数学建模模型
数学建模—函数模型及其应用
(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为
数学建模方法模型
数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。
具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模中模型的名词解释
数学建模中模型的名词解释数学建模作为一门学科,是将实际问题转化为数学问题,并运用数学理论和方法来解决问题的过程。
在数学建模中,模型是其中最为重要的概念之一。
模型在解决实际问题时起着关键的作用,可以帮助我们更好地理解现象和规律,并进行预测和优化。
一、模型的定义模型是对实际问题的抽象和简化,通过数学形式来描述。
它可以是数学方程、图表或者其他数学表达形式。
模型的建立需要根据实际问题的特点和需求,选择合适的数学方法和变量,并对其进行适当的假设和简化。
二、数学模型的分类数学模型可以分为动态模型和静态模型两种类型。
1.动态模型动态模型是描述事物随时间变化的模型。
在动态模型中,时间是一个重要的变量,用来描述事物的演化过程。
动态模型可以采用微分方程、差分方程等数学方法进行描述,常见的动态模型包括物理系统的运动学模型、生态系统的种群动力学模型等。
2.静态模型静态模型是描述事物特定状态的模型。
在静态模型中,时间不再是一个重要的变量,模型的关注点集中于某一特定时刻或特定状态下的问题。
静态模型可以采用代数方程、优化模型等进行描述,常见的静态模型包括线性规划模型、统计回归模型等。
三、模型的构建步骤建立数学模型的过程可以分为问题的理解、建立数学模型、求解模型和模型的验证四个步骤。
1.问题的理解问题的理解是建立数学模型的第一步,需要深入了解问题的背景和需求,明确问题的目标和限制条件,分析问题的关键因素和变量。
2.建立数学模型建立数学模型是将实际问题转化为数学问题的过程,需要根据问题的特点和要求选择合适的数学方法和变量,并针对问题进行适当的假设和简化。
建立数学模型时,需要考虑模型的可解性、可行性和合理性。
3.求解模型求解模型是通过数学方法和计算工具,对建立的数学模型进行求解和分析,得到问题的解答或者优化结果。
求解模型时,需要选择合适的求解算法和计算方法,进行模型的计算和推导。
4.模型的验证模型的验证是对模型求解结果的合理性和可靠性进行分析和评价的过程。
数学建模 模型 大全
Scheafer微分方程模型
Lanchester战斗模型
350
SIR模型
军备竞赛的经济模型
355
混沌与分形模型
连续优化问题
Steiner树
库存模型
制造模型
最陡上升梯度方法
375
石油转运模型
Lagrange乘子法
注意里面涉及到的经济学概念和意义
381
航天飞机的水箱模型
渔业模型
注意各种“最优”的意义
155
港口系统模型
改变参数时,改善情况的分析
164
离散概率模型
马尔可夫链
汽车租赁模型
要结合蒙特卡罗算法
176
投票趋势模型
177
Markov决策
串联和并联系统模型
178
线性规划模型
无约束类
生产计划模型
192
取整数类
载货模型
194
动态规划类
1Hale Waihona Puke 7多目标规划类投资问题
有时须对目标进行取舍。可采取加权
系统层次分析
97
海湾收成模型
多项式拟合
磁带播放模型
高阶多项式敏感度很强
光滑化
115
停止距离模型(2)
三阶样条法。有自然和强制样条两种
134
预测
时间序列
GM(1,1),指数平滑,线性平滑
因果分析法
聚类分析
灰色关联度分析
聚类分析
因子分析
模拟方法
蒙特卡罗算法
硬币投掷模型
149
汽油储存模型
逆线性样条(可改变随机数范围)
图标模型
军备竞赛模型
民防、移动发射台、多弹头
数学建模图论模型
任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许
数学建模分类模型
数学建模分类模型
数学建模分类模型是利用数学技术,在计算机环境中构建出一系列的
分类模型,它可以对对象进行划分,根据划分的结果选择合适的计算模型,以便完成对象属性的计算和分类。
数学建模分类模型有很多,主要有线性
分类模型、非线性分类模型、支持向量机分类模型、决策树分类模型、朴
