三角函数诱导公式练习题集附答案解析
三角函数的诱导公式练习题含答案
三角函数的诱导公式练习题(1)1. tan225∘的值为()A.1B.√22C.−√22D.−12. 已知3sin(θ+π2)+sin(θ+π)=0,θ∈(−π,0),则sinθ=( )A.−3√1010B.−√1010C.3√1010D.√10103. 若sin(π3−α)=−13,则cos(α+π6)=( )A.−13B.13C.−2√23D.2√234. 已知sin(α+π4)=35,则cos(π4−α)=( )A.4 5B.−45C.−35D.355. 已知α是第二象限角,若sin(π2−α)=−13,则sinα=()A.−2√23B.−13C.13D.2√236. 已知函数f(x)={1x,x0,log2x−3,x0,则f(−12)⋅f(16)=()A.3B.1C.−1D.−27. (5分)已知x∈R,则下列等式恒成立的是( )A.sin(−x)=sin xB.sin(3π2−x)=cos xC.cos(π2+x)=−sin x D.cos(x−π)=−cos x8. sin 14π3−cos (−25π4)=________.9. 已知sin α=45,则cos (α+π2)=________. 10. cos 85∘+sin 25∘cos 30∘cos 25∘等于________11. 已知cos θ=−35,则sin (θ+π2)=________.12. 已知cos (π−α)=35,α∈(0,π),则tan α=________.13. 已知f (α)=sin (α−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π),其中α≠12kπ(k ∈Z ).(1)化简f (α);(2)若f (π2+β)=−√33,且角β为第四象限角,求sin (2β+π6)的值.14. 已知α为第二象限角,且sin α+cos α=−713,分别求tan α,sin 2α−2sin αcos α的值.15. 如图,四边形ABCD 中,△ABC 是等腰直角三角形,其中AC ⊥BC ,AB =√6,又CD//AB ,cos ∠ABD =√63.(1)求BD 的长;(2)求△ACD的面积.参考答案与试题解析三角函数的诱导公式练习题(1)一、选择题(本题共计 6 小题,每题 5 分,共计30分)1.【答案】A【考点】运用诱导公式化简求值【解析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】解:原式=tan(180∘+45∘)=tan45∘=1,故选A.2.【答案】A【考点】同角三角函数间的基本关系诱导公式【解析】利用诱导公式,同角三角函数基本关系式即可求解.【解答】解:∵sin(θ+π2)=sinθcosπ2+cosθsinπ2=cosθ,sin(θ+π)=sinθcosπ+cosθsinπ=−sinθ,∴ 3cosθ−sinθ=0,∴cosθ=13sinθ,由于sin2θ+cos2θ=1,而θ∈(−π,0),∴sinθ<0,∴109sin2θ=1.∴sinθ=−3√1010.故选A.3.【答案】A【考点】运用诱导公式化简求值【解析】观察所求角和已知角可得cos(α+π6)=cos[π2−(π3−α)],再利用诱导公式即可求解.【解答】解:∵ (α+π6)+(π3−a)=π2,∴ cos (α+π6)=cos [π2−(π3−α)]=sin (π3−α)=−13.故选A .4.【答案】 D【考点】运用诱导公式化简求值 【解析】由题意利用利用诱导公式化简三角函数式的值,可得结果. 【解答】解:∵ sin (α+π4)=35, ∴ cos (π4−α)=sin [π2−(π4−α)] =sin (π4+α)=35. 故选D . 5. 【答案】 D【考点】同角三角函数间的基本关系 运用诱导公式化简求值【解析】直接利用诱导公式以及同角三角函数基本关系式转化求解即可. 【解答】α是第二象限角,若sin (π2−α)=−13 可得cos α=−13,所以sin α=√1−cos 2α=2√23. 6.【答案】 D【考点】 求函数的值 分段函数的应用 函数的求值 【解析】推导出f(−12)=1−12=−2,f(16)=log 216−3=4−3=1,由此能求出f(−12)⋅f(16)的值. 【解答】∵ 函数f(x)={1x,x0,log 2x −3,x0,∴ f(−12)=1−12=−2,f(16)=log 216−3=4−3=1, ∴ f(−12)⋅f(16)=(−2)×1=−2.二、 多选题 (本题共计 1 小题 ,共计5分 ) 7.【答案】 C,D【考点】运用诱导公式化简求值 【解析】 此题暂无解析 【解答】解:A ,sin (−x )=−sin x ,故 A 不成立; B ,sin (3π2−x)=−cos x ,故B 不成立; C ,cos (π2+x)=−sin x ,故C 成立;D ,cos (x −π)=−cos x ,故D 成立. 故选CD .三、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 ) 8.【答案】√3−√22【考点】运用诱导公式化简求值 【解析】本题考查利用诱导公式求值. 【解答】 解:sin14π3−cos (−25π4)=sin (4π+2π3)−cos (−6π−π4) =sin 2π3−cos π4=√3−√22. 故答案为:√3−√22.−4 5【考点】运用诱导公式化简求值【解析】原式利用诱导公式化简,将sinα的值代入计算即可求出值.【解答】解:∵sinα=45,∴cos(π2+α)=−sinα=−45.故答案为:−45.10.【答案】12【考点】三角函数的恒等变换及化简求值【解析】把cos85∘化为cos(60∘+25∘),由两角和的余弦公式化简即可.【解答】cos85∘+sin25∘cos30∘cos25∘=cos(60∘+25∘)+sin25∘cos30∘cos25∘=12cos25∘−√32sin25∘+√32sin25∘cos25∘=12.11.【答案】−3 5【考点】三角函数的恒等变换及化简求值【解析】由已知利用诱导公式即可化简求值得解.【解答】∵cosθ=−35,∴sin(θ+π2)=cosθ=−35.−43【考点】同角三角函数间的基本关系 运用诱导公式化简求值【解析】由诱导公式可得cos a 的值,及α的范围,利用同角三角函数间的基本关系求出tan α的值即可. 【解答】解: ∵ cos (π−α)=−cos α=35,α∈(0,π), ∴ cos α=−35<0,则α∈(π2,π),则sin α=√1−cos 2α=45, ∴ tan α=sin αcos α=45−35=−43.故答案为:−43.四、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 13.【答案】 解:(1) f(α)=sin (a−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π)=(−cos α)⋅sin α⋅(−tan α)(−tan α)⋅sin α=−cos α.(2)由f (π2+β)=−cos (π2+β)=−√33,得sin β=−√33, 又角β为第四象限角,所以cos β−√63, sin 2β=−2√23,cos 2β=13,所以sin (2β+π6)=sin 2βcos π8+cos 2βsin π6 =(−2√23)⋅√32+13⋅12=1−2√66. 【考点】运用诱导公式化简求值同角三角函数间的基本关系 【解析】 此题暂无解析 【解答】 解:(1) f(α)=sin (a−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π)=(−cos α)⋅sin α⋅(−tan α)(−tan α)⋅sin α=−cos α.