元一次方程组易错题
中考一元一次方程易错题50题(含答案)
中考一元一次方程易错题50题含答案解析一、单选题1.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x xC .233072x xD .323072x x2.若x =1是关于x 的方程ax +2x +1=0的解,则a 的值是 A .-3B .3C .-1D .-23.根据等式的性质,下列变形中正确的是( ) A .若33m n +=-,则m n = B .若x ya a=,则x y = C .若22a x a y =,则x y =D .若382k -=,则12k =-4.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .()0.7160%36x x +=-B .()0.7160%36x x +=+C .()07160%36x x +=-.D .()0.7160%36x x +=+5.若关于x 的方程3x+2m =2的解是正数,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤16.某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( ) A .赚10元B .赔10元C .不赚不赔D .无法确定7.已知等式a =b ,则下列变形错误的是( ) A .|a |=|b |B .a +b =0C .a 2=b 2D .2a ﹣2b =08.小淇在某月的日历中圈出相邻的三个数,算出它们的和是15,那么这三个数的位置可能是( ) A .B .C .D .9.下列说法正确的是( ) A .如果ax ay =,那么x y = B .如果a b =,那么55a b -=- c c10.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( ) A .6名B .7名C .8名D .9名11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ). A .320425x x +=- B .320425x x +=+ C .320425x x -=+D .320425x x -=-12.下列判断:①若0a b c ++=,则()22a c b +=.①若0a b c ++=,且0abc ≠,则122a cb +=-.①若0a bc ++=,则1x =一定是方程0ax b c ++=的解.①若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( )A .①①①B .①①①C .①①①D .①①①①13.要使方程ax b =的解为1x =,必须满足( ) A .a b =B .0a ≠C .0b ≠D .0a b =≠.14.方程x ﹣3=2x ﹣4的解为( ) A .1B .﹣1C .7D .﹣715.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .5223-D .23-16.解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以17.将方程x ﹣3(4﹣3x )=5去括号正确的是( ) A .x ﹣12﹣6x =5B .x ﹣12﹣2x =5C .x ﹣12+9x =5D .x ﹣3+6x =518.课本习题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )A .甲、丁B .乙、丙C .甲、乙D .甲、乙、丙19.用如图(1)所示的长方形和正方形纸板做成如图(2)所示的A 、B 两种无盖长方体纸盒(拼接部分忽略不计).现有长方形纸板180张,正方形纸板60张,刚好全部用完.求做成的A 、B 两种纸盒的数量.下列结论正确的个数是( )①设A 种纸盒共有x 个,则可列方程:60431802xx -+⨯=;①设B 种纸盒共有y 个,则可列方程:18032604yy -+=;①B 种纸盒共有24个;①做A 种纸盒共用去长方形纸板144个. A .1B .2C .3D .420.α∠与∠β的度数分别是219m -和77m -,且α∠与∠β都是γ∠的补角,那么α∠与∠β的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等二、填空题21.若1x =是关于x 的方程31ax bx +=的解,则39a b +=___________. 22.如果x ﹣1=3,则x 的值是 _____.23.我国古代数学名著《孙子算经》中记载;“今有木,不知长短,引绳度之,余绳五尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,那么可列方程为 _____. 24.当x =___时,13x -的值是2 25.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图,即车尾到倒车镜的距离与车长之比为0.618),若车头与倒车镜的水平距离为1.9m ,则该车车身总长约为________m (保留整数).26.已知2230m x -+=是关于x 的一元一次方程,则m =________________. 27.若关于x 的方程()||235m m x--=是一元一次方程,则m =______.28.已知:数轴上一个点到-2的距离为5,则这个点表示的数是 ___________________29.如果一个正多边形每一个内角都等于144︒,那么这个正多边形的边数是______. 30.双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少设这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,可列方程组为__________.31.若关于x 的多项式()2x m -与()35+x 的乘积中,一次项系数为1,则m =____________.32.