一元二次方程解法(知识点和经典例题)

合集下载

(完整版)一元二次方程解法及其经典练习题

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

一元二次方程知识点总结&练习

一元二次方程知识点总结&练习

一元二次方程的解法【知识点归纳与总结】一、概念:一元二次方程的一般形式为:ax 2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。

二、基本思路与方法: 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

1 用直接开平方法解形如 (x-m)2=n (n≥0) 的方程,其解为x=m±.例1.解方程(1)75 (3x+1)2=7 (2)9x 2-24x+16=112.配方法:用配方法解方程ax 2+bx+c=0 (a≠0) 先将常数c 移到方程右边:ax 2+bx=-c 将二次项系数化为1:x 2+b a x=-ca方程两边分别加上一次项系数的一半的平方:x 2+b a x+(b 2a )2=-c a +(b2a)2方程左边成为一个完全平方式:(x+)2= 当b 2-4ac≥0时,x+=±∴ x= (这就是求根公式)例2.用配方法解方程 3x 2-4x-2=03.公式法:把一元二次方程化成一般形式,然后计算判别式△=b 2-4ac 的值,当b 2-4ac≥0时,把各项系数a, b, c 的值代入求根公式x=(b 2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x 2-8x=-54.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8(2) 2x2+3x=0(3) 6x2+5x-50=0(4)x2-2(+)x+4=0小结:一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

一元二次方程知识点总结及相关练习题

一元二次方程知识点总结及相关练习题

一元二次方程知识点总结及相关练习题一、一元二次方程一元二次方程是指含有一个未知数,并且未知数的最高次数是2的整式方程。

它的一般形式为ax^2+bx+c=0(其中a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

二、一元二次方程的解法1.直接开平方法直接开平方法是利用平方根的定义直接开平方求解一元二次方程的方法。

它适用于解形如(x+a)=b的一元二次方程。

根据平方根的定义可知,x+a是b的平方根,当b≥0时,x=-a±b;当b<0时,方程没有实数根。

2.配方法配方法的理论根据是完全平方公式a±2ab+b=(a±b)^2,把公式中的a看做未知数x,并用x代替,则有x±2bx+b=(x±b)^2.配方法的步骤是:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

3.公式法公式法是用求根公式解一元二次方程的方法,它是解一元二次方程的一般方法。

一元二次方程ax^2+bx+c=0的求根公式是x=(-b±√(b^2-4ac))/2a。

公式法的步骤是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

4.因式分解法因式分解法是利用因式分解的手段,求出方程的解的方法。

这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤是:把方程右边化为0,然后看看是否能用提取公因式、公式法或十字相乘,如果可以,就可以化为乘积的形式。

5.XXX定理利用韦达定理可以求出一元二次方程中的各系数。

韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

在题目中,XXX定理是很常用的。

三、一元二次方程根的判别式根的判别式指的是一元二次方程ax^2+bx+c=0的根的判别式,通常用“Δ”来表示,即Δ=b^2-4ac。

一元二次方程经典例题及详细解答

一元二次方程经典例题及详细解答

一、概述二、一元二次方程的定义三、一元二次方程的解法1.配方法2.公式法四、一元二次方程的经典例题及详细解答1.例题一2.例题二3.例题三五、总结概述一元二次方程是数学中常见的代数方程,它的解法丰富多样,具有很高的实用价值。

本文将详细介绍一元二次方程的定义、解法,以及一些经典例题的详细解答。

一元二次方程的定义一元二次方程是指形式为ax²+bx+c=0的方程,其中a≠0,x是未知数,a、b、c均为已知系数。

一元二次方程的一般形式是ax²+bx+c=0,其中a、b、c是常数,且a≠0。

一元二次方程的解法一元二次方程的解法主要包括两种:配方法和公式法。

1.配方法配方法也称补全平方法,是指利用平方公式将一元二次方程转化为一个完全平方式。

这种方法常用于一元二次方程系数a=1的情况。

2.公式法公式法是通过一元二次方程的求根公式来解方程,一元二次方程ax²+bx+c=0的根可以用公式x1,2=(-b±√(b²-4ac))/(2a)求得。

一元二次方程的经典例题及详细解答下面将结合具体的例题,详细解答一元二次方程的解题过程。

1.例题一已知一元二次方程x²-5x+6=0,求方程的根。

解:根据公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(5±√(5²-4*1*6))/(2*1)= (5±√1)/2即x1=3,x2=2。