(2)由f (π2+β)=−cos (π2+β)=−√33,得sin β=−√33, 又角β为第四象限角,所以cos β−√63, sin 2β=−2√23,cos 2β=13,所以sin (2β+π6)=sin 2βcos π8+cos 2βsin π6=(−2√23)⋅√32+13⋅12=1−2√66. 14. 【答案】解:因为sin α+cos α=−713,所以(sin α+cos α)2=sin 2α+2sin αcos α+cos 2α=49169, 整理得2sin αcos α=−120169,则(sin α−cos α)2=1−2sin αcos α=289169. 因为α为第二象限角,所以sin α−cos α=1713,解得sin α=513,cos α=−1213. 所以tan =sin αcos α=−512, sin 2α−2sin αcos α=25169−(−120169)=145169. 【考点】同角三角函数间的基本关系 三角函数的恒等变换及化简求值 【解析】 【解答】解:因为sin α+cos α=−713,所以(sin α+cos α)2=sin 2α+2sin αcos α+cos 2α=49169, 整理得2sin αcos α=−120169,则(sin α−cos α)2=1−2sin αcos α=289169.因为α为第二象限角,所以sin α−cos α=1713, 解得sin α=513,cos α=−1213. 所以tan =sin αcos α=−512,sin 2α−2sin αcos α=25169−(−120169)=145169.15.【答案】解:(1)因为CD // AB ,AC ⊥BC ,△ABC 是等腰直角三角形, 所以∠ABC =∠CA =∠ACD =12×(180∘−90∘)=45∘, 所以∠BCD =90∘+45∘=135∘.所以sin ∠BDC =sin ∠ABD =√1−(√63)2=√33, 在△ABC 中,BC =AC =√3, 在△BCD 中,由正弦定理得, BD =BC⋅sin ∠BCD sin ∠BDC=√3×√22√33=3√22.(2)在△BCD 中,由正弦定理可得, CD =BC ⋅sin (45∘−∠ABD)sin ∠BDC=√3×√22×(√63−√33)√33=2√3−√62. 所以S △ACD =12AC ⋅CD ⋅sin ∠ACD =12×√3×2√3−√62×√22=3(√2−1)4. 【考点】正弦定理同角三角函数间的基本关系【解析】(1)由题意可求∠BCD =135∘,在△BCD 中,由正弦定理可得BD 的值.(2)在△BCD 中,由正弦定理可得CD 的值,根据三角形的面积公式即可求解. 【解答】解:(1)因为CD // AB ,AC ⊥BC ,△ABC 是等腰直角三角形, 所以∠ABC =∠CA =∠ACD =12×(180∘−90∘)=45∘, 所以∠BCD =90∘+45∘=135∘.所以sin ∠BDC =sin ∠ABD =(√63)=√33, 在△ABC 中,BC =AC =√3, 在△BCD 中,由正弦定理得, BD =BC⋅sin ∠BCD sin ∠BDC=√3×√22√33=3√22.(2)在△BCD 中,由正弦定理可得,CD=BC⋅sin(45∘−∠ABD)sin∠BDC=√3×√22×(√63−√33)√33=2√3−√62.所以S△ACD=12AC⋅CD⋅sin∠ACD=12×√3×2√3−√62×√22=3(√2−1)4.试卷第11页,总11页。
02三角函数诱导公式(含经典例题+答案)
三角函数诱导公式对于角“k π2±α”(k ∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,意思是说k π2±α,k ∈Z 的角函数值前面加上当α为锐角时,原函数值的符号.例1.sin 585°的值为 ( )A .-2 B.2 C .-3 D.3例2:已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于 ( )A .-πB .-π C.π D.π例3:如果sin(π+A )=12,那么cos ⎪⎫⎛-A 3 的值是________. 例5:若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 ( )例6:已知α∈(-π,0),tan(3π+α)=31,则cos ⎪⎭⎫⎝⎛+απ23的值为 ( ) A.1010 B .-1010 C.31010 D .-31010解:tan α=13,cos ⎪⎭⎫⎝⎛+απ23=sin α.∵α∈(-π,0),∴sin α=-1010. A .-32 B.32 C.3-12 D.3+12解:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. ( ) A .3 B .5 C .1 D .不能确定解:f(2 011)=asin(2 011π+α)+bcos(2 011π+β)+4=asin(π+α)+bcos(π+β)+4=-asin α-bcos β+4 =5.∴asin α+bcos β=-1.∴f(2 012)=asin(2 012π+α)+bcos(2 012π+β)+4=asin α+bcos β+4 =-1+4=3.1.诱导公式在三角形中经常应用,常用的变形结论有:A +B =π-C ; 2A +2B +2C =2π;A 2+B 2+C 2=π2.2.求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.例9:△ABC 中,cos A =13,则sin(B +C )=________.解:∵△ABC 中,A +B +C =π,∴sin(B +C )=sin(π-A )=sin A =1-cos 2A =223.例10:在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:由已知得⎩⎨⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1,即cos A =22或cos A =-22.(1)当cos A =22时,cos B =32,又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=712π. A .B .C .D .2.cos (﹣30°)的值是( ) A .B .C .D .3.下列能与sin20°的值相等的是( ) A .cos20° B .sin (﹣20°) C .sin70° D .sin160°4.已知,则下列各式中值为的是( )A .B .sin (π+α)C .D .sin (2π﹣α)换元法与诱导公式例11:已知41)3sin(=+απ,则=-)6cos(απ 。
(完整版)高中数学-三角函数诱导公式练习题与答案