一个角的比它的余角多24°30′,则这个角的补角是_________.33.如图是一个正方体的展开图,如果正方体相对的两个面上标注的数值均互为相反数,则x 的值是_________.34.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有___________名工人.35.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了x 小时,则可列一元一次方程为_______.36.已知方程ax+12=0的解是x=3,则不等式(a+2)x<-6的解集为________. 37.已知关于x 的方程23kx a +=1+6x bk-中,a 、b 、k 为常数,若无论k 为何值,方程的解总是x =1,则a +18b 的值为 ___.38.已知点M 、N 在线段AB 上,AM MB =13,AN NB=23,且MN =2,则AB =______.39.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.三、解答题40.在ABC 中, ①A 的度数是①B 的度数的3倍,①C 比①B 大15°,求①A ,①B ,①C 的度数. 41.(1)计算:(2)计算(3)解方程:3(25)29x x --+= (4)解方程:42.据调查表明,山的高度每增加1km ,则气温大约升高-6①.(1)我省著名风景区庐山的五老峰的高度约为1500m ,当山下气温20①时,求山顶的气温;(2)若某地的地面气温为18①,高空某处的气温为-24①,求此处的高度.43.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?44.汽车从甲地到乙地,用去油箱中汽油的14,由乙地到丙地用去剩下汽油的15,油箱中还剩下6升.(1)油箱中原有汽油多少升?(2)已知甲、乙两地相距22km,求乙、丙两地的距离.45.为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)写出表1中的a,m的值;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?46.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23) (2)解方程:3157146x x ---= 47.计算题(1)计算:2232113()(2)()32-⨯---÷-(2)解方程:12111263x x x --+-=- 48.已知线段12AB =个单位长度.(1)如图1,点P 沿线段AB 自点A 出发向点B 以1个单位长度每秒的速度运动,同时点Q 沿线段BA 自点B 出发向点A 以2个单位长度每秒的速度运动,几秒钟后,P 、Q 两点相遇?(2)如图1,几秒后,P 、Q 两点相距3个单位长度?(3)如图2,3AO =个单位长度,1PO =个单位长度,当点P 在AB 的上方,且60∠=︒POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿线段BA 自B 点向A 点运动,假若P 、Q 两点能相遇,求点Q 的运动速度. 49.新规定:点C 为线段AB 上一点,当3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”.如图,在数轴上,点A 所表示的数为3-,点B 所表示的数为5. (1)确定点C 所表示的数为___________;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①求AP 的长度(用含t 的代数式表示);①当点A 为线段BP 的“三倍距点”时,求出t 的值.参考答案:1.D【分析】先设男生x 人,根据题意可得323072x x.【详解】设男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.【点睛】本题考查列一元一次方程,解题的关键是读懂题意,得出一元一次方程. 2.A【分析】把1x =代入方程得出关于a 的方程,解之可得答案. 【详解】将1x =代入ax +2x +1=0,得:210a ++=, 解得:3a =-, 故选:A .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键. 3.B【分析】根据等式的性质变形得到结果,作出判断即可得.【详解】解:A 、若33m n +=-,则m n ≠,选项说法错误,不符合题意; B 、若x ya a=,则x y =,选项说法正确,符合题意; C 、若22a x a y =,20a ≠,则x y =,选项说法错误,不符合题意; D 、若382k -=,则163k =-,选项说法错误,不符合题意;故选:B .【点睛】本题考查了等式的性质,解题的关键是掌握等式的性质. 4.B【分析】设这件夹克衫的成本价是x 元,根据题意列出一元一次方程即可求解. 【详解】解:设这件夹克衫的成本价是x 元,根据题意得,()0.7160%36x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键. 5.B【分析】先把x 的值用m 表示出来,再根据关于x 的方程3x+2m =2的解是正数列出不等式,求出m 的取值范围即可.【详解】解:方程3x+2m=2可化为x=223m-,①x>0,①223m->0,①m<1.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.6.B【分析】设进价为x元,根据售价=(1+利润率)×进价列出一元一次方程,进而求解.【详解】设赚了20%的衣服的进价是x元,则(1+20%)x=120,解得,x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1-20%)y=120,解得y=150,则实际赔了30元;①30>20,①在这次交易中,该商人是赔了30-20=10(元).故选B.