所以方程的根为x1=3,x2=2。

2.例题二已知一元二次方程2x²-7x+3=0,求方程的根。

解:同样使用公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(7±√(7²-4*2*3))/(2*2)即x1=3/2,x2=2。

所以方程的根为x1=3/2,x2=2。

(完整版)一元二次方程知识点和经典例题

(完整版)一元二次方程知识点和经典例题

一元二次方程一.基本概念定义:形如:02=++c bx ax (0≠a )的方程,叫做一元二次方程的一般式. 例题:若方程32)1(1=--+x x m m 是关于x 的一元二次方程,求m 的值.二.一元二次方程的解法(1)直接开方法: 02=+c ax , 开平方求出未知数的值:ac x -±= (2)因式分解法:0)(2=++-mn x n m x ,因式分解得:0))((=--n x m x ∴m x =1,n 2=x(3)配方法:061232=-+x x ,得:242=+x x ,∴222)2(2)2(4+=++x x 即:6)2(2=+x ∴621+-=x ,622--=x(4)公式法:解法步骤:○1先把一元二次方程化为一般式; ○2找出方程中a 、b 、c 等各项系数和常数的值;○3计算出ac b 42-的值;○4把a,b, ac b 42-的值代入公式;○5求出方程的两个根.例题:解方程: x(x+12)=8x+12解:原方程化简得:01242=-+x x ,方程中:a=1,b=4,c=-12∆=ac b 42-=(4)2-4×1×(-12)=16+48=64.∴28412644±-=⨯±-=x =42±- ∴原方程根为:21=x ,=2x -6.一元二次方程解法练习题:(1)用直接开方法解一元二次方程: ○1 (2x-1)2=7 ○222)43()43(x x -=- ○30144)3(2=--x(2)用因式分解法解一元二次方程:○11)1(3-=-x x x ○25x(x-3)=6-2x ○32(x +2)(x -1)=(x +2)(x +4)○4025)2(10)2(2=++-+x x ○542)2)(1(+=++x x x ○60)4()52(22=+--x x(3)用配方法解一元二次方程:○1x(x+4)=8x+12 ○226120x x --= ○30223)12(22=-+-+x x(4)用公式法解一元二次方程:○123520x x -+= ○5(3)(1)2x x +-=- ○112x 2-33x+130=0(5)选择适当的方法解下列方程:○122(2)9x x -= ○22299990x x +-= ○32(101)10(101)90x x +-++=○42690x x -+= ○5x(37)2x x -= ○6}113111[1()]222323x x x x ⎧--+-+=⎨⎩三.一元二次方程根的判别式1.一元二次方程根的判别式:把ac b 42-=∆叫做一元二次方程:02=++c bx ax (0≠a )的根的判别式.利用根的判别式可以不解方程判别一元二次方程跟的情况:20(1)00(2)400.b ac ∆>⇔⎧∆≥⇔⎨∆=⇔⎩∆=-∆<⇔当时方程有两个不相等的实根;当时方程有两个实数根;当时方程有两个相等的实数根;当的值小于时,即:时方程无实数根例1.不解方程判断下列方程跟的情况:(1)08822=+-x x (2)24120x x +-= (3)20232=+-x x解:(1)方程中:a=2,b=-8,c=8,∆=ac b 42-=(-8)2-4×2×8=64-64=0∵∆=0 ∴原方程有两个相等的实数根.(2)方程中:a=1,b=4,c=-12,∆=ac b 42-=(4)2-4×1×(-12)=16+48=64 ∵∆>0 ∴原方程有两个不相等的实数根.(3)方程中:a=2,b=-3,c=2,∆=ac b 42-=(-3)2-4×2×2=9-16=-7∵∆<0 ∴原方程无实数根.例2.关于x 的一元二次方程(m -1)x 2-2(m -3)x +m +2=0有实数根,求m 的取值范围.解:当m -1≠0时, 即:m 1≠时,该方程是关于x 一元二次方程.∵原方程有实数根∴0≥∆,即:Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥ 解得:711≤m ∴m 的取值范围是711≤m 且m 1≠. 例3. 求证:关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根. 证明:∵224=[2(1)]4(2)(1)4(3)b ac k k k k ∆=-----+=-且k 3≤,∴总有0≥∆ ∴关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根.四.一元二次方程根与系数的关系1.定理:设一元二次方程02=++c bx ax (0≠a 且042≥-ac b )的两个根分别为1x 和2x ,则:ab 2x 1x -=+; a 2x 1xc =• 特别地:对于一元二次方程20x px q ++=,根与系数的关系为:12x x p +=-; 12x x q =注:○1此定理成立的前提是0∆≥.也就是说必须在方程有实..数根..时才可使用. ○2此定理在其他一些数学书籍中也叫做韦达定理。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲例1解方程025x 2=-.