三角函数定义及诱导公式练习题1.代数式sin120cos210o o 的值为( ) A.34-C.32-D.142.tan120︒=( ) AB..3.已知角α的终边经过点(3a ,-4a)(a<0),则sin α+cos α等于( ) A.51 B.57 C .51- D .-57 4.已知扇形的面积为2cm 2,扇形圆心角θ的弧度数是4,则扇形的周长为( ) (A)2cm (B)4cm (C)6cm (D)8cm5.已知3cos()sin()22()cos()tan()f ππ+α-αα=-π-απ-α,则25()3f -π的值为( )A .12 B .-12C.2 D .-26.已知3tan()4απ-=,且3(,)22ππα∈,则sin()2πα+=( ) A 、45 B 、45- C 、35 D 、35-7.若角α的终边过点(sin 30,cos30)︒-︒,则sin α=_______. 8.已知(0,)2πα∈,4cos 5α=,则sin()πα-=_____________.9.已知tan α=3,则224sin 3sin cos 4cos sin cos αααααα+=- .10.(14分)已知tan α=12,求证: (1)sin cos sin cos a a a a -3+=-53;(2)sin 2α+sin αcos α=35.11.已知.2tan =α(1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.12.已知sin (α-3π)=2cos (α-4π),求52322sin cos sin sin παπαπαα⎛⎫⎪⎝⎭(-)+(-)--(-)的值.参考答案1.B 【解析】试题分析:180o π=,故21203oπ=. 考点:弧度制与角度的相互转化. 2.A. 【解析】试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°)=-2×=34-,选A. 考点:诱导公式的应用. 3.C 【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120tan(18060)tan 60︒=︒-︒=-︒= C.考点:诱导公式. 4.A 【解析】试题分析:σσ55-==r ,53cos ,54sin -===σσr y ,51cos sin =+∴σσ.故选A. 考点:三角函数的定义5.C 【解析】设扇形的半径为R,则错误!未找到引用源。
三角函数诱导公式练习题-带答案
三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。
(完整版)三角函数诱导公式练习题与答案
三角函数定义及诱导公式练习题2015-05-171.将120o 化为弧度为( )A .B .C .D .3π23π34π56π2.代数式的值为( ) sin120cos210 A. C. D.34-32-143.( )tan120︒=A B ..4.已知角α的终边经过点(3a ,-4a)(a<0),则sin α+cos α等于( )A. B. C . D .-515751-575.已知扇形的面积为2cm 2,扇形圆心角θ的弧度数是4,则扇形的周长为( )(A)2cm (B)4cm (C)6cm (D)8cm6. 若有一扇形的周长为60 cm ,那么扇形的最大面积为 ( )A .500 cm 2 B .60 cm 2 C .225 cm 2D .30 cm 27.已知,则的值为( )3cos()sin()22()cos()tan()f ππ+α-αα=-π-απ-α25()3f -πA .B .-CD . 12128.已知3tan()4απ-=,且3(,)22ππα∈,则sin(2πα+=( )A 、45 B 、45- C 、35 D 、35-9.若角的终边过点,则_______.α(sin 30,cos30)︒-︒sin α=10.已知点P(tanα,cosα)在第二象限,则角α的终边在第________象限.11.若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限.12.已知,则的值为.tan 2α=sin()sin()23cos()cos()2ππααπαπα+-+++-13.已知,,则_____________.(0,)2πα∈4cos 5α=sin()πα-=14.已知,则_________.tan 2θ=()()sin cos 2sin sin 2πθπθπθπθ⎛⎫+-- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭15.已知tan =3,则 .α224sin 3sin cos 4cos sin cos αααααα+=-16.(14分)已知tan α=,求证:12(1)=-;sin cos sin cos a a a a -3+53(2)sin 2α+sin αcos α=.3517.已知.2tan =α(1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.18.已知sin(α-3π)=2cos(α-4π),求的值.52322sin cos sin sin παπαπαα⎛⎫⎪⎝⎭(-)+(-)--(-)参考答案1.B 【解析】试题分析:,故.180oπ=21203oπ=考点:弧度制与角度的相互转化.2.A.【解析】试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°)=-=,选A. 34-考点:诱导公式的应用.3.C 【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由C.tan120tan(18060)tan 60︒=︒-︒=-︒=考点:诱导公式.4.A 【解析】试题分析:,,.故选A.σσ55-==r 53cos ,54sin -===σσr y 51cos sin =+∴σσ考点:三角函数的定义5.C【解析】设扇形的半径为R,则R 2θ=2,∴R 2=1R=1,∴扇形的周长为⇒2R+θ·R=2+4=6(cm).6.C【解析】设扇形的圆心角为,弧长为cm,由题意知,αl 260l R +=∴211(602)3022S lR R R R R ==-=-2(15)225R =--+∴当时,扇形的面积最大;这个最大值为. 应选C.15R cm =2225cm 7.A 【解析】试题分析:,==()()()sin cos cos cos tan f αααααα--==--25()3f -π25cos 3π⎛⎫- ⎪⎝⎭===.25cos3πcos 83ππ⎛⎫+ ⎪⎝⎭cos 3π12考点:诱导公式.l l t h 8.B 【解析】试题分析:3tan()4απ-=.又因为3(,)22ππα∈,所以为三象限的3tan 4α⇒=α角,.选B.4sin()cos 25παα+==-考点:三角函数的基本计算.9.【解析】试题分析:点即,该点到原点的距离为(sin 30,cos30)︒-︒1(,2,依题意,根据任意角的三角函数的定义可知1r ==sin y rα===考点:任意角的三角函数.10.四【解析】由题意,得tanα<0且cosα>0,所以角α的终边在第四象限.11.四【解析】由sinθ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.12.-3【解析】sin()sin()23cos()cos()2ππααπαπα+-+++-sin cos tan 1213sin cos tan 121αααααα------====----13.35【解析】试题分析:因为α是锐角所以35=考点:同角三角函数关系,诱导公式.14.2-【解析】试题分析:,又()()sin cos 2sin sin 2πθπθπθπθ⎛⎫+-- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭2cos 22sin cos sin 1tan 1cos θθθθθθ==---,则原式=.tan 2θ=2-考点:三角函数的诱导公式.15.45【解析】试题分析:已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得2cos α.2224sin 3sin cos 4tan 3tan 4933454cos sin cos 4tan 43ααααααααα++⨯+⨯===---考点:弦化切16.证明: (1)=-.(2)sin 2α+sinαcosα=.sin cos sin cos a a a a -3+5335【解析】(1)原式可以分子分母同除以cosx,达到弦化切的目的.然后将tanx=2代入求值即可.(2)把”1”用替换后,然后分母也除以一个”1”,再分子分母22cos sin x x +同除以,达到弦化切的目的.2cos x 证明:由已知tan α=.