中考数学复习第三部分统计与概率第三十一课时统计基础知识练习
最新初三数学统计与概率知识点及例题
为⼤家整理的最新初三数学统计与概率知识点及例题的⽂章,供⼤家学习参考!更多最新信息请点击
【易错分析】
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.
易错点2:在从统计图获取信息时,⼀定要先判断统计图的准确性.不规则的统计图往往使⼈产⽣错觉,得到不准确的信息.
易错点3:对全⾯调查与抽样调查的概念及它们的适⽤范围不清楚,造成错误.
易错点4:极差、⽅差的概念理解不清晰,从⽽不能正确求出⼀组数据的极差、⽅差.
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.
【好题闯关】
好题1.在⼀次数学竞赛中,10名学⽣的成绩如下: 75 80 80 70 85 95 70 65 70 80.则这次竞赛成绩的众数是多少?
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,⼀组数据中出现次数最多的数据是这组数据的众数.⽽在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.。
2024年中考数学训练《统计与概率》
2024中考专题训练——统计与概率知识点梳理考点一、平均数1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x =11+22+ k k,这样求得的平均数x 叫做加权平均数,其中f 1,f 2, ,f k 叫做权。
2.平均数的计算方法(1)定义法当所给数据x 1,x 2, ,x n ,比较分散时,一般选用定义公式:1(x 1x 2x n )nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x x =n++ +是新数据的平均数(通常把x 1,x 2, ,x n ,叫做原数据,x '1,x '2, ,x 'n ,叫做新数据)。
考点二、统计学中的几个基本概念1.总体所有考察对象的全体叫做总体。
2.个体总体中每一个考察对象叫做个体。
3.样本从总体中所抽取的一部分个体叫做总体的一个样本。
4.样本容量样本中个体的数目叫做样本容量。
5.样本平均数样本中所有个体的平均数叫做样本平均数。
6.总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
初中数学《统计与概率》讲义及练习
1. 能准确判断事件发生的等可能性以及游戏规则的公平性问题.2. 运用排列组合知识和枚举等计数方法求解概率问题.3. 理解和运用概率性质进行概率的运算知识点说明在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。
从总体中所抽取的一部分个体叫做总体的一个样本。
样本中个体的数目叫做样本的容量。
总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。
概率的古典定义:如果一个试验满足两条: ⑴试验只有有限个基本结果:⑵试验的每个基本结果出现的可能性是一样的. 这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()mP A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中,所涉及的问题都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.相互独立事件:()()()P A B P A P B ⋅=⋅ 事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件. 公式含义:如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积.举例:⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即111224P =⨯=.⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的概率为0.6,那么骰子掉在桌上且数字“n ”向上的概率为10.60.16⨯=.知识点拨教学目标8-7概率与统计例题精讲【例 1】(2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.因此④的说法正确.【巩固】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.【解析】因为2、3、5、6、7、9中奇数有4个,偶数只有2个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大.【例 2】在多家商店中调查某商品的价格,所得的数据如下(单位:元)25 21 23 25 27 29 25 28 30 2926 24 25 27 26 22 24 25 26 28请填写下表【解析】:【例 3】在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?【解析】200尾鱼中有25条鱼被标记过,所以池塘中鱼被标记的概率的实验得出值为252000.125÷=,所以池塘中的鱼被标记的概率可以看作是0.125,池塘中鱼的数量约为1000.125800÷=尾.【例 4】有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。
最新北师大版九年级中考数学总复习统计与概率知识点+练习试题
九年级中考数学统计和概率知识点+练习试题统计和概率1、着教育信息化的发展,学生的学习方式日益增多.教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人?2、八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.3、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.1、如图所示的几何体,其俯视图是( ) A . B . C . D .2、如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )A .B .C .D .3、如图所示的几何体,它的左视图是( )4、下面四个几何体:其中,俯视图是四边形的几何体个数是( ) A .1 B .2 C .3 D .4 814187652015105人数5、如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()。
初三数学中考复习专题概率与统计知识点级练习
统计与概率知识点归纳及练习一、知识归纳与例题讲解:1、总体,个体,样本和样本容量.注意“考查对象”是所要研究的数据.2、中位数,众数,平均数,加权平均数,注意区分这些概念.相同点:都是为了描述一组数据的集中趋势的.不同点:中位数——中间位置上的数据(当然要先按大小排列)众数——出现的次数多的数据.3、方差,标准差与极差.方差:顾名思义是“差的平方”,因有多个“差的平方”,所以要求平均数,弄清是“数据与平均数差的平方的平均数”,标准差是它的算术平方根.会用计算器计算标准差与方差.最大值-最小值(也就是极差)4、频数,频率,频率分布,常用的统计图表.5、确定事件(分为必然事件、不可能事件)、不确定事件(称为随机事件或可能事件)、概率.并能用树状图和列表法计算概率;二、达标训练(一)选择题1、计算机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,使用的统计图是()A条形统计图B折线统计图C扇形统计图D条形统计图或折线统计图2、小明把自己一周的支出情况,用右图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出具体消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各项消费数额占总消费额的百分比D.从图中可以直接看出各项消费数额在一周中的具体变化情4、下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式5、下列事件:①检查生产流水线上的一个产品,是合格品.②两直线平行,内错角相等.③三条线段组成一个三角形.④一只口袋内装有4只红球6只黄球,从中摸出2只黑球.