素贝叶斯分类模型、神经网络分类模型等。
线性分类模型是在定义的特征
空间中建模,主要利用一个或多个线性超平面将实例空间划分成多个子空间;非线性分类模型是在数据特征的特征空间中建立的模型,通过训练数
据生成某种更复杂的函数模型来划分数据;支持向量机分类模型是基于寻
找最大边界线分类模型,它能够正确分类线性不可分的数据;决策树分类
模型是基于递归地划分样本的一种建模方法;朴素贝叶斯分类模型是一种
生成模型,基于贝叶斯定理和特征条件独立性假设;神经网络分类模型是
一种基于多层神经元结构构建问题分类模型。
数学模型与数学建模
数学模型与数学建模数学模型是运用数学方法描述现实或抽象问题的一种工具或方法。
数学模型又可分为解析模型和仿真模型两种。
解析模型是指基于已知公式和数据进行分析求解,得到数学表达式或数值解的模型。
仿真模型是指利用计算机建立的模拟系统模型,根据模型建立的规则模拟输入变量所产生的输出结果。
数学建模是指通过数学知识把实际问题抽象为数学问题,并基于其建立数学模型。
数学建模技术可应用于各个领域,如自然科学、工程技术、社会科学、医学等。
下面就对数学模型和数学建模的一些概念和应用进行详细介绍。
一、数学模型的分类数学模型主要包括解析模型和仿真模型。
下面分别介绍:1、解析模型解析模型是指通过已知数据和公式,进行分析推导求解数学表达式或数值解的模型。
它是基于数学理论和分析方法的,其主要步骤为:建立问题的数学模型、求解模型、验证模型和应用模型。
解析模型主要包括以下几种类型:(1)几何模型几何模型是指通过几何图形描述实际问题的模型。
如,根据实际问题的条件,建立几何图形,求解图形的面积、周长、体积等数学问题,就是利用几何模型进行的建模。
几何模型常用于计算机图形学、工程地质学、建筑工程学等领域。
(2)微积分模型微积分模型是指通过微积分的方法求解实际问题的模型。
微积分是数学分析的基础,微积分模型广泛应用于科学工程领域。
如在热力学、流体力学、电磁学、生物学等领域,常用微积分模型来研究问题。
(3)代数模型代数模型是指通过代数方程和不等式描述实际问题的模型。
如根据实际问题建立代数模型求解方程组、解析几何等问题。
代数模型广泛应用于物理、经济、金融等领域。
(4)概率统计模型概率统计模型是指通过概率统计理论描述实际问题的模型。
如,许多保险公司的经营决策是基于概率统计模型的建立和分析的。
又如,酒店的房价决定也取决于概率统计模型。
2、仿真模型仿真模型是指利用计算机模拟系统建立的模型。
计算机可以模拟出一些人工难以模拟或难以观测的复杂系统,并通过模拟结果对系统进行推理分析或进行决策。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
数学建模最优化模型
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
数学建模常用模型及代码
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模之优化模型
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。
数学建模_初等模型
1805年,英国和法国进行了一场惨烈的海战。其中,尼尔 森担任英国统帅,他的对手则是大名鼎鼎的拿破仑。尼尔森的 舰队有27艘战舰,而拿破仑的舰队却有33艘战舰。根据以往的 战争经验,若两军相遇,一方损失兵力大约是对方兵力的10%。 如果按照这一公式计算,显然人多势众的法军将获胜,而且在 第11次遭遇战中全歼英军,如表所示。
(k3 ∈ R+ ) (k4 ∈ R+ )
⎧⎨⎩TOnn++11
= On + ΔOn = Tn + ΔTn =
= (1 (1 +
+ k1)On k2 )Tn −
− k3OnTn k4OnTn
现在,取k1=0.2、 k2=0.3、 k3=0.001、 k4=0.002,解得平衡 点(O,T)=(150,200)或(0,0)【舍去】
在什么情况下双方的核军备精神才不会无限扩张而存在暂 时的平衡状态,处于这种平衡状态下双方拥有最少的核武器数 量是多大,这个数量受哪些因素影响,当一方采取诸如加强防 御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发 生什么变化?