(1) ===-.12sin cos sin cos a a a a -3+tan tan a a -3+11-321+1253(2)sin 2α+sinαcosα====.sin sin cos sin cos a a a a a 222++tan tan tan a a a 22++12211⎛⎫+ ⎪22⎝⎭1⎛⎫+1 ⎪2⎝⎭3517.(1);(2);(3)812-【解析】试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以转化cos a 为只含的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有tan a ,得sin 2cos αα=,再利用同角关系22sin cos 1αα=+,又因为α是第三tan 2a =象限角,所以;cos 0a <试题解析:⑴3sin 2cos 3tan 2sin cos tan 1αααααα=--++ 2分322821⨯==-+. 3分⑵()()()()()()()()()()cos cos()sin()cos sin cos 22sin 3sin cos sin sin cos ααααααααααααπ3ππ----=π-ππ---+++ 9分cos 11sin tan 2ααα=-=-=-. 10分⑶解法1:由sin tan 2cos ααα==,得sin 2cos αα=,又22sin cos 1αα=+,故224cos cos 1αα=+,即21cos 5α=, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分解法2:222222cos 111cos cos sin 1tan 125ααααα====+++, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分考点:1.诱导公式;2.同角三角函数的基本关系.18.34-【解析】∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴sinα=-2cosα,且cosα≠0.∴原式=5253322244sin cos cos cos cos cos sin cos cos cos αααααααααα+-+===--+---。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高一三角函数诱导公式练习题(带详解答案)
三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。
高一三角函数诱导公式练习题(带详解答案)
1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33C. 3 D .- 3 3.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝ ⎛⎭⎪⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 8.函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12(k ∈Z) [解析] 求此函数的递减区间,也就是求y =2tan ⎝ ⎛⎭⎪⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12,k ∈Z.。
三角函数的诱导公式练习(含答案)
三角函数的诱导公式课下练兵场一、选择题 1.若α、β终边关于y轴对称,则下列等式成立的是( )A.sinα=sinβB.cosα=cosβC.tanα=tanβD.sinα=-sin β解析:法一:∵α、β终边关于y 轴对称,∴α+β=π+2kπ或α+β=-π+2kπ,k ∈Z , ∴α=2kπ+π-β或α=2kπ-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等设为r ,则sin α=sin β=yr. 答案:A 2.已知A =sin(kπ+α)sin α+cos(kπ+α)cos α(k ∈Z),则A 的值构成的集合是( )A.{1,-1,2,-2}B.{-1,1}C.{2,-2}D.{1,-1,0,2,-2} 解析:当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.答案:C 3.已知tan x =sin(x +π2),则sin x =( )A.-1±52 B.3+12 C.5-12 D.3-12解析:∵tan x =sin(x +π2),∴tan x =cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =5-12(或-1-52<-1,舍去). 答案:C 4.已知α∈(π2,3π2),tan(α-7π)=-34,则sin α+cos α的值为 ( )A.±15B.-15C.15D.-75解析:tan(α-7π)=tan α=-34,∴α∈(π2,π),sin α=35,cos α=-45,∴sin α+cos α=-15.答案:B5.已知f (x )=a sin(πx +α)+b cos(πx -β),其中α、β、a 、b 均为非零实数,若f (2010)=-1,则f (2011)等于( )A.-1B.0C.1D.2 解析:由诱导公式知f (2010)=a sin α+b cos β=-1,∴f (2011)=a sin(π+α)+b cos(π-β)=-(a sin α+b cos β)=1. 答案:C6.已知sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是( )A.1B.2C.3D.6 解析:∵sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=sin θtan θtan(π-θ)-sin θtan(π+θ)=-sin θtan θtan θ-sin θtan θ=tan θ=1, ∴3sin 2θ+3sin θcos θ+2cos 2θ=3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ=3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1. 答案:A 二、填空题7.若cos(2π-α)=53,且α∈(-π2,0),则sin(π-α)= . 解析:cos(2π-α)=cos α=53,又α∈(-π2,0), 故sin(π-α)=sin α=-1-(53)2=-23. 答案:-238.(北京高考)若sin θ=-45,tan θ>0,则cos θ= .解析:由sin θ=-45<0,tan θ>0知θ是第三象限角.故cos θ=-35.答案:-359.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)·tan2(π-α)= .解析:方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,由α是第三象限角,∴sin α=-35,cos α=-45,∴sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)·tan 2(π-α)=-sin(π+π2+α)cos(π+π2-α)sin αcos α·tan 2α=- sin(π2+α)cos(π2-α)sin αcos α·tan 2α=-cos αsin αsin αcos α·tan 2α=-tan 2α=-sin 2αcos 2α=-(-35)2(-45)2=-916.答案:-916三、解答题10.已知sin α=255,求tan(α+π)+sin(5π2+α)cos(5π2-α).解:∵sin α=255>0,∴α为第一或第二象限角. 