其中属于确定事件的为()A、②③B、②④C、③④D、①③67(二)填空题1、在一个班级50名学生中,30名男生的平均身高是1.60米,20名女生的平均身高是1.50米,那么这个班学生的平均身高是________米.2、已知一个样本为1,2,2,-3,3,那么样本的方差是_______;标准差是_________.3、将一批数据分成五组,列出频数分布表,第一组频率为0.2,第四组与第二组的频率之和为0.5,那么第三、五组频率之和为_________.4、已知数据x1,x2,x3的平均数是m,那么数据3x1+7,3x2+7,3x3+7的平均数等于_________.5、装有5个红球和3个白球的袋中任取4个,那么取到的“至少有1个是红球”与“没有红球”的概率分别为________与________6、有甲、乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有1把钥匙,事件A为“从这3把钥匙中任选2把,打开甲、乙两把锁”,则P(A)=________如果销售1000件该名牌衬衫,至少要准备____件合格品,供顾客更换;8、随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是_________;9、某篮球运动员投3分球的命中率为0.5,投2分球的命中率为0.8,一场比赛中据说他投了20次2分球,投了6次3分球,估计他在这场比赛中得了____分;10、由1到9的9个数字中任意组成一个二位数(个位与十位上的数字可以重复),计算:①个位数字与十位数字之积为奇数的概率_______;②个位数字与十位数字之和为偶数的概率_______;③个位数字与十位数字之积为偶数的概率_______;请填好最后一行的各个频率,由此表推断这个射手射击1次,击中靶心的概率的是___________;12、某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:这20个家庭的年平均收入为______万元;(2)样本中的中位数是______万元,众数是______万元;(3)在平均数、中位数两数中,______更能反映这个地区家庭的年收入水平.(三)解答题1、从同一家工厂生产的20瓦日光灯中抽出6支,40瓦日光灯中抽出8支进行使哪种日光灯的寿命长?哪种日光灯的质量比较稳定?2、某样本数据分为五组,第一组的频率是0.3,第二、三组的频率相等,第四、五组的频率之和为0.2,则第三组的频率是多少?3、小明与小刚做游戏,两人各扔一枚骰子.骰子上只有l、2、3三个数字.其中相对的面上的数字相同.规则规定.若两枚骰子扔得的点数之和为质数,则小明获胜,否则,若扔得的点数之和为合数,则小刚获胜,你认为这个游戏公平吗?对谁有利?怎样修改规则才能使游戏对双方都是公平的?三、自我检测1、一个班的学生中,14岁的有16人,15岁的有14人,16岁的有8 人,17岁的有4人.这个班学生的平均年龄是______岁.2、布袋里有1个白球和2个红球,从布袋里取两次球,每次取一个,取出后放回,则两次取出都是红球的概率是_____________.3、如果数据x1,x2,x3,…x n的的平均数是x,则(x1 -x)+(x2 -x)+…+(x n-x)的值等于___________.4、抛掷两枚分别标有1,2,3,4的四面体骰子.写出这个实验中的一个可能事件是_________________________________;写出这个实验中的一个必然事件是________________________________;5、从全市5 000份试卷中随机抽取400份试卷,其中有360份成绩合格,估计全市成绩合格的人数约为________人.6、一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是_____________.7、四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为()A.1/4 B.1/2 C.3/4 D.18、从1至9这九个自然数中任取一个,是2的倍数也是3的倍数的概率是()9、数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据图表,全班每位同学答对的题数所组成样本的中位数和众数分别为A、8,8B、8,9C、9,9D、9,810、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A、平均数B、众数C、最高分数D、中位数11、如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:⑴计算并完成表格;⑵请估计当n很大时,频率将会接近多少?⑶假如你去转动该转盘一次,你获得可乐..的概率是多少?在该转盘中,表示“可.乐.”区域的扇形的圆心角约是多少度?⑷如果转盘被一位小朋友不小心损坏,请你设计一个等效的模拟实验方案(要求交代清楚替代工具和游戏规则).。
中考数学总复习:统计与概率
中考数学总复习:统计与概率统计与概率是中学数学中的一大重要内容,也是中考数学中出现频率较高的考点之一。
本文将从统计和概率两个方面进行和复习,以帮助同学们系统地回顾和巩固相关知识点。
统计一、数据的整理和统计学中的第一步是对所给的数据进行整理和,常见的方法有以下几种:1.频数表:将数据按照取值的不同进行分类,并统计每个类别中数据出现的频数。
示例: | 数据 | 频数 | | —- | —- | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 5 |2.频率表:在频数表的基础上,计算每个类别的频率,即频数与样本容量的比值。
3.线性图:可用于展示数据的分布特征,横坐标表示数据的取值,纵坐标表示频数或频率。
二、代表性指标代表性指标是对数据集中趋势或平均水平进行衡量的数值,常见的代表性指标有以下几种:1.平均数:在一组数据中,所有数值的和除以数据的个数。
示例:给定一组数据:4, 5, 6, 7, 8,求平均数。
平均数 = (4 + 5 + 6 + 7 + 8) / 5 = 30 / 5 = 62.中位数:将一组数据从小到大排列,位于中间位置的数值。
示例:给定一组数据:3, 5, 1, 9, 2,求中位数。
排序后的数据:1, 2, 3, 5, 9 中位数为33.众数:一组数据中出现频率最高的数值。
三、概率概率是研究随机事件发生可能性的数学分支。
以下是概率计算中常用的一些基本概念和方法:1.样本空间:随机试验的所有可能结果组成的集合。
2.事件:样本空间中的一个子集。
3.概率:事件发生的可能性大小,范围在0到1之间。
4.加法法则:对于两个互斥事件 A 和 B,它们同时发生的概率等于各自概率的和。
示例:P(A ∪ B) = P(A) + P(B)5.乘法法则:对于独立事件 A 和 B,它们同时发生的概率等于各自概率的乘积。
示例:P(A ∩ B) = P(A) × P(B)以上仅为统计与概率的部分内容,同学们在备考中需结合教材和试题进行全面复习。
中考数学复习之统计与概率综合训练题(含20大题)
中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。
北京市西城区2019年中考复习《统计与概率》建议讲义及练习
北京市西城区重点中学2019年3月九年级数学中考复习 《统计与概率》复习建议讲义及2019年各区县一模、二模相关题新版课程标准中指出:“统计与概率”的内容在新课程中得到了较大重视,成为和“数与代数”“图形与几何”“综合与实践”并列的四部分内容之一,而统计则成为这一部分的重点。
统计与概率的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
中考内容中统计与概率大约占14分,15年之前是两道选择题一道解答题,15年是两道3分选择题,一道3分填空题和一道5分解答题,总体难度略有增加。
一、知识结构统计部分知识结构:描述数据分析数据样本估计总体 总体 样本中位数 众 数 平均数 收集、整理数据全面调查 统计表抽样调查条 形 图 扇 形 图 折 线 图 直 方 图方 差概率部分知识结构:二、考试说明要求三、近几年中考统计、概率考点分布统计试题涉及知识点:年份选择题考查的概念解答题考查的统计图表统计图统计表2010 平均数、方差折线图、扇形图(补全)补全2011 众数、中位数折线图、条形图(补全)√2019 众数、中位数条形图(补全)、扇形图√2019 加权平均数复合条形图(补全)、扇形图补全2019 众数、加权平均数扇形图(补全)√2019 众数、中位数、条形统计图自制统计图自制统计表另:2019年增加的填空15题为开放性题型,要求学生根据统计图进行数据预估,并阐述预估理由。