最后英军战胜了法军,而且双方伤亡情况与历史事实也很 相近。当年,英军在战役A和战役B中战胜法军,但法军没有增 援C,而是选择了撤退,大约有13艘战舰退回法国海港。
点评:数学建模以解决某现实问题为目的,从问题中抽象 并归结出来的数学问题。从现象到模型,数学建模必须反映现 实,既然是一种模型,它就不是现实问题的全部复制,常常会 忽略一些次要因素,作一些必要的简化,但本质上必须反映现 实问题的数量规律。
斑点猫头鹰
老鹰 天数 老鹰 斑点猫头鹰 天数
情况4:老鹰仍然成为胜利者, 斑点猫头鹰最后还是灭绝了。与 数量 前面三种情况相比,两个种群的 初始数量相同,可以说是站在同 一条起跑线上。但是,老鹰种群 以绝对的优势赢得胜利,而斑点 10 猫头鹰种群惨遭灭绝。
数学建模四大模型归纳
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
大学生数学建模--常用模型与算法
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模 时间序列模型
数学建模时间序列模型1. 引言1.1 概述时间序列模型是一种数学建模方法,用于分析和预测随时间变化而变化的数据。
在各个领域,例如经济学、金融学、气象学等,时间序列模型都被广泛应用于数据分析和预测中。
时间序列模型的核心思想是利用过去的观测数据来预测未来的值。
通过对历史数据的分析,可以揭示出其中的规律和趋势,并基于这些规律和趋势来进行预测。
这使得时间序列模型成为了许多领域中非常有用的工具。
时间序列模型有许多不同的方法和技术,每种方法都有其适用的场景和特点。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)以及季节性自回归积分移动平均模型(SARIMA)等。
这些模型都基于不同的假设和方程,用于解释和预测时间序列数据。
本文将介绍时间序列模型的基本原理和方法,并探讨在数学建模中的应用。
首先,我们将介绍时间序列模型的基本概念和定义,包括时间序列、平稳性和自相关性等。
然后,我们将深入研究数学建模的基础原理,包括数据预处理、模型选择和参数估计等。
通过学习这些基础原理,读者将能够更好地理解时间序列模型,并能够在实际问题中应用它们进行数据分析和预测。
本文将通过实例和案例分析来说明时间序列模型的应用。
我们将使用真实的数据集,并结合相关的数学模型和算法,在实际问题中进行分析和预测。
通过这种方式,读者将能够更好地理解时间序列模型的实际应用,并能够应用这些方法解决自己遇到的问题。
最后,在结论部分,我们将对本文的内容进行总结,并展望时间序列模型的未来发展方向。
时间序列模型作为一种强大的分析工具,在大数据时代将发挥越来越重要的作用。
随着数据量的增加和计算能力的提升,时间序列模型将更加精确和高效,为各行各业的决策和预测提供更准确的支持。
1.2 文章结构本文按照以下结构组织:1. 引言:在这一部分,我们将提供一个概述性的介绍,包括对时间序列模型和数学建模的定义和背景的讨论。
我们将介绍本文的目的,并列出本文的主要内容。
常见数学建模模型
常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。
常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。
下面将分别介绍这些常见数学建模模型的基本原理和应用领域。
一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。
其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。
线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。
二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。
常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。
回归分析模型在市场预测、金融风险评估等领域有广泛的应用。
三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。
该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。
离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。
四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。
常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。
优化模型广泛应用于生产调度、资源分配、路径规划等领域。
以上是常见数学建模模型的基本原理和应用领域。
数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。
在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
数学模型简介
评注和思考:
建模的关键 : 和 f(), g()的确定 考察四脚呈长方形的椅子,是否还有相同的结论
2、商人安全过河问题
问题(智力游戏) 随从们秘密约定, 在河的任一岸, 一旦随从 的人数比商人多, 就杀人越货。但是乘船渡河的 方案由商人决定。商人们怎样才能安全过河?