分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.解一元二次方程的方法有四种,而此题用直接开平方法较好.解:025x 2=-,25x 2=,25x ±=,x =±=±55. ∴5x 5x 21-==,.例2解方程2)3x (2=+.分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.了.解:2)3x (2=+,23x ±=+,23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.例3解方程081)2x (42=--.分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.较好.解:081)2x (42=-- 整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,.注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4解方程02x 3x 2=+-.分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解.此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:02x 3x 2=+-,(x (x--2)(x 2)(x--1)1)==0, x -2=0,x -1=0,∴2x 1x 21==,. 解法二: ∵a =1,b =-=-33,c =2, ∴01214)3(ac 4b 22>=´´--=-,∴213x ±=.∴1x 2x21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△先计算“△”的值,若△<0<0<0,则方程无解,就不必解了.,则方程无解,就不必解了.,则方程无解,就不必解了.例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程为关于x 的方程,即x 为未知数,为未知数,m m ,n 为已知数.在确定0ac 4b 2³-的情况下,利用公式法求解.利用公式法求解.解:把原方程左边展开,整理,得把原方程左边展开,整理,得0)n mn m 2(mx 3x 222=--+-.∵a =1,b =-=-3m 3m 3m,,22n mn m 2c --=, ∴)n mn m 2(14)m 3(ac 4b 2222--´´--=-22n 4mn 4m ++= 0)n 2m (2³+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴nm x n m 2x 21-=+=,. 注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:系数方程时要注意:(1)(1)(1)哪个字母代表未知数,也就是关于哪个未知数的方程;哪个字母代表未知数,也就是关于哪个未知数的方程;(2)(2)不要把一元二次方程一般形式中的不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;混淆;(3)(3)(3)在在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,开平方时,可能会出现两种情况,但根号前有正负号,已包已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6用配方法解方程x 73x 22=+.分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.重要,要记住.解:x 73x 22=+,23x 27x 2=+-,0234747x 27x 22=+÷øöçèæ-÷øöçèæ+-2, 162547x 2=÷øöçèæ-, ∴4547x ±=-. ∴21x3x21==,. 注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.边就配成了一个二项式的完全平方.例7不解方程,判别下列方程的根的情况:不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=D 的值的符号就可以了.符号就可以了.解:(1)(1)∵∵a =2,b =3,c =-=-44, ∴041)4(243ac 4b 22>=-´´-=-. ∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. (2)(2)∵∵a =1616,,b =-=-242424,,c =9, ∴09164)24(ac 4b 22=´´--=-. ∴方程有两个相等的实数解.∴方程有两个相等的实数解.(3)(3)将方程化为一般形式将方程化为一般形式0x 75x 52=-+,05x 7x 52=+-.∵a =4,b =-=-77,c =5, ∴554)7(ac 4b 22´´--=- =4949--100 =-=-51<051<051<0..∴方程无实数解.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.的值.