概率试题涉及知识点:2010年—2019年:选择题,求随机事件概率四、2019年中考统计题第7题、某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5C.21,22 D.22,22本题涉及到根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解。
中考数学 教材知识梳理 第8单元 统计与概率 第31课时 统计
(一) 2016中考真题
参加本次调查的有________名学生,根据调查数据分析, 全校约有________名学生参加了音乐社团;请你补全条形 统计图. 解:240;400
书法:240×15%=36(名), 舞蹈:240×20%=48(名), 音乐:240-36-72-48-24=60(名). 补全条形统计图如图:
大小与每 个数据有
平均数
2.加权平均数:已知n个数x1,x2,…,
关,反映 数据的一
xn的权分别为w1,w2,…,wn,则 把把叫x1做ww 1这1xn2w 个w22数的加wx权nnw 平n均数
般水平
(二) 中考考点梳理
续表:
数据代表
定义
特性
中位数
一般地,将n个数据按大小顺序排列, 如果n为奇数,那么把处于_中__间__位__置___ 的数据叫做这组数据的中位数;如果n 为偶数,那么把处于中间位置两个数 据的_平__均__数___叫做这组数据的中位数
返回
(二) 中考考点梳理
考点1 数据的收集
1. 调查方式
(1)普查:对全体对象进行调查,这种调查方式叫做全面调查,
也叫做普查.
(2)抽样调查:从总体中抽取部分个体进行调查,这种调查方
式叫做抽样调查.
2. 总体、个体、样本及样本容量
总体:把要考察对象的___全__体___叫做总体.
个体:把组成总体的每一个对象叫做个体.
自己是否入选,老师只需公布他们成绩的( B )
A.平均数
B.中位数
C.众数
D.方差
(一) 2016中考真题
4.(2016丽水)某校对全体学生开展心理健康知识测试,七、 八、九三个年级共有800名学生,各年级的合格人数如下表 所示,则下列说法正确的是( D )
中考数学考点35统计与概率总复习(解析版)
统计与概率【命题趋势】在中考.这是必考内容.主要考查形式包括:选择特、填空题和解答题。
难度系数不大.分值约占14分左右。
【中考考查重点】一、调查方式二、综合体、个体、样本及样本容量三、数据分析考点:全面调查与抽样调查1.有关概念1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取:当受客观条件限制.无法对所有个体进行全面调查时.往往采用抽样调查.3.抽样调查样本的选取:1)抽样调查的样本要有代表性.2)抽样调查的样本数目要足够大.1.(2021•柳州)以下调查中.最适合用来全面调查的是()A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率【答案】C【解答】解:A、调查柳江流域水质情况.适合抽样调查.故本选项不符合题意.B、了解全国中学生的心理健康状况.适合抽样调查.故本选项不符合题意.C、了解全班学生的身高情况.适合普查.故本选项符合题意.D、调查春节联欢晚会收视率.适合抽样调查.故本选项不符合题意.故选:C.2.(2020•安顺)2020年为阻击新冠疫情.某社区要了解每一栋楼的居民年龄情况.以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62.63.75.79.68.85.82.69.70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【答案】C【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62.63.75.79.68.85.82.69.70.获得这组数据的方法是:调查.故选:C.考点总体、个体、样本及样本容量总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量.3.(2021•张家界)某校有4000名学生.随机抽取了400名学生进行体重调查.下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【解答】解:A.总体是该校4000名学生的体重.说法正确.故A不符合题意.B.个体是每一个学生的体重.原来的说法错误.故B符合题意.C.样本是抽取的400名学生的体重.说法正确.故C不符合题意.D.样本容量是400.说法正确.故D不符合题意.故选:B.考点:几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点:(1)能够显示每组中的具体数据.(2)易于比较数据之间的差别.2.折线统计图:用几条线段连成的折线来表示数据的图形.特点:易于显示数据的变化趋势.3.扇形统计图:用一个圆代表总体.圆中的各个扇形分别代表总体中的不同部分.扇形的大小反映部分在总体中所占百分比的大小.这样的统计图叫扇形统计图.百分比的意义:在扇形统计图中.每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.4.频数分布直方图1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率.频数和频率都能够反映每个对象出现的频繁程度.3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.4)频数分布直方图的绘制步骤:①计算最大值与最小值的差.②决定组距与组数.③确定分点.常使分点比数据多一位小数.并且把第一组的起点稍微减小一点.④列频数分布表.⑤画频数分布直方图:用横轴表示各分段数据.纵轴反映各分段数据的频数.小长方形的高表示频数.绘制频数分布直方图.4.(2021•云南)2020年以来.我国部分地区出现了新冠疫情.一时间.疫情就是命令.防控就是责任.一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶.有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多【答案】C【解答】解:A、单独生产B帐篷所需天数为=4(天).单独生产C帐篷所需天数为=1(天).∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍.此选项错误.B、单独生产A帐篷所需天数为=2(天).∴单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍.此选项错误.C、单独生产D帐篷所需天数为=2(天).∴单独生产A型帐篷与单独生产D型帐篷的天数相等.此选项正确.D、单由条形统计图可得每天单独生产A型帐篷的数量最多.此选项错误.故选:C.6.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况.图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元.观察图1、图2.解答下列问题:(1)求该书店4月份的营业总额.并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高.并说明理由.【答案】(1) 略(2) 10.5万元(3)5月份“党史”类书籍的营业额最高【解答】解:(1)该书店4月份的营业总额是:182﹣(30+40+25+42)=45(万元).补全统计图如下:(2)42×25%=10.5(万元).答:5月份“党史”类书籍的营业额是10.5万元.(3)4月份“党史”类书籍的营业额是45×20%=9(万元).∵10.5>9.且1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份.∴5月份“党史”类书籍的营业额最高.考点:众数、中位数、平均数、方差1.众数:在一组数据中.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列.把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 3.平均数1)平均数:一般地.