用数学语言把椅子位臵和四只脚着地的关系表示出来
椅子位臵: 利用正方形(椅脚连线)的对称性 B B´ 用表示对角线与x轴的夹角
两个距离: A,C 两脚与地面距离之和为f() B,D 两脚与地面距离之和为g()
C´
A´
C
O
D´
A
x
D
正方形ABCD 绕O点旋转
地面为连续曲面 椅子在任意位臵 至少三只脚着地
1、尽量使用实数优化模型,减少整数约束和整 数变量的个数。因为求解离散优化问题比连续优 化问题难得多 2、尽量使用光滑优化,避免使用非光滑函数( 是指存在不可微点的函数)。如绝对值函数、符 号函数、多个变量求最大(小)值、四舍五入、 取整函数等,通常采用连续、可微问题处理起来 比较简单。
3、尽量使用线性模型,减少非线性约束和线性 x 变量的个数。如: 5 改为 x 5 y 。
3、席位公平的数学建模问题
三个系的学生共有200名(甲系100,乙系60, 丙系40),代表会议共20席,按比例分配,三个 系分别为10,6,4席。 1、由于学生转系,三个系的学生人数分别为 103、 63、 34, 问20席又该如何分配? 2、若代表增加为21席,又如何分配?
(1)问题提出
系别 学生 比例
p1/n1– p2/n2=5 p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五邑大学 数学建模 课程考核论文2010-2011 学年度第 2 学期102030405060708090第一季度第三季度东部西部北部论文题目 抑制物价快速上涨问题得分学号姓名(打印) 姓名(手写)ap0808221 林加海 ap0808204陈荣昌指导老师—邹祥福——2011.6.20抑制物价快速上涨问题摘要本文通过一个多元线性回归模型较好地解决了影响物价因素的问题。
使我国经济快速发展的同时,使百姓得到真的实惠,又保证了经济的长远的发展。
物价问题比较复杂。
在本次实验中我们参阅大量资料把影响物价的的因素主要概括括需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。
总结出原先物价计算方法的不足之处,需要建立一种新的计算和预测的方法。
首先,为了确定物价和影响因素之间的关系我们用了多元线性回归,从国家统计局找到相关数据经过挑选,建立了函数关系,为了使函数更具有说服力我们进一步用了残差分析,检验所得到的结果的合理性 。
本文利用matlab 软件实现了拟合出多元线性回归函数y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5,置信度95%,且20.932609896853743,_R F ==检验值8.30338450288840>,但是显著性概率.α=005相关的0.055839341752489056>0.p =。
再利用逐步回归的方法,拟合出Y=94.4958+0.00771506*x1+5.8917e-007*x2+0.00250019*x3+1.90595e-006*x4+6.62396e-005*x5.93269896853743R =200,修正的R 2值.R α=20897797,F_检验值=26.3535,与显著性概率相关的p 值=..<000106754005,残差均方RMSE =0.204517,以上指标值都很好,说明回归效果比较理想。
通过对物价形成及演化问题的讨论,提出以量化分析为基础的调节物价的方法,深入分析找出影响物价的主要因素,并就此分析现在物价的上涨情况,根据《关于稳定消费价格总水平保障群众基本生活的通知》,根据模型分析给出抑制物价的政策建议,并对未来的形势走向根据模型给出预测。
关键字:物价,逐步回归分析,上涨因素,预测,多元回归分析问题重述2010年国家统计局公布我国10月宏观经济数据,居民消费价格指数同比上涨4.4%,其中食品类价格上涨10.1%,蔬菜价格涨了31%,创两年来的新高。
普通百姓日常开支大幅增加,国家出台《关于稳定消费价格总水平保障群众基本生活的通知》,要求各地和有关部门及时采取16项措施,进一步做好价格调控监管工作,稳定市场价格,切实保障群众基本生活。
我们通过收集数据、建立模型、定量分析,分析原因和得出结果。
最后,我们根据模型建立及分析得到的结果,给有关部门写一份建议报告,给出具体的意见。
问题分析在计算综合指数时,一般有两种形式:拉氏指数和帕氏指数。
以基期销售量为权数,得到的指数为拉氏指数100p q p q∑∑以报告期的销售量为权数,得到的指数为帕氏指数1101p q p q∑∑.也可采用一般加权平均数或调和加权平均数的方式来计算。