分析:根据韦达定理a cx x abxx2121=×-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则,则56x 25k x 222-=×-=+,,∴53x 2-=,k =-=-77.即方程的另一根为53-,k 的值为-的值为-77. 注意:一元二次方程的两根之和为a b -,两根之积为a c.例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的两根的 (1)(1)平方和;平方和;平方和;(2)(2)(2)倒数和.倒数和.倒数和.分析:已知21x x 23xx2121-=×-=+,.要求.要求(1)(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ×+、的式子.的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出,由此可求出(1)(1)(1).同样,可用.同样,可用两数和与积表示两数的倒数和.两数和与积表示两数的倒数和.解:(1)(1)∵∵21x x 23x x 2121-=×-=+,,∴212212221x x 2)x x (x x -+=+÷øöçèæ--÷øöçèæ-=212232149+= 413=; (2)211221x x x x x 1x 1+=+ 2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10已知方程0m x 4x 22=++的两根平方和是3434,求,求m 的值.的值.分析:已知34x x 2m x x 2x x 22212121=+=×-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.便可求出.解:设方程的两根为21x x 、,则,则2mx x 2x x 2121=×-=+,.∵212212221x x 2)x x (x x -+=+, ∴)x x ()x x (x x 2222122121+-+=34)2(2--==-=-303030..∵2mxx 21=,∴m =-=-303030..注意:解此题的关键是把式子2221x x x x+变成含2121x x x x 、+的式子,从而求得m 的值.的值.例11求一个一元二次方程,使它的两个根是2、1010..分析:因为任何一元二次方程都可化为因为任何一元二次方程都可化为((二次项系数为1)0q px x 2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=×-=+,.将p 、q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=×++-.解:设所求的方程为0q px x 2=++.∵2+1010=-=-=-p p ,2×1010==q ,∴p =-=-121212,,q =2020..∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,为根的一元二次方程不止一个,但一般只写出比较简单的一但一般只写出比较简单的一个.个.例12已知两个数的和等于8,积等于9,求这两个数.,求这两个数. 分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-这个方程的一次项系数就应该是-88,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.∵qx x p 8xx2121=×-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x21-=+=,,∴这两个数为7474-+和.例13如图22-2-122-2-1,在长为,在长为32m 32m,宽为,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为,则两条道路的面积和为2x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则,则,则 2032x x 20x 325402´=-++. 0100x 52x 2=+-,(x (x--2)(x 2)(x--50)50)==0, x -2=0,x -5050==0, ∴50x 2x21==,.∵x =50不合题意,不合题意, ∴取x =2.答:道路的宽度为2m 2m..注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14某钢铁厂去年1月份钢的产量为5000吨,吨,33月份上升到7200吨,求这两个月平均每月增长的百分率是多少?这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(15000(1++x)x),,增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n )x 1(5000b +=.这就是重要的增长率公式.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则.则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去不合题意,舍去)). 答:平均每月增长的百分率是20%20%..注意:解方程时,由1+x 的值求x ,并舍去负值.,并舍去负值.。