如果有n 个数1x .2x .….n x .那么.121()n x x x x n=+++…叫做这n 个数的平均数.x 读作“x 拔”. 2)加权平均数:如果n 个数中.1x 出现f 1次.x 2出现f 2次.….x k 出现f k 次(这里12k f f f n +++=…).那么.根据平均数的定义.这n 个数的平均数可以表示为1122k kx f x f x f x n+++=….这样求得的平均数x 叫做加权平均数.其中f 1.f 2.….f k 叫做权.4.方差.通常用“2s ”表示.即2222121[()()()]n s x x x x x x n=-+-++-….在一组数据1x .2x .….n x 中.各数据与它们的平均数x 的差的平方的平均数.叫做这组数6.(2021•本溪)下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率.则这5种疫苗有效率的中位数是( ) 疫苗名称 克尔来福 阿斯利康 莫德纳 辉瑞 卫星V 有效率 79%76% 95%95% 92%A .79%B .92%C .95%D .76%【答案】B【解答】解:从小到大排列此数据为:76%、79%、92%、95%、95%.92%处在第3位为中位数. 故选:B .7.(2021•湘潭)某中学积极响应党的号召.大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示.则小明同学五项评价的平均得分为()A.7分B.8分C.9分D.10分【答案】C【解答】解:小明同学五项评价的平均得分为=9(分).故选:C.8.(2021•山西)每天登录“学习强国”App进行学习.在获得积分的同时.还可获得“点点通”附加奖励.李老师最近一周每日“点点通”收入明细如表.则这组数据的中位数和众数分别是()星期一二三四五六日收入(点)15212727213021A.27点.21点B.21点.27点C.21点.21点D.24点.21点【答案】C【解答】解:将这7个数据从小到大排列为:15.21.21.21.27.27.30.所以中位数为21.众数为21.故选:C.9.(2021•上海)商店准备确定一种包装袋来包装大米.经市场调查后.做出如下统计图.请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【解答】解:由图知这组数据的众数为1.5kg~2.5kg.取其组中值2kg.故选:A.10.(2021•金华)小聪、小明准备代表班级参加学校“党史知识”竞赛.班主任对这两名同学测试了6次.获得如图测试成绩折线统计图.根据图中信息.解答下列问题:(1)要评价每位同学成绩的平均水平.你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算.你认为哪位同学的成绩较好?请简述理由.【答案】(1)应选择平均数.小聪、小明的平均数分别是8分.8分. (2)(平方分)(3)小聪同学的成绩较好【解答】解:(1)要评价每位同学成绩的平均水平.选择平均数即可.小聪成绩的平均数:(7+8+7+10+7+9)=8(分).小明成绩的平均数:(7+6+6+9+10+10)=8(分).答:应选择平均数.小聪、小明的平均数分别是8分.8分.(2)小聪成绩的方差为:[(7﹣8)2+(8﹣8)2+(7﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=(平方分).(3)小聪同学的成绩较好.理由:由(1)可知两人的平均数相同.因为小聪成绩的方差小于小明成绩的方差.成绩相对稳定.故小聪同学的成绩较好.考点:概率11.(2021•怀化)“成语”是中华文化的瑰宝.是中华文化的微缩景观.下列成语:①“水中捞月”.②“守株待兔”.③“百步穿杨”.④“瓮中捉鳖”描述的事件是不可能事件的是()A.①B.②C.③D.④【答案】A【解答】解:①“水中捞月”是不可能事件.符合题意.②“守株待兔”是随机事件.不合题意.③“百步穿杨”.是随机事件.不合题意.④“瓮中捉鳖”是必然事件.不合题意.故选:A.12.(2021•百色)骰子各面上的点数分别是1.2.….6.抛掷一枚骰子.点数是偶数的概率是()A.B.C.D.1【答案】A【解答】解:∵任意抛掷一次骰子共有6种等可能结果.其中朝上一面的点数为偶数的只有3种.∴朝上一面的点数为偶数的概率=.故选:A.13.(2021•兰州)如图.将一个棱长为3的正方体表面涂上颜色.再把它分割成棱长为1的小正方体.将它们全部放入一个不透明盒子中摇匀.随机取出一个小正方体.只有一个面被涂色的概率为()A.B.C.D.【答案】B【解答】解:将一个棱长为3的正方体分割成棱长为1的小正方体.一共可得到3×3×3=27(个).有6个一面涂色的小立方体.所以.从27个小正方体中任意取1个.则取得的小正方体恰有一个面涂色的概率为=.故选:B.14.(2021•临沂)现有4盒同一品牌的牛奶.其中2盒已过期.随机抽取2盒.至少有一盒过期的概率是()A.B.C.D.【答案】D【解答】解:把2盒不过期的牛奶记为A、B.2盒已过期的牛奶记为C、D.画树状图如图:共有12种等可能的结果.至少有一盒过期的结果有10种.∴至少有一盒过期的概率为=.故选:D.15.(2021秋•任城区校级期末)4张相同的卡片上分别写有数字0、1、﹣2、3.将卡片的背面朝上.洗匀后从中任意抽取1张.将卡片上的数字记录下来.再从余下的3张卡片中任意抽取1张.同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为.(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时.甲获胜.否则.乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)【答案】(1)【解答】解:(1)第一次抽取的卡片上数字是非负数的概率为.故答案为:.(2)小敏设计的游戏规则公平.理由如下:列表如下:01﹣23 01﹣231﹣1﹣32﹣22353﹣3﹣2﹣5由表可知.共有12种等可能结果.其中结果为非负数的有6种结果.结果为负数的有6种结果.∴甲获胜的概率=乙获胜的概率==.∴小敏设计的游戏规则公平.1.下列调查中.适合采用抽样调查的是()A.了解全班学生的身高B.检测“天舟三号”各零部件的质量情况C.对乘坐高铁的乘客进行安检D.调查某品牌电视机的使用寿命【答案】D【解答】解:A.了解全班学生的身高.适宜全面调查.故A选项不符合题意.B.检测“天舟三号”各零部件的质量情况.适宜全面调查.故B选项不合题意.C.对乘坐高铁的乘客进行安检.适宜全面调查.故C选项不合题意.D、调查某品牌电视机的使用寿命.适宜抽样调查.故D选项合题意.故选:D.2.随着中国经济的高速发展.人们的生活水平发生了巨大改变.目前大部分中小学生的营养问题已经从以前的营养不良变成营养过剩.某中学从该校的4000名学生中随机抽取了400名学生进行体重调查.下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【解答】解:A.总体是该校4000名学生的体重.说法正确.故A不符合题意.B.个体是每一个学生的体重.原来的说法错误.故B符合题意.C.样本是抽取的400名学生的体重.说法正确.故C不符合题意.D.样本容量是400.说法正确.故D不符合题意.故选:B.3.某校学生参加体育兴趣小组的情况如图所示.已知参加排球小组的有25人.则参加乒乓球小组的人数为()A.100人B.40人C.35人D.25人【答案】B【解答】解:参加兴趣小组的总人数25÷25%=100(人).参加乒乓球小组的人数100×(1﹣25%﹣35%)=40(人).故选:B.4.某中学七年级甲、乙两个班进行了一次数学运算能力测试.测试人数每班都为40人.每个班的测试成绩分为A.B.C.D四个等级.绘制的统计图如图.根据以上统计图提供的信息.下列说法错误的是()A.甲班D等的人数最多B.乙班A等的人数最少C.乙班B等与C等的人数相同D.C等的人数甲班比乙班多【答案】D【解答】解:由条形统计图可知.甲班D等的人数最多.故选项A不合题意.由扇形统计图可知.乙班A等级的人数为:40×10%=4(人).故乙班A等的人数最少.故选项B不合题意.B、C均站35%.故乙班B等与C等的人数相同.故选项C不合题意.乙班C等级的人数为:40×35%=14(人).∴C等的人数甲班比乙班少.故选项D符合题意.故选:D.5.不透明的袋子里装有除标号外完全一样的三个小球.小球上分别标有﹣1.2.3三个数.从袋子中随机抽取一个小球.记标号为k.