当α是第一象限角时,cos α=1-sin 2α=55, tan(α+π)+sin(5π2+α)cos(5π2-α)=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=52. 当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.11.(1)若角α是第二象限角,化简tan α 1sin 2α-1; (2)化简:1-2sin130°cos 130°sin130°+1-sin 2130° . 解:(1)原式=tan α 1-sin 2αsin 2α=tan α cos 2αsin 2α=sin αcos α|cos αsin α|, ∵α是第二象限角,∴sin α>0,cos α<0,∴原式=sin αα⎧=⎪=sin αcos α|cos αsin α|=sin αcos α·-cos αsin α=-1.(2)原式=sin 2130°+cos 2130°-2sin130°cos 130°sin130°+cos 2130°=|sin130°-cos130°|sin130°+|cos130°|=sin130°-cos130°sin130°-cos130°=1.12.是否存在角α,β,α∈(-π2,π2),β∈(0,π),使等式sin(3π-α)=2cos(π2-β),3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角,αβ满足条件,则sinα⎧=⎪由①2+②2得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈(-π2,π2),∴α=±π4. 当α=π4时,cos β=32,∵0<β<π,∴β=π6;当α=-π4时,cos β=32,∵0<β<π,∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.。
三角函数的诱导公式习题及答案解析
三角函数的诱导公式1. 任意角α的正弦、余弦、正切是怎样定义的?2. 2kπ+α(k∈Z)与α的三角函数之间的关系是什么?3.你能求750°和930°的值吗?4.利用公式一,可将任意角的三角函数值,转化为00~3600范围内的三角函数值.其中锐角的三角函数是我们熟悉的,而对于900~3600范围内的三角函数值,能否转化为锐角的三角函数值,这就是我们需要研究和解决的问题.同名三角函数的诱导公式思考:对于任意给定的一个角α,角π+α的终边与角α的终边有什么关系?设角α的终边与单位圆交于点P(x,y),则角π+α的终边与单位圆的交点坐标如何?根据三角函数定义:对比α,α,α的值,π+α的三角函数与α的三角函数有什么关系?思考:对于任意给定的一个角α,-α的终边与α的终边有什么关系?设角α的终边与单位圆交于点 P(x,y),则-α的终边与单位圆的交点坐标如何?利用π-α=π+(-α),结合公式二、三,你能得到什么结论?公式一~四都叫做诱导公式,他们分别反映了2kπ+α(k∈Z),π+α,-α,π-α的三角函数与α的三角函数之间的关系2kπ+α(k∈Z),π+α,-α,π-α的三角函数值,等于α的同名函数值,再放上将α当作锐角时原函数值的符号.即函数同名,象限定号.利用诱导公式一~四,可以求任意角的三角函数,其基本思路是:例3 求下列各三角函数的值:1,求下列各式的值:例4 已知(π+x)=3(1)(2π-x);(2)(π-x). 例5 化简:异名三角函数的诱导公式思考:若α为一个任意给定的角,那么απ-2的终边与角α的终边有什么对称关系?点P1(x ,y )关于直线对称的点P2的坐标如何? 设角α的终边与单位圆的交点为P 1(x ,y ),则απ-2的终边与单位圆的交点为P 2(y ,x ),根据三角函数的定义,你能获得哪些结论? 公式五思考2:απ+2与απ-2有什么内在联系?公式六证明下列等式三角形中的三角函数问题三角函数的化简求值.(A)第一象限(B)第二象限(C)第三象限(D)第四象限(A)f(1)<f(2)<f(3) (B)f(2)<f(1)<f(3) (C)f(2)<f(3)<f(1) (D)f(3)<f(2)<f(1)三角函数的诱导公式练习一、选择题(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选择中,只有一项是符合题目要求的.) 1、与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z )C .k·360°+257°(k ∈Z )D .k·360°-257°(k ∈Z ) 2、下列四个命题中可能成立的一个是( ) A 、21cos 21sin ==αα且 B 、1cos 0sin -==αα且C 、1cos 1tan -==αα且D 、α是第二象限时,αααcos tan sia -=3、若54sin =α,且α是第二象限角,则αtan 的值为( ) A 、34- B 、43 C 、43± D 、34± 4、若2cos sin =+αα,则ααcot tan +等于( )A 、1B 、2C 、-1D 、-2 1、 ︒︒+450sin 300tan 的值为( )A 、31+B 、31-C 、31--D 、31+-5、若A 、B 、C 为△的三个内角,则下列等式成立的是( )A 、A CB sin )sin(=+ B 、AC B cos )cos(=+ C 、A C B tan )tan(=+D 、A C B cot )cot(=+ 6、)2cos()2sin(21++-ππ等于 ( )A .2-2B .2-2C .±(2-2)D .227、αα=81,且4π<α<2π,则α-α的值为( )A .23 B .23-C .43D .43-8、在△中,若最大角的正弦值是22,则△必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形9、下列不等式中,不成立的是( ) A 、︒︒>140sin 130sin B 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot10、已知函数2cos )(x x f =,则下列等式成立的是( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+πC 、)()(x f x f -=-D 、)()(x f x f =-11、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34m B 、51-=m C 、51±=m D 、51+=m12、已知()sin()cos()4f x a x b x παπβ=++++(,,,a b αβ为非零实数), (2011)5f = 则(2012)f =( )A .1B .3C .5D .不能确定 二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中横线上)13、化简=+-+βαβαβα222222cos cos sin sin sin sin . 14、若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .15、=-︒)945cos( . 16、=⋅⋅⋅⋅⋅⋅︒︒︒︒89tan 3tan 2tan 1tan .三、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤)17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、 化简:)(cos )tan()2tan()cos()(sin 32πααππααππα--⋅+--+⋅+.19、已知21)sin(=+απ,求απααπcos )tan()2sin(⋅-+-的值.20、已知54sin -=α. 