ABC中,已知BA=BC,∠B=120°,AB的垂直平分线DE交AC于点D.(1)求∠A的度数;(2)若AC=6cm,求AD的长度.19.若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.20.如图,某市把一块形状为直角三角形的废地开辟为生物园,∠ACB=90o.AC=80 m.BC=60 m.(1)若入口E在边AB上,且与A、B距离相等,求从人口E到出口C的最短路线的长;(2)若线段CD是一条水渠,且点D在AB边上,已知水渠造价约为10元/m,则点D在距点A多远处,此水渠的造价最低?最低造价是多少?第三章勾股定理勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

苏教版八年级数学全册知识点总结

苏教版八年级数学全册知识点总结
多边形的外角和定理:任意多边形的外角和等于 360°。 6、设多边形的边数为 n,则多边形的对角线共有 n(n 3) 条。从 n 边形的
2
一个顶点出发能引(n-3)条对角线,将 n 边形分成(n-2)个三角形。 四.平行四边形 1、平行四边形的定义 两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质
1、矩形的定义 有一个角是直角的平行四边形叫做矩形。 2、矩形的性质 (1)矩形的对边平行且相等 (2)矩形的四个角都是直角 (3)矩形的对角线相等且互相平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对 称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的 直线。 3、矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形 (2)定理 1:有三个角是直角的四边形是矩形 (3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积 S 矩形=长×宽=ab 六、菱形
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行
且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图 形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质 旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点 与旋转中心的连线所成的角等于旋转角。 三、四边形的相关概念
2、勾股定理的逆定理
如果三角形的三边长 a,b,c 有关系 a2 b2 c2 ,那么这个三角形是直角
三角形。
3、勾股数:满足 a2 b2 c2 的三个正整数,称为勾股数。
二、实数的概念及分类
1、实数的分类
正有理数
有理数 零
有限小数和无限循环小数

苏教版八年级上册数学大纲

苏教版八年级上册数学大纲

苏教版八年级上册数学大纲
一、数与式。

1.1 整数的加减。

1.2 整数的乘除。

1.3 有理数的加减。

1.4 有理数的乘除。

1.5 有理数的混合运算。

1.6 用字母表示数。

1.7 代数式的加减。

1.8 代数式的乘除。

二、图形与位置。

2.1 角与直线。

2.2 角的度量。

2.3 三角形的性质。

2.4 三角形的分类。

2.5 三角形的面积。

2.6 平行线与平行四边形。

2.7 梯形和同类四边形。

2.8 圆的性质。

三、方程与不等式。

3.1 一元一次方程。

3.2 一元一次方程的应用。

3.3 一元一次不等式。

3.4 一元一次不等式的应用。

四、数据的处理。

4.1 统计调查。

4.2 数据的收集和整理。

4.3 统计图。

4.4 平均数。

4.5 中位数。

4.6 众数。

4.7 数据的分布形状。

以上就是苏教版八年级上册数学大纲的主要内容概述。

希望对你有所帮助。

苏教版八年级数学全册知识点汇总

苏教版八年级数学全册知识点汇总

第一章教学内容:勾股定理重点:勾股定理的内容及应用,判断怎样得到直角三角形难点:勾股定理的应用,圆柱的展开,勾股定理的逆定理易错点:侧面展开图后直角三角形的理解与应用第二章教学内容:实数重点:平方根,立方根的概念,实数的定义,计算器的应用难点:理解无理数是无限不循环小数,实数运算的某些技巧掌握,分母有理化易错点:无限不循环小数是无理数,无限循环或者有限小数是有理数,理解平方根有两个第三章教学内容:图形的平移与旋转重点:平移的特征,简单的平移作图,旋转特征的了解难点:旋转作图,图案的设计易错点:简单的平移作图与旋转作图第四章教学内容:平行四边形性质的探索重点:特殊平行四边形的性质多边形内角和的推导难点:特殊平行四边形的性质与判断,多边形外角和的推导过程易错点:平行四边形的判定,特殊平行四边形的判定第五章教学内容:位置的确定重点:平面直角坐标系的理论,坐标的变化难点:物体位置变化的确定,坐标变化后物体的变化易错点:平面直角坐标系中坐标的表示,坐标变化的情况第六章教学内容:一次函数重点:一次函数的解析式及其图像,一次函数的感念及其性质,待定系数法难点:变量与函数对应关系的了理解,一次函数图像的应用。

易错点:一次函数的表达式及其用待定系数法确定一次函数的表达式第七章教学内容:二元一次方程组重点:用代入法和加减消元法解二元一次方程组难点:二元一次方程组的应用题,二元一次方程组及一次函数易错点:二元一次方程组的解法及其应用题苏教版八年级数学(上)知识点总结第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版《数学》(八年级上册)知识点总结第一章轴对称图形第二章勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222cb a 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c ba,那么这个三角形是直角三角形。

3、勾股数:满足222c ba的三个正整数,称为勾股数。

二、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:轴对称轴对称的性质轴对称图形线段角等腰三角形轴对称的应用等腰梯形设计轴对称图案(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

a注意a 的双重非负性:a3、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做 a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a ,b ababa b a 0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a ba b a ba (4)绝对值比较法:设a 、b 是两负实数,则b aba。

(5)平方法:设a 、b 是两负实数,则b aba22。

五、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律ab ba 加法结合律)()(c bacb a乘法交换律baab 乘法结合律)()(bc a c ab 乘法对加法的分配律acabc ba )(第三章中心对称图形(一)一、平移1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

三、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于?)2(n180°;多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n,则多边形的对角线共有2)3(nn条。

从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

四.平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S 矩形=长×宽=ab六、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半七.正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。

先证它是菱形,再证它是矩形。

4、正方形的面积设正方形边长为a ,对角线长为 bS 正方形=222ba八、梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。

梯形中不平行的两边叫做梯形的腰。

梯形的两底的距离叫做梯形的高。

2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。

一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。

(选择题和填空题可直接用)(四)梯形的面积(1)如图,DEAB CD S ABCD?)(21梯形(2)梯形中有关图形的面积:①BACABDS S ;②BOCAOD S S ;③BCDADC SS八、中心对称图形1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

第四章数量、位置的变化一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x轴和y 轴统称坐标轴。

它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a 时,(a ,b )和(b ,a )是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限0,0y x 点P(x,y)在第二象限0,0y x 点P(x,y)在第三象限0,0y x 点P(x,y)在第四象限,0yx(2)、坐标轴上的点的特征点P(x,y)在x 轴上0y ,x 为任意实数点P(x,y)在y 轴上0x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上x ,y 同时为零,即点P 坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上x 与y 相等点P(x,y)在第二、四象限夹角平分线上x 与y 互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

相关文档
最新文档