放回后将袋子摇匀.再随机抽取一个小球.记标号为b.两次抽取完毕后.直线y=kx与反比例函数y=的图象经过的象限相同的概率为.【答案】【解答】解:由题意可得.∵从袋子中随机抽取一个小球.记标号为k.放回后将袋子摇匀.再随机抽取一个小球.记标号为b.∴直线y=kx与反比例函数y=的图象经过的象限相同的可能性为:(﹣1.﹣1).(2.2).(2.3).(3.2).(3.3).∴直线y=kx与反比例函数y=的图象经过的象限相同的概率为:.6.小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6).他把第一次掷得的点数记为x.第二次掷得的点数记为y.则分别以这两次掷得的点数值为横、纵坐标的点A(x.y)恰好在直线y=﹣2x+8上的概率是.【答案】【解答】解:列表得:123456 1(1.1)(2.1)(3.1)(4.1)(5.1)(6.1)2(1.2)(2.2)(3.2)(4.2)(5.2)(6.2)3(1.3)(2.3)(3.3)(4.3)(5.3)(6.3)4(1.4)(2.4)(3.4)(4.4)(5.4)(6.4)5(1.5)(2.5)(3.5)(4.5)(5.5)(6.5)6(1.6)(2.6)(3.6)(4.6)(5.6)(6.6)∵共有36种等可能的结果.点A(x.y)恰好在直线y=﹣2x+8上的有(1.6)、(2.4)、(3.2).∴点A(x.y)恰好在直线y=﹣2x+8上的概率是=.故答案为:.7.为了了解学生在2022年3月的学习情况.某校九年级1班组织了一次网上全班数学测试.任科老师从本班中抽取了n个学生的成绩(满分100分.且抽取的学生成绩均在[40.100]内)进行统计分析.按照成绩分数段[40.50).[50.60).[60.70).[70.80).[80.90).[90.100]的分组作出频数分布表和频率分布直方图.频数分布表[40.50)1[50.60)2[60.70)5[70.80)x[80.90)4[90.100]2(1)求n.x的值.并补充完整频率分布直方图:(2)老师对小明说.估计你在这次的测试中成绩中等.请写出小明这次测试成绩在哪个分数段内的可能性最大?(3)在选取的样本中.从低于60分的学生中随机抽取两名学生.请用列表法或树状图求这两名学生在同一成绩分数段的概率?【答案】(1)0.3(2)[70.80)(3)【解答】解:(1)n=1÷0.05=20.x=20﹣1﹣2﹣5﹣4﹣2=6.[70.80)这组的频率为=0.3.频率分布直方图为:(2)样本的中位数在[70.80)中.所以小明这次测试成绩在[70.80)这个分数段内的可能性最大.(3)低于60分的有3个.在分数段[40.50)中的学生有A表示.在分数段[50.60)内的学生用B、B表示.画树状图为:共有6种等可能的结果数.其中这两名学生在同一成绩分数段的结果数为2.所以这两名学生在同一成绩分数段的概率==1.(2021•郴州)下列说法正确的是()A.“明天下雨的概率为80%”.意味着明天有80%的时间下雨B.经过有信号灯的十字路口时.可能遇到红灯.也可能遇到绿灯C.“某彩票中奖概率是1%”.表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上【答案】B【解答】解:A.明天下雨的概率为80%.只是说明明天下雨的可能性大.与时间无关.故本选项不符合题意.B.经过有信号灯的十字路口时.可能遇到红灯.也可能遇到绿灯.故本选项符合题意.C.某彩票中奖概率是1%.买100张这种彩票中奖是随机事件.不一定会有1张中奖.故本选项不符合题意.D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上.故本选项不符合题意.故选:B2.(2021•通辽)为迎接中国共产党建党一百周年.某班50名同学进行了党史知识竞赛.测试成绩统计如下表.其中有两个数据被遮盖.成绩/分919293949596979899100人数■■1235681012下列关于成绩的统计量中.与被遮盖的数据无关的是()A.平均数.方差B.中位数.方差C.中位数.众数D.平均数.众数【解答】解:由表格数据可知.成绩为91分、92分的人数为50﹣(12+10+8+6+5+3+2+1)=3(人).成绩为100分的.出现次数最多.因此成绩的众数是100.成绩从小到大排列后处在第25、26位的两个数都是98分.因此中位数是98.因此中位数和众数与被遮盖的数据无关.故选:C.3.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求.了解学生的睡眠状况.调查了一个班50名学生每天的睡眠时间.绘成睡眠时间频数分布直方图如图所示.则所调查学生睡眠时间的众数.中位数分别为()A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h【答案】C【解答】解:∵7h出现了19次.出现的次数最多.∴所调查学生睡眠时间的众数是7h.∵共有50名学生.中位数是第25、26个数的平均数.∴所调查学生睡眠时间的中位数是=7.5(h).故选:C.4.(2021•百色)如图.是一组数据的折线统计图.则这组数据的中位数是9.【解答】解:由图可得.这组数据分别是:4.8.9.11.12.所以这组数据的中位数是9.故答案为:9.5.(2021•宜昌)社团课上.同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球.将盒子里面的球搅匀后从中随机摸出一个球记下颜色.再把它放回盒子中.不断重复上述过程.整理数据后.制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示.经分析可以推断盒子里个数比较多的是.(填“黑球”或“白球”)【答案】白球【解答】解:由图可知.摸出黑球的概率约为0.2.∴摸出白球的概率约为0.8.∴白球的个数比较多.故答案为白球.6.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果.若商家用加权平均数来确定什锦糖果的单价.则这5千克什锦糖果的单价为24元/千克.【答案】24【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.7.(2021•北京)有甲、乙两组数据.如下表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为s甲2.s乙2.则s甲2>s乙2(填“>”.“<”或“=”).【答案】>【解答】解:=×(11+12+13+14+15)=13.s甲2=[(11﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2]=2.=×(12+12+13+14+14)=13.s乙2=[(12﹣13)2+(12﹣13)2+(13﹣13)2+(14﹣13)2+(14﹣13)2]=0.8.∵2>0.8.∴s甲2>s乙2.解法二:∵甲、乙5个数据有3个相同.且平均数相等.甲的极差=15﹣11=4.乙的极差=14﹣12=2.∴s甲2>s乙2.故答案为:>.8.(2021•黔东南州)黔东南州某校今年春季开展体操活动.小聪收集、整理了成绩突出的甲、乙两队队员(各50名)的身高得到:平均身高(单位:cm)分别为:=160.=162.方差分别为:S2甲=1.5.S2乙=2.8.现要从甲、乙两队中选出身高比较整齐的一个队参加上一级的体操比赛.根据上述数据.应该选择甲队.(填写“甲队”或“乙队”)【答案】甲队【解答】解:∵S2甲=1.5.S2乙=2.8.∴S2甲<S2乙.∴甲队身高比较整齐.故答案为:甲队.9.(2021•青海)为了倡导“节约用水.从我做起”.某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨).调查中发现.每户家庭月平均用水量在3~7吨范围内.并将调查结果制成了如下尚不完整的统计表:34567月平均用水量(吨)4a9107频数(户数)频率0.080.40b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a= .b=.c=.(2)这些家庭中月平均用水量数据的平均数是.众数是.中位数是.(3)根据样本数据.估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中.选取两户进行“节水”经验分享.请用列表或画树状图的方法.求出恰好选到甲、丙两户的概率.并列出所有等可能的结果.