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。

温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。

根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果x²=a,那么x=±√a。

注意,x可以是多项式。

一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。

2)将等式左右两边开平方。

3)解出方程的根。

二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。

2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。

3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。

2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。

用配方法求解一元二次方程解法(知识讲解)九年级数学上册基础知识讲与练

用配方法求解一元二次方程解法(知识讲解)九年级数学上册基础知识讲与练

专题2.6 用配方法求解一元二次方程(知识讲解)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法在比较大小中二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解;1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。

知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同时对后期学习二次函数有着重要的作用,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2+-=.23220x x【答案】1x =2x =- 【分析】将原方程二次项系数化1,用配方法求解.2x ⎫=⎪⎭22x = 299288x +=+ 2258x ⎛= ⎝x =∴ 1x 2x =-【点拨】本题考查一元二次方程的解法,配方法是常用方法,掌握配方法解方程的步骤是解答此题的关键.举一反三:【变式1】 用配方法解方程:22310x x -+=. 【答案】112x =,21x =. 【分析】利用配方法得到(x ﹣34)2=116,然后利用直接开平方法解方程即可. 解:x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, (x ﹣34)2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点拨】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【变式2】 用配方法解方程:2x 2-4x -1=0.【答案】x 11,x 2=1解:根据配方法解方程即可.移项得,2x 2-4x =1,将二次项系数化为1得,2122x x -=, 配方得,x 2-2x +1=12+1,2312x -=(),∴1x -=,∴1211x x =+= 类型二、配方法在代数中的应用2.我们在学习一元二次方程的解法时,了解到配方法.“配方法”是解决数学问题的一种重要方法.请利用以上提示解决下题:求证:()1不论m 取任何实数,代数式()24419m m -++的值总是正数()2当m 为何值时,此代数式的值最小,并求出这个最小值.【答案】(1)证明见分析;(2)4.【分析】(1)此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.(2)根据(1)4m 2-4(m+1)+9=(2m -1)2+4得出m 取12时代数式的值最小,最小值是4.解:(1)()24419m m -++ 24449m m =--+2445m m =-+2(21)4m =-+;∴不论m 取任何实数,代数式()24419m m -++的值总是正数.()2由(1)()224419(21)4m m m -++=-+得:12m =时,此代数式的值最小,这个最小值是:4. 【点拨】此题考查了配方法的应用,解题时要根据配方法的步骤进行解答,注意在变形的过程中不要改变式子的值.举一反三:【变式1】 我们可以用以下方法求代数式265x x ++的最小值.()22222652333534x x x x x ++=+⋅⋅+-+=+-∴()230x +≥∴()2443x -≥-+∴当3x =-时,265x x ++有最小值4-.请根据上述方法,解答下列问题:(1)求代数式242x x -+的最小值;(2)求代数式269x x -++的最大或最小值,并指出它取得最大值或最小值时x 的值;(3)求证:无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【答案】(1)-2 (2)当3x =时,269x x -++有最大值18 (3)证明见分析【分析】(1)根据题中所给方法进行求解即可;(2)由题中所给方法可得()2269318x x x -++=--+,然后问题可求解;(3)由题意可得()()()22222210662113131x y xy x y x y x y +---+=-+-+-+,进而问题可求解.(1) 解:由题意得: ()22222422222222x x x x x -+=-⋅⋅+-+=--,∴()220x -≥∴()2222x --≥-∴当2x =时,242x x -+有最小值2-.(2) 由题意得:()2269318x x x -++=--+,∴()230x --≤∴()231818x --+≤∴当3x =时,269x x -++有最大值18.