求ααtan cos 和的值 .21、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+22、已知1)sin(=+βα,求证 0tan )2tan(=++ββα参考答案一、选择题(每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 总分答案B AC B B A C B CD B B二、填空题(每小题4分,共16分) 13、1. 14、115-15、22- 16、1三、解答题(本大题共5道小题,共36分.解答应写出文字说明,证明过程或演算步骤)17、提示:[]1cos tan cot cos sin )cos (tan cot )cos (sin )(cos tan )2cot()cos ()sin (323232-=⋅-⋅⋅=-⋅⋅-⋅=+⋅+-⋅-⋅-=αααααααααααπααπαα原式18、提示:利用诱导公式,原式=219、提示:54sin -=α ,∴角α在第三、四象限,(1) 当α在第三象限,则34tan ,53cos =-=αα(2) 当α在第四象限,则34tan ,53cos -==αα20、提示:右边左边=-=+-=--=ααααααααααααcos sin cos sin cos sin sin 1cos 1sin cos cos sin 22故等式成立 21、提示:)(22,1)sin(Z k k ∈+=+∴=+ππβαβα)(22Z k k ∈-+=∴βππα,0tan tan tan )tan(tan )4tan(tan )24tan(tan )22(2tan tan )2tan(=+-=+-=+-+=++-+=+⎥⎦⎤⎢⎣⎡+-+=++ββββπββππβββππβββππββαk k k0tan )2tan(=++∴ββα。
完整word版,三角函数诱导公式练习题与答案
三角函数定义及诱导公式练习题2015-05-171•将120°化为弧度为( )2 3 5A. — B . — C. — D .—3 34 62 .代数式sin 120°cos21C°的值为( )4. 已知角a的终边经过点(3a,—4a)(a<0),则sin a + cos a等于()5. 已知扇形的面积为2cm,扇形圆心角B的弧度数是4,则扇形的周长为( (A)2cm (B)4cm(C)6cm (D)8cm若有一扇形的周长为60 cm,那么扇形的最大面积为9 .若角的终边过点(sin30, cos30 ),则sin _______________ .10. _________________________________________________________ 已知点P(tan a,cos a )在第二象限,则角a的终边在第____________________________ 限.11. ________________________________________________________________ 若角B同时满足sin B <0且tan B <0,则角B的终边一定落在第____________________ 限.12 .已知tansin(2,则cos&2 )cos()的值为)A. 3B. C4 43. tan 120 ()A. 亠 B . C3 3D. .3 D . .. 3A.-B.7C.D.6.A. 500 cm2B. 60 cm2C. 225 cm2D. 30 cm27. 已知f(3cos( )sin( )2 2cos( )tan(,则f(2525 )的值为(A.8. 已知tan( ,且A、(24532),则sin(13 .已知(0, 2), cos 售,则sin( )sin —cos 14.已知tan 2,贝U -----------------sin —sin22=3 贝y 4sin 3sin cos' 4cos2 sin cos 16. (14分)已知tan a=—,求证: sin a cosa (1) 二——;sin a cosa(2)sin2a+ sin a COS a = - .17.已知tan 2.(1)求3sin一2co^ 的值;sin cos(3)若是第三象限角,求cos的值.18 .已知sin ( a — 3 n ) = 2cos( a — 4n ),sin求———)+ 5cos(2 —2sin32—sin(—-的值.)15.已知tancos( (2)sin( 3 )cos(—2)si n()sin()cos(的值;参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- 3x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 60考点:诱导公式. 4. A【解析】试题分析:r 55 , sin 1 4,cos3., sincos-.故选A1 1r 5 55考点:三角函数的定义5. CR=2+4=6(cm). 6. C【解析】设扇形的圆心角为 ••• S 丄取 1(60 2R)R 30R R 22 2•••当R 15cm 时,扇形的面积最大;这个最大值为 225cm 2.应选C. 7. A【解析】试题分析sin coscos:fcostanf( 25、25 251)=cos=cos - = cos 8—=COS —=.3,选 C.【解析】设扇形的半径为 R,贝上氏 9 =2,二 R=1 R=1,二扇形的周长为 2R+,弧长为l cm,由题意知,I 2R 60 2(R 15)2253 3 3 3 3 2考点:诱导公式• 8. B【解析】 试题分析:tan( ) 3 tan44 sin( )cos.选 B.25考点:三角函数的基本计算•732【解析】r {(-)2 (乎)2 1 ,依题意,根据任意角的三角函数的定义可知sin考点:任意角的三角函数. 10. 四【解析】由题意,得tan aV 0且cos a> 0,所以角a 的终边在第四象限. 11. 四【解析】由sin 9 <0,可知9的终边可能位于第三或第四象限,也可能与 y 轴 的非正半轴重合.由tan 9 <0,可知9的终边可能位于第二象限或第四象限, 可知9的终边只能位于第四象限. 12 . -3sin cos tan 12 13 sin costan 1 2 113.35【解析】试题分析:因为a 是锐角 ______所以 sin( n — a ) = sin a= 1 cos 2 1 4 *55考点:同角三角函数关系,诱导公式. 14. 2 【解析】si n()sin(-)【解析】3cos(-22 )cos() I 又因为占'所以为三象限的角,试题分析1点(sin30 , cos30 )即(-2'该点到原点的距离为tan 2,则原式=2 .考点:三角函数的诱导公式• 15. 45 【解析】试题分析:已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将 分子 分 母 同 除 以 cos 2得4si n 23si cos 24ta n3ta n 4 9 3 3 45.4cos 2sincos4 tan4 3考点::弦化切16 . 证明:(1)sina sin acosa——— cosa(2)sin 2 a+ sin a co —a-.【解析】(1)原式可以分子分母同除以cosx,达到弦化切的目的•然后 将tanx=2 代入求值即可.(2)把” 1”用cos 2x sin 2x 替换后,然后分母也除以一个” T,再分子分母同除以cos 2 x ,达到弦化切的目的.sin a cosa = tan a sin a cosa tan asin a sin a cosa _ tan a tan asin a cos a tan a17. (1) 8; (2) -; (3)—. 