【答案】(1)20.0.18.0.20 (2)4.92.4.5 (3)33(户)(4)略【解答】解:(1)抽查的户数为:4÷0.08=50(户).∴a=50×0.40=20.b=9÷50=0.18.c=10÷50=0.20.故答案为:20.0.18.0.20.(2)这些家庭中月平均用水量数据的平均数==4.92(吨).众数是4吨.中位数为=5(吨).故答案为:4.92.4.5.(3)∵4+20+9=33(户).∴估计该市直属机关200户家庭中月平均用水量不超过5吨的约有:200×=132(户).(4)画树状图如图:共有12种等可能的结果.恰好选到甲、丙两户的结果有2种.∴恰好选到甲、丙两户的概率为=.所有等可能的结果分别为(甲.乙)、(甲.丙)、(甲.丁)、(乙.甲)、(乙.丙)、(乙.丁)、(丙.甲)、(丙.乙)、(丙.丁)、(丁.甲)、(丁.乙)、(丁.丙).10.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况.从这两座城市的邮政企业中.各随机抽取了25家邮政企业.获得了它们4月份收入(单位:百万元)的数据.并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x <8.8≤x<10.10≤x<12.12≤x<14.14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息.回答下列问题:(1)写出表中m的值.(2)在甲城市抽取的邮政企业中.记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中.记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1.p2的大小.并说明理由.(3)若乙城市共有200家邮政企业.估计乙城市的邮政企业4月份的总收入(直接写出结果).【答】(1)10.1 (2)p1<p2(3)2200【解答】解:(1)将甲城市抽取的25家邮政企业4月份的营业额从小到大排列.处在中间位置的一个数是10.1.因此中位数是10.1.即m=10.1.(2)由题意得p1=5+3+4=12(家).由于乙城市抽取的25家邮政企业4月份的营业额的平均数是11.0.中位数是11.5.因此所抽取的25家邮政企业4月份营业额在11.5及以上的占一半.也就是p2的值至少为13.∴p1<p2.(3)11.0×200=2200(百万元).答:乙城市200家邮政企业4月份的总收入约为2200百万元.1.(2022•福州模拟)下列事作中.必然事件是()A.通常温度降到0℃以下.纯净的水结冰B.射市运动员射击一次.命中靶心C.汽车累积行驶5000公里.从未出现故障D.经过有交通信号灯的路口.通到绿灯【答案】A【解答】解:温度降到0摄氏度以下.纯净的水一定会结冰.是必然事件.故A符合题意.射击运动员射击一次.命中靶心可能会发生.也有可能不发生.是随机事件.故B不合题意.汽车累计行驶5000公里.从未出现故障.可能会发生.也有可能不发生.是随机事件.故C不合题意.经过有交通信号灯的路口.遇到绿灯.可能会发生.也有可能不发生.是随机事件.故D不合题意.故选:A.2.(2022•平凉模拟)“杂交水稻之父”袁隆平培育的超级杂交水稻在全世界推广种植.2021年5月22日他离开了世界.但他的两个梦想已然实现.平凉市李大爷为了考察所种植的杂交水稻苗的长势.从稻田中随机抽取了9株水稻苗.测得苗高分别是:25.23.26.25.23.24.22.24.23(单位cm).则这组数据的中位数和众数分别是()A.23.23B.24.24C.24.23D.24.25【答案】C【解答】解:将这组数据从小到大重新排列为22.23.23.23.24.24.25.25.26.∴这组数据的众数为23cm.中位数为24cm.故选:C.3.(2022•鹿城区校级一模)如图是某种学生快餐的营养成分统计图.若脂肪有30g.则蛋白质有()A.135g B.130g C.125g D.120g【答案】A【解答】解:由题意可得.30÷10%×45%=300×0.45=135(g).即快餐中蛋白质有135克.故选:A.4.(2022•商城县一模)下列问题中.适合抽样调查的是()A.“双十一”期间某网店的当日销售额B.神舟十三号飞船的零部件检查C.“7•20”特大暴雨河南省受损的农作物面积D.东京奥运会乒乓球比赛用球的合格率。
统计与概率初三练习题
统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。
通过做题,我们可以巩固所学知识,提高解决问题的能力。
本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。
一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。
解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。
平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
九年级中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习(含答案)
2021年中考数学第三轮压轴题冲刺:统计与概率的综合专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.2、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x<;及格6075x;良好7585格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.4、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<,D等级:060x<.该校随机抽取了x<,C等级:6080x,B等级:8090一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<t<2040t<4060t<6080t<80100解答下列问题:(1)频数分布表中a=,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080<的男生人数为2人,其余为女生,现从该组中任选2人h t h代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A .书画类”所占扇形的圆心角的度数为___________度; (2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C .社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(1)统计表中m 的值为_______;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“3040x ≤<”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;x<”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树(4)若从年龄在“20状图的方法,求恰好抽到2名男性的概率.14、为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.15、为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.16、“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有___________人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为_________度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?17、为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.参考答案2021年中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有 50 人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为 ; (2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.