(3) 由题意得:2221066211x y xy x y +---+ =22222169169x y y x xy y x +-++++--+=()()()2223131x y x y -+-+-+;∴()()()22230,10,30x y x y -≥-≥-≥∴()()()22231311x y x y +-+--+≥,∴无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【点拨】本题主要考查配方法的应用及完全平方公式,熟练掌握配方法及完全平方公式是解题的关键.【变式2】 先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∴(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【答案】(1)154;(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.解:(1)m2+m+4=(m+12)2+154,∴(m+12)2≥0,∴(m+12)2+154≥154,则m2+m+4的最小值是154;(2)4﹣x2+2x=﹣(x﹣1)2+5,∴﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∴﹣2x2+20x=﹣2(x﹣5)2+50∴﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点拨】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.类型三、配方法在几何中的应用3.如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是________;M m n落(2)若把点Q向右平移a个单位长度,向下平移a个单位长度后,得到的点(,)在第四象限,求a的取值范围;(3)在(2)条件下,当a取何值,代数式2+25m n+取得最小值.【答案】(1)Q(-3,1)(2)a>3(3)0【分析】(1)如图,作PA∴x轴于A,QB∴x轴于B,则∴PAO=∴OBQ=90°,证明∴OBQ∴∴PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;(2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;(3)由(2)得,m=-3+a,n=1-a,代入所求式子得225=-(),继而根据偶次方a++2m n4的非负性即可求得答案.解:(1)如图,作PM∴x轴于A,QN∴x轴于B,则∴PAO=∴OBQ=90°,∴∴P+∴POA=90°,由旋转的性质得:∴POQ=90°,OQ=OP,∴∴QOB+∴POA=90°,∴∴QOB=∴P,∴∴OBQ∴∴PAO(AAS),∴OB=PA,QB=OA,∴点P的坐标为(1,3),∴OB=PA=3,QB=OA=1,∴点Q的坐标为(-3,1);(2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,得到的点M的坐标为(-3+a,1-a),而M在第四象限,所以-30 10aa+>⎧⎨-<⎩,解得a>3,即a的范围为a>3;(3)由(2)得,m=-3+a,n=1-a,∴2225(3)2(1)5m n a a++=-+-+269225a a a=-++-+2816a a=-+24a=-(),∴240a-≥(),∴当a=4时,代数式225m n++的最小值为0.【点拨】本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.举一反三:【变式1】我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x可取任何实数,试求二次三项式x2+6x﹣1最小值.解:x2+6x﹣1=x2+2×3•x+32﹣32﹣1=(x+3)2﹣10∴无论x取何实数,总有(x+3)2≥0.∴(x+3)2﹣10≥﹣10,即x2+6x﹣1的最小值是﹣10.即无论x取何实数,x2+6x﹣1的值总是不小于﹣10的实数.问题:(1)已知:y =x 2﹣4x +7,求证:y 是正数.知识迁移:(2)如图,在Rt △ABC 中,∴C =90°,AC =6cm ,BC =4cm ,点P 在边AC 上,从点A 向点C 以2cm/s 的速度移动,点Q 在CB的速度从点C 向点B 移动.若点P ,Q 均以同时出发,且当一点移动到终点时,另一点也随之停止,设△PCQ 的面积为S cm 2,运动时间为t 秒,求S 的最大值.【答案】(1)见分析;(2)当t =32时,S 【分析】(1)根据例题中的配方求最值;(2)根据三角形的面积公式求出S 和t 的关系式,再利用配方求最值.解:(1)y =x 2﹣4x +7=x 2﹣4x +4+3=(x ﹣2)2+3.∴(x ﹣2)2≥0.∴y ≥0+3=3.∴y >0.∴y 是正数.(2)由题意:AP =2t ,CQ,PC =6﹣2t .(0≤t ∴S =12PC •CQ .=12(6﹣2t )2t 2﹣3t )t ﹣32)2 ∴(t ﹣32)2≥0.∴当t =32时,S 【点拨】本题考查利用配方求最值,正确配方是求解本题的关键.【变式2】 已知a 、b 是等腰∴ABC 的两边长,且满足a 2+b 2-8a -4b+20=0,求a 、b 的值.【答案】a=4,b=2.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可解:a2+b2-8a-4b+20=0,a2-8a+16+b2-4b+4=0,(a-4)2+(b-2)2=0a-4=0,b-2=0,a=4,b=2.【点拨】本题考查的是配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.。