25【解析】试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以 cosa 转化为 只含tana 的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有tana 2, 得sin2cos ,再利用同角关系sin 2 + cos 2 1,又因为 是第三象限角,所 以 cosa 0 ;sincos 试题分析:一2--------------------------------sinsin22cos cos sin2 sin cos2 1 tan证明:由已知tan a =—.(1)(2)sin 2a+ sin a cos a =试题解析:⑴3sin + 2cossin cos3ta n + 2tan 13 2+28 • 32 1cos cos(— + )sin( )⑵ 2 2sin 3 + sin cos +cos sin cos 9 分sin sin coscos sin1 tan12 °10 分⑶解法1: 由sincosta n 2,刁曰■得sin 2cos又sin2+ cos1,故4cos2 2 + cos 1,即 2 cos 1,125分因为是第三象限角,cos 0,所以cos _55 •14 分解法2 :cos2——2 cos 1 1 1 12 分2 2 2 2cos + sin 1 + ta n 1 + 2 5因为是第三象限角,cos 0,所以cos —•14 分5考点:1.诱导公式;2.同角三角函数的基本关系.【解析】T sin ( a —3n ) = 2cos( a — 4 n ),••• —sin(3 二sin a= —2cos a,且cos aM 0.sin +5cos _ —2cos +5cos _ 3cos __ 3 —2cos + sin —2cos —2cos —4cos 44n — a ) = 2cos(4 n — a ),•原式=。
三角函数诱导公式练习题集附答案解析
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
三角函数 诱导公式专项练习(含答案)
三角函数诱导公式专项练习(含答案) 三角函数诱导公式专项练一、单选题1.sin(-600°)的值为()A。
-√3/2B。
-1C。
1D。
√3/22.cos(11π/3)的值为()A。
-√3/2B。
-13/2C。
√2D。
23.已知sin(30°+α)=√3/2,则cos(60°-α)的值为A。
1/2B。
-1/2C。
√3/2D。
-√3/24.已知cos(π/3+α)=-5/2,且α∈(2π/5,π),则XXX(α-π)=()A。
-34/4B。
-3C。
4D。
35.已知sin(π-α)=-2/√3,且α∈(-2,0),则tan(2π-α)的值为A。
2√5/5B。
-2√5/2√5C。
±5D。
√5/26.已知cos(π/4-α)=√2/2,则sin(α+π/4)=()A。
-3B。
1C。
√2D。
√14/47.已知sinα=3/5,2<α<π/2,则sin(2-α)=()A。
3/5B。
-3/5C。
4/5D。
-4/58.已知tanx=-12/5π,x∈(π/2,π),则cos(-x+3π/2)=()A。
5/13B。
-5/12C。
13D。
-12/139.如果cos(π+A)=-1,那么sin(π/2+A)=A。
-1/2B。
2C。
1D。
-110.已知cos(π/2-α)-3cosα/(sinα-cos(π+α))=2,则tanα=()A。
12/5B。
-3C。
1/2D。
-511.化简cos480°的值是()A。
1B。
-1C。
√3/2D。
-√3/212.cos(-585°)的值是()A。
√2/2B。
√3/2C。
-√3/2D。
-√2/213.已知角α的终边经过点P(-5,-12),则sin(3π/2+α)的值等于()A。
-5B。
-12/13C。
13D。
12/1314.已知cos(π+α)=2/3,则tanα=()A。
√55/2B。
2√5/52.已知cosα=2/5,-2/5<α<0,则tan(α+α)cos(-α)tanα的值为()答案:D解析:由cosα=2/5可得sinα=-√(21)/5,代入公式可得tan(α+α)cos(-α)tanα=-1/√3=-√3/3,故选D。
三角函数诱导公式练习题集附答案解析
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
高一三角函数诱导公式练习题(带详解答案)
智立方教育必修一三角函数诱导公式1.全国Ⅱ)若sinα<0且tanα>0,则α是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角sinα<0三四tanα>0,一三所以在三2.(07·湖北)tan690°的值为()A.-33 B.33 C. 3 D.- 3解析]tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A.3.f(sin x)=cos19x,则f(cos x)=()A.sin19x B.cos19x C.-sin19x D.-cos19x[解析]f(cos x)=f(sin(90°-x))=cos19(90°-x)=cos(270°-19x)=-sin19x.4.设f(x)=a sin(πx+α)+b cos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z).若f(2009)=5,则f(2010)等于()A.4B.3C.-5D.5∵f(2009)=a sin(2009π+α)+b cos(2009π+β)=-a sinα-b cosβ=5,∴a sinα+b cosβ=-5.∴f(2010)=a sinα+b cosβ=-5.5.(09·全国Ⅰ文)sin585°的值为()A.-22 B.22C.-32 D.32sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-2 2.6.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( )A.25π B.52π C.π3 D .5πT =2π25=5π. 7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________. ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则( )A、f(x)与g(x)都就是奇函数B、f(x)与g(x)都就是偶函数C、f(x)就是奇函数,g(x)就是偶函数D、f(x)就是偶函数,g(x)就是奇函数2、点P(cos2009°,sin2009°)落在( )A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=( )A、B、C、D、4、若tan160°=a,则sin2000°等于( )A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=( )A、﹣B、C、﹣D、6、函数得最小值等于( )A、﹣3B、﹣2C、D、﹣17、本式得值就是( )A、1B、﹣1C、D、8、已知且α就是第三象限得角,则cos(2π﹣α)得值就是( )A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)得值等于( )A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)得值就是( )A、B、C、﹣D、﹣11、若,,则得值为( )A、B、C、D、12、已知,则得值就是( )A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=( )A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d 