【解答】解:(1)本次比赛参赛选手共有:(84)24%50+÷=(人), “59.5~69.5”这一范围的人数占总参赛人数的百分比为23100%10%50+⨯=, 79.5~89.5∴”这一范围的人数占总参赛人数的百分比为100%24%10%30%36%---=;故答案为:50,36%;(2) “69.5~79.5”这一范围的人数为5030%15⨯=(人),∴ “69.5~74.5”这一范围的人数为1587-=(人),“79.5~89.5”这一范围的人数为5036%18⨯=(人),∴ “79.5~84.5”这一范围的人数为18810-=(人);补全图2频数直方图:(3)能获奖.理由如下:本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为5040%20⨯=(人),又8884.5>,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率82==.1232、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x;良好7585x<;及格6075格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ; (2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数. 【解答】解:(1)在抽取的学生中不及格人数所占的百分比120%25%50%5%=---=, 故答案为5%.(2)所抽取学生测试成绩的平均分9050%7825%6620%425%79.81⨯+⨯+⨯+⨯==(分).(3)由题意总人数25%40=÷=(人),4050%20⨯=,2010%200÷=(人)答:该校九年级学生中优秀等级的人数约为200人.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率. 【解答】解:(1)24040%600÷=(人), 所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为60010%60⨯=(人),喜欢C种口味粽子的人数为60018060240120---=(人),所以喜欢C种口味粽子的人数所占圆心角的度数为12036072︒⨯=︒;600补全条形统计图为:(3)600040%2400⨯=,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率31==.1244、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<.该校随机抽取了x<,D等级:060x,B等级:8090x<,C等级:6080一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a8 ,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【解答】解:(1)1640%20%8a=÷⨯=,1640%(120%40%10%)12b=÷⨯---=,120%40%10%30%m=---=;故答案为:8,12,30%;(2)本次调查共抽取了410%40÷=名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为82 123=.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.【详解】(1)1220%60÷=,∴本次调查的学生人数为60人,1830%60=,故m=30.故答案为:60,m=30.(2)C的人数为:60-18-12-9=21(人),补全图形如下所示:(3)星期一到星期五连续的两天为(星期一、星期二),(星期二、星期三),(星期三、星期四),(星期四、星期五)共4种情况,符合题意的只有(星期一、星期二)这一种情况,故概率为14;在星期一到星期四任选两天的所有情况如下:(星期一、星期二),(星期一、星期三),(星期一、星期四),(星期二、星期三)、(星期二、星期四),(星期三、星期四)共6种情况,其中有一天是星期三的情况有:(星期一、星期三),(星期二、星期三),(星期三、星期四)共3种情况,所以概率是31 62 =.故答案为:14,12.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.【详解】(1)本次接受问卷调查的学生有:3636%100÷=(名),故答案为100;(2)喜爱C的有:10082036630----=(人),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=,故答案为72︒;(4)82000160100⨯=(人),答:该校最喜爱新闻节目的学生有160人.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有50 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?【解答】解:(1)612%50m=----=(人),÷=(人),5018410612故答案为:50;补全条形统计图如图所示:(2)103607250︒⨯=︒,答:喜欢“毽球”所在的圆心角的度数为72︒;(3)18180064850⨯=(人),答:全校1800名学生中喜欢跳绳活动的有648人.8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【详解】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”扇形的圆心角度数为436072 20⨯︒=︒m=810040 20⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P(女生被选中)=42 63 =.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<2040t<4060t<6080t<80100t<解答下列问题:(1)频数分布表中a= 5 ,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080h t h<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)(20.1)0.255a=÷⨯=,m=÷=,4200.2补全的直方图如图所示:故答案为:5,0.2;(2)400(0.250.15)160⨯+=(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况, 1男1女有12种,故所选学生为1男1女的概率为:123205P ==. 10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________. (2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 【详解】(1)由条形统计图知:等级“良好”的人数为:200名 由扇形统计图知:等级“良好”的所占的比例为:40% 则该校八年级总人数为:20040%500÷=(名) 由条形统计图知:等级“优秀”的人数为:150名 其站该校八年级总人数的比例为:15050030%÷= 所以其所对的圆心角为:36030%108︒︒⨯= 故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名) 补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010% 500=故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:61 122=.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.【详解】解:(1)由题意可知总人数=10÷20%=50名;(2)补全条形统计图如图所示:扇形统计图中C等级所对应扇形的圆心角=15÷50×100%×360°=108°;(3)列表如下:得到所有等可能的情况有20种,其中恰好抽中2名同学都是女生的情况有6种,所以恰好选到2名同学都是女生的概率=620=310.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【详解】解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为103607250⨯︒=︒;故答案为:50,72;(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:(3)86009650⨯=名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)所有可能的情况如下表所示:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率41 164==.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全。