《一元二次方程》各节知识点及典型例题

《一元二次方程》各节知识点及典型例题

第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。

其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。

新人教版21章一元二次方程知识点及典型题目总结

新人教版21章一元二次方程知识点及典型题目总结

一元二次方程知识题型总结一、知识与技能的总结(一)概念一元二次方程--“整式方程”;“只含一个未知数,且未知数的最高次数是2".一元二次方程的一般形式-—,按未知数x降幂排列方程的根(解)—-是使方程成立的未知数的取值,了解一元二次方程的根的个数.(二)一元二次方程的解法-—把一元二次方程降次为一元一次方程求解1.直接开平方法-—适用于的方程.2.配方法——适用于所有的一元二次方程;(1)“移项”-—使得(2)“系数化1”——使得(3)“配方”——使得(4)“求解”—-利用解方程3.公式法—-适用于的方程.反映了一元二次方程的根与系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数a、b、c;(2)先求出的值,若,则代入公式.若,则;4.因式分解法--适用于的方程.用因式分解法解一元二次方程的依据是:.通过将二次三项式化为两个一次式的乘积,从而达到降次的目的,将一元二次方程转化为求两个方程的解.(三)其它知识方法1.根的判别式: ,(1)若,则方程有解;(2)若,则方程有解;(3)若,则方程有解;2.换元法(1);(2)(3).3.可化为一元二次方程的分式方程解方程二、典型题型的总结(一)一元二次方程的概念1.(一元二次方程的项与各项系数)把下列方程化为一元二次方程的一般形式:(1);(2);(3);(4) ;(5);2.(应用一元二次方程的定义求待定系数或其它字母的值)(1)= 时,关于的方程是一元二次方程。

(2)若分式,则3.(由方程的根的定义求字母或代数式值)(1)关于的一元二次方程有一个根为0,则(2)已知关于的一元二次方程有一个根为1,一个根为,则,(3)已知2是关于的方程的一个根,则的值是(4)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,则方程的根为,c=(二)一元二次方程的解法4.开平方法解下列方程:(1)(2)(3) (4)(5);(6);(7).(8)5.用配方法解下列各方程:(1); (2);(3) (4)(5);(6).6.用公式法解下列各方程:(1); (2);(3);(4).(5)(6)(7)(8)(9)7.用因式分解法解下列各方程:(1);(2)(3)(4)(5) (6)(7);(8).(9)(10)(11)8.用适当方法解下列方程(解法的灵活运用):(1)(2)(3)(4)(5)9.解关于x的方程(含有字母系数的方程):(1)(2)(3)()(4)(三)一元二次方程的根的判别式10.不解方程,判别方程根的情况:(1)4 —-(2)-—(3)—-11.为何值时,关于x的二次方程(1)满足时,方程有两个不等的实数根(2)满足时,方程有两个相等的实数根(3)满足时,方程无实数根12.已知关于的方程,如果,那么此方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定13.关于的方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定14.已知关于的方程有实根,则的取值范围是().A.B.且C.D.15.已知,且方程有两个相等实根,那么的值等于().A.B.C.3或D.316.若关于的方程有实根,则的非负整数值是().A.0,1 B.0,1,2 C.1 D.1,2,317.已知关于x的方程有两个相等的实数根.求m的值和这个方程的根.18.方程有实数根,求正整数a.19.对任意实数m,求证:关于x的方程无实数根。

(完整版)一元二次方程知识点总结和例题——复习,推荐文档

(完整版)一元二次方程知识点总结和例题——复习,推荐文档

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项 系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p±√q;如果 q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一 般方法。
一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,
程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两 根之积等于常数项除以二次项系数所得的商。
a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
7.分式方程
分母里含有未知数的方程叫做分式方程。
c a

温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:
1、关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 ,
且满足 x1 x2 x1x2 ,则 k 的值为:
()
(A) 1或 3 4
(B) 1
3
(C)
4
(D)不存在
2、已知 , 是关于 x 的一元二次方程 x2 2m 3x m2 0 的两个不相
12、当 x =
时,代数式 x2 3x 比代数式 2x2 x 1的值大 2 .
13、某商品原价每件 25 元,在圣诞节期间连续两次降价,现在商品每件 16
A.2 B.3 C.-2 或 3 D.2 或-3
建议收藏下载本文,以便随时学习! 一元二次方程综合复习
10、若(m+1) xm(m2)1 +2mx-1=0 是关于 x 的一元二次方程,则 m 的值是
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程
知识要点
1 •方程中只含有 _个未知数,并且整理后未知数的最高次数是这样的__________ 方程叫做一元二次方程。

