微积分大一基础知识经典讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter1 Functions(函数)
1)A function f is a rule that assigns to each element x in a set A exactly one element, called f (x ), in a set B.
2)The set A is called the domain(定义域) of the function.
3)The range(值域) of f is the set of all possible values of f (x ) as x varies through out the domain.
⇔=)()(x g x f :Note
1)(,1
1)(2+=--=x x g x x x f E xample )()(x g x f ≠⇒ Elementary Functions(基本初等函数)
1) constant functions
f (x )=c
2) power functions
0,)(≠=a x x f a
3) exponential functions
1,0,)(≠>=a a a x f x domain: R range: ),0(∞
4) logarithmic functions
1,0,log )(≠>=a a x x f a domain: ),0(∞ range: R
5) trigonometric functions
f (x )=sin x f (x )=cos x f (x )=tan x f (x )=cot x f (x )=sec x f (x )=csc x
Given two functions f and g , the composite function(复合函数) g f is defined by
))(())((x g f x g f =
Note )))((())((x h g f x h g f =
Example If ,2)()(x x g and x x f -== find each function and its domain.
g g d f f c f g b g f a ))))
))(())(()x g f x g f a = Solution )2(x f -=422x x -=-=
]2,(}2{:domain -∞≤or x x
x x g x f g x f g b -===2)())(())(()
]4,0[:0
2,0domain x x ⇒⎩⎨⎧≥-≥ 4)())(())(()x x x f x f f x f f c ==== )[0, :domain ∞
x x g x g g x g g d --=-==22)2())(())(()
]2,2[:0
22,02-⇒⎩⎨⎧≥--≥-domain x x An elementary function(初等函数) is constructed using combinations (addition 加, subtraction 减, multiplication 乘, division 除) and composition
starting with basic elementary functions.
Example )9(cos )(2+=x x F is an elementary function.
)))((()()(cos )(9)(2
x h g f x F x x f x x g x x h ===+=
2sin 1
log )(x e x x f x a -+=E xample is an elementary function.
1)Polynomial(多项式) Functions
R x a x a x a x a x P n n n n ∈++++=--0111)( where n is a nonnegative integer.
The leading coefficient(系数) ⇒≠.0n a The degree of the polynomial is
In particular(特别地),
The leading coefficient ⇒≠.00a constant function
The leading coefficient ⇒≠.01a linear function
The leading coefficient ⇒≠.02a quadratic(二次) function
The leading coefficient ⇒≠.03a cubic(三次) function
2)Rational(有理) Functions
}.0)(such that is {,)()()(≠=x Q x x x Q x P x f where P and Q are polynomials.
3) Root Functions
Defined Functions(分段函数)
⎩⎨⎧>≤-=111)(x if x
x if x x f Example 5.
(性质)
1)Symmetry(对称性)
even function : x x f x f ∀=-),()( in its domain.
symmetric respect to 关于) the y -axis.
odd function : x x f x f ∀-=-),()( in its domain.
symmetric about the origin.
2) monotonicity(单调性)
A function f is called increasing on interval(区间) I if I in x x x f x f 2121)()(<∀<
It is called decreasing on I if I in x x x f x f 2121)()(<∀>
3) boundedness(有界性)
below bounded )(x e x f =E xample1
above bounded )(x e x f -=E xamp le2