最新中考数学复习第三部分统计与概率第三十一课时统计基础知识练习最新0429360
第三部分 统计与概率第31课时 统计基础知识备 考 演 练一、精心选一选1.(2017·百色)在以下一列数3,3,5,6,7,8中,中位数是( C ) A.3 B.5 C.5.5 D.6 2.(2017·包头)一组数据5,7,8,10,12,12,44的众数是(B ) A.10 B.12 C.14 D. 44 3.(2017·温州)某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表: 零件个数(个)5 6 7 8人数(人) 3 15 22 1表中表示零件个数的数据中,众数是 ( C )A.5个B.6个C.7个D.8个 4.(2017·贵港)数据3,2,4,2,5,3,2的中位数和众数分别是( C ) A.2,3 B.4,2 C.3,2 D.2,2 5.(2017·自贡)对于一组统计数据3,3,6,5,3.下列说法错误的是( D ) A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是66.(2017·荆州)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间(小时)1 2 3 6学生人数2 242(人)则关于“户外活动时间”这组数据的众数、中位数、平均数分别是( A )A.3、3、3B.6、2、3C.3、3、2D.3、2、37.(2017·德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( C )A.平均数B.方差C.众数D.中位数8.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( D )A.甲B.乙C.丙D.丁二、细心填一填9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.10.(2017·包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163 cm,则30名男生的平均身高为168cm.11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3 4 5 6人数21515那么这50名学生平均每人植树4棵.12.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是=1.2,=0.5则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
2024年初中数学统计与概率专项训练
2024年初中数学统计与概率专项训练在初中数学的学习中,统计与概率是一个重要的组成部分。
它不仅能够帮助我们更好地理解和处理数据,还能培养我们的逻辑思维和分析问题的能力。
对于即将迎来 2024 年中考的同学们来说,进行专项训练是提高这部分知识掌握程度的关键。
首先,我们来了解一下统计的基本概念。
统计主要包括数据的收集、整理、描述和分析。
数据的收集可以通过调查、实验等方式进行。
比如,我们想了解班级同学的身高情况,就可以通过测量每个同学的身高来收集数据。
数据的整理则是将收集到的数据进行分类、排序等操作,使其更有条理。
比如,将同学们的身高按照从矮到高的顺序排列。
描述数据常用的方法有统计图和统计表。
统计图包括条形统计图、折线统计图和扇形统计图。
条形统计图能清楚地反映出各种数据的数量多少;折线统计图可以直观地展示数据的变化趋势;扇形统计图则能很好地呈现各部分在总体中所占的比例。
例如,要展示一个班级同学不同学科成绩的分布情况,使用条形统计图就能清晰地看出每个学科的成绩高低。
如果要观察某个同学一段时间内成绩的起伏变化,折线统计图就是最佳选择。
而想了解班级同学在各种兴趣爱好上的占比,扇形统计图会更合适。
在统计分析中,我们常常要计算一些统计量,比如平均数、中位数和众数。
平均数是所有数据的总和除以数据的个数,它能反映数据的平均水平。
中位数是将一组数据按照从小到大或从大到小的顺序排列后,位于中间位置的数,如果数据个数是奇数,中位数就是中间的那个数;如果数据个数是偶数,中位数则是中间两个数的平均值。
众数是一组数据中出现次数最多的数。
比如说,有一组数据:12、15、18、15、20、15、19,那么这组数据的平均数是(12 + 15 + 18 + 15 + 20 + 15 + 19)÷ 7 = 16。
中位数是 15,因为将这组数据从小到大排列为 12、15、15、15、18、19、20,中间的数是 15。
众数也是 15,因为 15 出现的次数最多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分统计
与概率
第31统计基础知识
备 考 演 练
一、精心选一选
1.(2017·百色)在以下一列数3,3,5,6,7,8中,中位数是
( C ) A.3 B.5 C.5.5 D.6 2.(2017·包头)一组数据5,7,8,10,12,12,44的众数是
(B ) A.10 B.12 C.14 D. 44 3.(2017·温州)某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表: 零件
个数(个)
5 6 7 8
人数
(人) 3 1
5 1
表中表示零件个数的数据中,众数是 ( C )
A.5个
B.6个
C.7个
D.8个
4.(2017·贵港)数据3,2,4,2,5,3,2的中位数和众数分别是 (
C )
A.2,3
B.4,2
C.3,2
D.2,2
5.(2017·自贡)对于一组统计数据3,3,6,5,3.下列说法错误的是( D )
A.众数是3
B.平均数是4
C.方差是1.6
D.中位数是
6
6.(2017·荆州)为了解某班学生双休户外活动情况,对部分学生参
加户外活动的时间进行抽样调查,结果如下表:
则关于“户外活动时间”这组数据的众数、中位数、平均数分别
是( A )
A.3、3、3
B.6、2、3
C.3、3、2
D.3、2、3
7.(2017·德州)某专卖店专营某品牌的衬衫,店主对上一周中不同
尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的
统计量是( C )
A.平均数
B.方差
C.众数
D.中位数
8.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
(
环
)
方
差
6.6 6.8 6.7 6.6
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( D )
A.甲
B.乙
C.丙
D.丁
二、细心填一填
9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.
10.(2017·包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163 cm,则30名男生的平均身高为168cm.
11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:
植
树
棵
数
3 4 5 6
人数2
1
5
1
5
那么这50名学生平均每人植树4棵.
12.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的
平均成绩恰好是1. 6米,方差分别是=1.2,=0.5则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”).。