通常可写成如下的一般形式(a 、b、c、为常数,a_」。

2.一元二次方程的解法:
(1)直接开平方法:当一元二次方程的一边是一个含有未知数的__________ 的平方,而另一边是一个 ________ 时,可以根据 ________ 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程ax2 bx c o a 0的一般步骤是:
①化二次项系数为 ____ ,即方程两边同时除以二次项系数;
②移项,使方程左边为 ______ 项和_______ 项,右边为______ 项;
③配方,即方程两边都加上 _________________ 的平方;
④化原方程为(x m)2 n的形式,
如果n是非负数,即n 0,就可以用_____________ 法求出方程的解。

如果n v O,则原方程_______ 。

(3)公式法:方程ax2 bx c 0(a ______________ 0),当b2 4ac 0 时,x =
(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:
①将方程的右边化为_______ ;
②将方程的左边化成两个_____ 的乘积;
③令每个因式都等于______ ,得到两个_________ 方程;
④解这两个方程,它们的解就是原方程的解。

3. 一元二次方程的根的判别式
(1) b24ac >0 一兀二次方程ax2 bx c0 a 0有两个的实数根
即x,x2
(2) b24ac =0 一兀二次方程有两个的实数根,即xi X2 ,
(3) b24ac <0 一兀二次方程ax2 bx c0 a 0 实数根。

4.元
—二次方程根与系数的关系

韦达定理)
如果一元二次方程ax2 bx c 0(a0)的两根为X i,X2,则% x2,x-i x2
提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。

经典考题:
例1、若关于x的一元二次方程x2 (k 3)x k 0的一个根是2,则另一个根是_______________ 变式1、已知关于x的方程x2-3x+2k=0的一个根是1,则k= _________________
变式
2、
一兀二次方程2x mx 3 '0的一个根为1,则另一个根为
例2、兀二次方程x(x-2):=2- x的根是()
A.— 1
B.2
C. 1 和2 D . —1和2
变式1、
一元

二次方程x2=16的解是
变式
2、
方程x2 4 0的根是()
A. x :2
B. x2
C.x! 2,x22
D. x 4
例3、已知关于x的一元二次方程(a-I )x2- 2x+l = 0有两个不相等的实数根,则a的取值范围是()
A a v 2 B、a> 2 CC a v 2 且a艸 D a v — 2
变式1、若关于x的一元二次方程kx2 2x 1 0有两个不相等的实数根,则k的取值范围是(A) k 1 (B) k 1 且k 0 (c) k 1 (D) k 1 且k 0
例4、若捲,X2是一元二次方程x25x 6 0的两个根,贝U X1+X2的值是()
A. 1
B. 5
C. 5
D. 6
变式1、已知关于x的一元

一次方程x2 6x k 1 0的两个实数根是X1, X2,且xj xf 24,
则k的值是()
A. 8
B. 7
C. 6
D. 5
变式2、若方程x2 3x 10的两根为冷、X2,
1 1
则一一的值为()
x1x2
A. 3
B.—3
1
C. 1
D.1
33
例5、用配方法解方程x2 2x 5 0时,原方程应变形为()
典 2 2
A ・x 1 6 B. x 1 6
2 2
C. x 2 9
D. x 2 9
变式1、用配方法解方程3x2 6x 1 0,则方程可变形为( )
2 1 21
A. (x 3)2 -
B. 3(x 1)2 -
3 3
2 22
C. (3x 1) 1
D. (x 1) -
变式2、用配方法解儿
—一次方

2 x4x5的过程中,配方正确的是()
A. ( x 2)2 1 B . (x2)21C.(x2)29 D.2
(x 2) 9例6、解方程:
(1) (x 3)2 2x(x3)0⑵(x2
3) 4x(x 3)0 .
(3) x2 4x 2
0 .
(4) x2 2x 3 0
2
(5) x 3x 1 0 .
(6) x2 2x 2
0。

相关文档
最新文档