得大小关系就是( )A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tantan;④,其中恒为定值得就是( )A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=( )A、B、C、D、17、设,则值就是( )A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=( )A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数得个数就是( )A、3B、2C、1D、020、设角得值等于( )A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出得就是f4(x)=﹣csx( )A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)就是角终边上一点,则Z得值为.23、△ABC得三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)得值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)得值就是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则( )A、f(x)与g(x)都就是奇函数B、f(x)与g(x)都就是偶函数C、f(x)就是奇函数,g(x)就是偶函数D、f(x)就是偶函数,g(x)就是奇函数考点:函数奇偶性得判断;运用诱导公式化简求值。
专题:计算题。
分析:从问题来瞧,要判断奇偶性,先对函数用诱导公式作适当变形,再用定义判断.解答:解:∵f(x)=sin=cos,g(x)=tan(π﹣x)=﹣tanx,∴f(﹣x)=cos(﹣)=cos=f(x),就是偶函数g(﹣x)=﹣tan(﹣x)=tanx=﹣g(x),就是奇函数.故选D.点评:本题主要考查函数奇偶性得判断,判断时要先瞧定义域,有必要时要对解析式作适当变形,再瞧f(﹣x)与f(x)得关系.2、点P(cos2009°,sin2009°)落在( )A、第一象限B、第二象限C、第三象限D、第四象限考点:象限角、轴线角;运用诱导公式化简求值。
专题:计算题。
分析:根据所给得点得坐标得横标与纵标,把横标与纵标整理,利用三角函数得诱导公式,判断出角就是第几象限得角,确定三角函数值得符号,得到点得位置.解答:解:∵cos2009°=cos(360°×5+209°)=cos209°∵209°就是第三象限得角,∴cos209°<0,∵sin2009°=sin(360°×5+209°)=sin209°∵209°就是第三象限得角,∴sin209°<0,∴点P得横标与纵标都小于0,∴点P在第三象限,故选C点评:本题考查三角函数得诱导公式,考查根据点得坐标中角得位置确定坐标得符号,本题运算量比较小,就是一个基础题.3、已知,则=( )A、B、C、D、考点:任意角得三角函数得定义;运用诱导公式化简求值。
专题:计算题。
分析:求出cosa=,利用诱导公式化简,再用两角差得余弦公式,求解即可.解答:解:cosa=,cos(+a)=cos(2π﹣+a)=cos(a﹣)=cosacos+sinasin=×+×=.故选B.点评:本题考查任意角得三角函数得定义,运用诱导公式化简求值,考查计算能力,就是基础题.4、若tan160°=a,则sin2000°等于( )A、B、C、D、﹣考点:同角三角函数间得基本关系;运用诱导公式化简求值。
专题:计算题。
分析:先根据诱导公式把已知条件化简得到tan20°得值,然后根据同角三角函数间得基本关系,求出cos20°得值,进而求出sin20°得值,则把所求得式子也利用诱导公式化简后,将﹣sin20°得值代入即可求出值.解答:解:tan160°=tan(180°﹣20°)=﹣tan20°=a<0,得到a<0,tan20°=﹣a∴cos20°===,∴sin20°==则sin2000°=sin(11×180°+20°)=﹣sin20°=.故选B.点评:此题考查学生灵活运用诱导公式及同角三角函数间得基本关系化简求值,就是一道基础题.学生做题时应注意a 得正负.5、已知cos(+α)=﹣,则sin(﹣α)=( )A、﹣B、C、﹣D、考点:同角三角函数间得基本关系;运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式化简sin(﹣α)为cos(+α),从而求出结果.解答:解:sin(﹣α)=cos[﹣(﹣α)]=cos(+α)=﹣.故选A点评:本题考查诱导公式,两角与与差得余弦函数,两角与与差得正弦函数,考查计算能力,就是基础题.6、(2004•贵州)函数得最小值等于( )A、﹣3B、﹣2C、D、﹣1考点:运用诱导公式化简求值。
专题:综合题。
分析:把函数中得sin(﹣x)变形为sin[﹣(+x)]后利用诱导公式化简后,合并得到一个角得余弦函数,利用余弦函数得值域求出最小值即可.解答:解:y=2sin(﹣x)﹣cos(+x)=2sin[﹣(+x)]﹣cos(+x)=2cos(+x)﹣cos(+x)=cos(+x)≥﹣1所以函数得最小值为﹣1故选D点评:此题考查学生灵活运用诱导公式化简求值,会根据余弦函数得值域求函数得最值,就是一道综合题.做题时注意应用(﹣x)+(+x)=这个角度变换.7、本式得值就是( )A、1B、﹣1C、D、考点:运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式及三角函数得奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数得奇偶性.化简时学生应注意细心做题,注意符号得选取.8、已知且α就是第三象限得角,则cos(2π﹣α)得值就是( )A、B、C、D、考点:运用诱导公式化简求值。
专题:计算题。
分析:由已知中且α就是第三象限得角,我们易根据诱导公式求出sinα,cosα,再利用诱导公式即可求出cos(2π﹣α)得值.解答:解:∵且α就是第三象限得角,∴,∴∴cos(2π﹣α)=故选B点评:本题考查得知识点就是运用诱导公式化简求值,熟练掌握诱导公式就是解答本题得关键,解答中易忽略α就是第三象限得角,而选解为D9、已知f(cosx)=cos2x,则f(sin30°)得值等于( )A、B、﹣C、0D、1考点:运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式转化f(sin30°)=f(cos60°),然后求出函数值即可.解答:解:因为f(cosx)=cos2x所以f(sin30°)=f(cos60°)=cos120°=﹣,故选B.点评:本题就是基础题,考查函数值得求法,注意诱导公式得应用就是解题得关键.10、已知sin(a+)=,则cos(2a﹣)得值就是( )A、B、C、﹣D、﹣考点:运用诱导公式化简求值。
专题:计算题。
分析:把已知条件根据诱导公式化简,然后把所求得式子利用二倍角得余弦函数公式化简后代入即可求出值.解答:解:sin(a+)=sin[﹣(﹣α)]=cos(﹣α)=cos(α﹣)=,则cos(2α﹣)=2﹣1=2×﹣1=﹣故选D点评:考查学生灵活运用诱导公式及二倍角得余弦函数公式化简求值.11、若,,则得值为( )A、B、C、D、考点:运用诱导公式化简求值;三角函数值得符号;同角三角函数基本关系得运用。
专题:计算题。
分析:角之间得关系:(﹣x)+(+x)=及﹣2x=2(﹣x),利用余角间得三角函数得关系便可求之.解答:解:∵∴,cos(﹣x)>0,cos(﹣x)===.∵(﹣x)+(+x)=,∴cos(+x)=sin(﹣x)①.又cos2x=sin(﹣2x)=sin2(﹣x)=2sin(﹣x)cos(﹣x)②,将①②代入原式,∴===故选B点评:本题主要考查三角函数式化简求值.用到了诱导公式及二倍角公式及角得整体代换.三角函数中得公式较多,应强化记忆,灵活选用.12、已知,则得值就是( )A、B、C、D、考点:运用诱导公式化简求值。