权数选择很重要,如果用基期销售量作权数,一般采用加权算术平均数形式0000010000p kp p q q p p q p q =∑∑∑∑相当于拉氏数。
如果用报告期销售量作权数,一般采用调和加权平均数形式1111011111p p 1qqp p q p q kp =∑∑∑∑相当于帕氏指数。
我国现行物价指数基本上是通过调查个体价格。
计算个体价格指数,然后采用固定数量加权形式逐级汇总编制物价指数的,即kw w ∑∑。
其权数w 根据基期销售额并参照报告期的市场变化来确定。
这种指数形式本质上与帕氏指数的原理是一致的。
如在编制全社会的零售物价指数时,首先将全部零售商品区分为十四大类商品;在各大类商品中又分小类,在小类中再分细类·从各商品集团中选到代表规格品,调查并用加权平均法计算代表规格品的价格,再计算物价指数,然后依据代表规格品物价指数及所给定 权数,逐级汇总计算各类指数,最后汇总为全社会零售物价指数。
但是现行的物价指数存在以下主要问题:首先,零售物价指数反应不全。
生产资料的销售是零售市场的一部分,只有一起包括在内才能反映整个零售市场的价格变动情况。
其次。
生活费用价格指数反映越界。
生活费用是零售物价与服务项目的加权,但零售物价包括了生产资料,这造成了其不能准确反映居民生活费用价格水平。
再者,生产资料价格指数计算范围不全,不能准确、全面反映全社会生产资料价格水平。
由于存在多种形式的供应方式,各种形式的扶贫、脱贫、新技术推广配套供应,粮食定购等供应方式,目前的生产资料价格指数就不能准确、全面反映全社会生资价格水平。
因此,我们根据所学知识,建立一个新的物价指数模型,更加科学的预测物价指数的变动及发展规律。
根据相关理论,我们我们考虑如下因素:需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。
模型假设及符号说明(1) 社会的发展平衡稳定,排除突发事件导致数据的突变。
(2) 假设因素之间的联系较小,不存在一个因素的变化导致其他因素的剧烈变化。
(3) 所给数据真实据可靠,反应实际情况(4) 对价格的齐次性: 若所有商品的价格均上升k 倍, 物价指数也上升k 倍; ( 5) 对货币单位的独立性: 物价指数与货币单位的选择无关, 即只要商品的实际价格不变, 仅仅货币单位改变, 物价指数不应改变;( 6) 物价指数介于单种商品价格比值的最小值和最大值之间; ( 7) 物价指数不因某种商品被淘汰而失去意义.考虑数据的可得性,最终选择以下变量作为分析研究对CPI 的影响 X1 房地产业价格X2 固定资产投资总额 X3 进出口总额 X4 货币供应量X5社会零售商品总额模型建立房地产业价格。
近几年,我国房地产价格一路攀升,已经影响到居民购房的基本能力,同时也引起相关行业价格的波动。
固定资产投资总额。
投资会引起银行信贷资金的扩张,增加货币投放量,引发通货膨胀。
进出口总额。
进出口是拉动经济增长的重要马车,尤其出口增加迅速时,外汇资金迅速增加,引导投资扩大,也会造成物价波动。
货币供应量。
货币供应量一直都是价格波动的重要原因。
社会零售商品总额。
该指标是体现社会总需求的基本数据,反映需求变化对物价的影响,当该指标迅速上升,使社会总需求超过总供给,引起价格变化。
由于我国每月公布的CPI 数据是按同比来计算的,故在数据选择的时候,对数据进行了一定的变换。
其中每期流量数据,经变换后表示的是每期CPI 所表现的价格变动时间内所产生的流量。
对于某些存量数据,选择的是当月的存量数据。
一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。
如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。
进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的;③ 残差满足方差奇性; ④ 残差满足正态分布。
在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y ,X,alpha) 或者[b, bint, r, rint, stats] = regress(y ,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。
回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。
在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。
⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。
注释: (1)一般说来,2R 值越大越好。
(2)人们一般用以下统计量对回归方程做显著性检验:F_检验、t_检验、以及相关系数检验法。
Matlab 软件包输出F_检验值和阈值f 。
一般说来,F_检验值越大越好,特别的,应该有F_检验值f >。
(3)与显著性概率相关的p值应该满足p alpha>,则说明回归<。
如果p alpha方程中有多余的自变量,可以将这些多余的自变量从回归方程中剔除(见下面逐步回归的内容)。
这几个技术指标说明拟合程度的好坏。
这几个指标都好,就说明回归方程是有意义的。
模型求解物价指数的多元回归模型的建立x1=[131 135 106 136 136 134 134 133 133 ]';x2=[13014.0268 29792.6847 46742.7492 67358.2972 98047.3795 119866.2477 140997.7447 165869.5752 1877566.105 ]';x3=[3240.7 3288.5 3399.8 3365.2 3464.2 3504.7 3492.6 3530.3 3523.6 ]';x4=[112334.2 11321.7 11510.4 12455.0617 12329.9 12252.8 12569.8 13536.5 14284.8 ]';x5=[40758.58 42865.79 39080.58 39657.54 38652.97 38904.85 39543.16 39922.76 41854.41 ]';y=[102.7 102.7 102.8 103.10 102.90 103.30 103.50 103.60 104.40 ]';e=ones(9,1);x=[e,x1,x2,x3,x4,x5];[b,bint,r,rint,stats]=regress(y,x)rcoplot(r,rint)b =86.47989671932070.004410241461528134.32730555279258e-0070.003777882231120762.70211635024846e-0067.58738000216411e-005bint =57.6517132316945 115.308080206947-0.0265424325364306 0.0353629154594868-3.33477737109042e-007 1.19893884766756e-006-0.00174313787047828 0.00929890233271979-8.66465282394733e-006 1.40688855244442e-005-0.000255471673027052 0.000407219273070334r =-0.00230129081566588-0.0947201675733851-0.007947891111300010.23520987922069-0.275521820521206-0.04805001848914970.1392305359018880.0590379858630854-0.00493721247502776rint =-0.00947859076926696 0.0048760091379352-0.194633870082707 0.00519353493593699-0.0249417458137498 0.00904596359114981-0.0339258210359711 0.504345579477352-0.627136483142244 0.0760928420998317-0.823808535953563 0.727708498975263-0.597472706733677 0.875933778537452-0.511054271191228 0.629130242917399-0.0119320358327282 0.0020576108826727stats =0.932609896853743 8.3033845028884 0.0558393417524896 0.0551600473900416因此y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00 377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5其中:b 为回归系数估计值;bint为置信区间;stats包括判定系数R2,显著性检验F,概率p;r为残差;rint为置信区间。