【点睛】本题考查一元一次方程的应用,求出两件衣服的进价是解题的关键.7.B【分析】根据绝对值和等式的性质分别进行判定求解.【详解】解:A.根据绝对值的性质可知,若a=b,则|a|=|b|,原变形正确,故此选项不符合题意;B.根据等式性质,若a=b,则a﹣b=0,原变形错误,故此选项符合题意;C.根据等式性质,若a=b,则a2=b2,原变形正确,故此选项不符合题意;D.根据等式性质,若a=b,则2a﹣2b=0,原变形正确,故此选项不符合题意.故选:B.【点睛】本题主要考查了绝对值的性质,等式的性质,理解等式的性质是解答关键.8.C【分析】可设第一个数为x,根据日历的数的排列规律,将各数表示出来,利用方程的思想验证x是否为正整数,从而作出判断.【详解】解:设第一个数为x ,根据已知: A 、得x+x+7+x+8=15,则x=0,故本选项不可能.B 、得x+x+7+x+6=15,则x=23,不是整数,故本选项不可能. C 、得x+x+1+x+8=15,则x=2,是整数,故本选项可能. D 、得x+x+1+x+7=15,则x=73不是整数,故本选项不可能.故选C. 【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证,难度一般,要掌握日历中数的排列规律. 9.C【分析】根据等式基本性质分析即可.【详解】A. 如果ax ay =,且a≠0,那么x y =,故不能选; B. 如果a b =,那么55a b -=-,故不能选; C. 根据性质1,如果11a b +=+,那么a b = D. 如果a b =,且0a b =≠,那么c ca b=,故不能选; 故选C【点睛】考核知识点:等式基本性质.理解性质是关键. 10.A【详解】设张老师和王老师带了x 名学生, 根据题意得(x+2)×0.8=0.9x+2×12,解得x=6,故选A . 11.A【分析】设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程即可.【详解】设这个班有学生x 人,由题意得,3x +20=4x−25. 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.A【分析】各项利用方程解的定义,以及绝对值的代数意义判断即可得到结果.【详解】解:①若0a b c ++=,则a c b +=-,①()22a c b +=,故①正确;①若0a b c ++=,则a c b +=-,且0abc ≠,则1222a cb b b +-==-,故①正确; ①若0a bc ++=,则1x =一定是方程0ax b c ++=的解,故①正确;①若0a b c ++=,且0abc ≠,当有2个负数时,0abc >;当有1个负数时<0abc ,故①不正确,故选:A .【点睛】本题考查了有理数的运算以及一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值,掌握以上知识是解题的关键.13.D【详解】试题分析:两边除以a 得:b x a=,要使方程ax b =的解为1x =,则必须满足0a b =≠.故选D .考点:一元一次方程的解.14.A【详解】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .15.A【分析】先解两个一元一次方程,再根据两个一元一次方程的解相同列出含m 的一元一次方程,解方程即可.【详解】解: 由243x m +=,342m x -=; 由1x m -=,解得+1x m =,因为两个方程的解相同, 所以34=12m m -+,解得: 6m =故选A.【点睛】本题主要考查一元一次方程的应用,解决本题的关键是要熟练掌握解含参数的一元一次方程的方法,并根据解相同列出方程.16.C【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项. 【详解】解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.17.C【分析】方程去括号得到结果,即可作出判断.【详解】方程x ﹣3(4﹣3x )=5,去括号得:x ﹣12+9x =5,故选:C .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.B【分析】根据题意可设这种饮料的原价每瓶是x 元,则根据等量关系“九折购买的饮料数量比36元购买的一箱饮料的数量多2瓶”,或“一箱加2瓶的饮料九折后的价格是36元”;若设每箱有x 瓶,则根据“购买一箱加2瓶时,每瓶的价格和每瓶九折后的价格相等”分别列出方程即可【详解】设这种饮料的原价每瓶是x 元,则363620.9x x-=; 设这种饮料的原价每瓶是x 元,则()0.936236x ⋅+=;设每箱有x 瓶,则36360.92x x ⨯=+ 故选B【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意找出等量关系是解题的关键.19.C【分析】若设A 种纸盒共有x 个,则有制作A 种纸盒所需长方形的个数为4x 个,正方形的个数为x 个,则B 中正方形的个数为(60-x )个,然后可判定①;若设B 种纸盒共有y 个,则有制作B 种纸盒所需正方形的个数为2y 个,长方形的个数为3y 个,则A 中长方形的个数为(180-3y )个,然后可判定①;进而求解即可判定①①.【详解】解:若设A 种纸盒共有x 个,则可列方程为60431802x x -+⨯=,解得:36x =,故①正确;若设B 种纸盒共有y 个,则可列方程:18032604y y -+=,解得:12y =,故①正确,①错误;①做A 种纸盒共用去长方形纸板为36×4=144(个),故①正确;综上所述:正确的个数有3个;故选C .【点睛】本题主要考查一元一次方程的应用,解题的关键是分析得到已知与未知之间的关系.20.D【分析】由α∠与∠β都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与∠β都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与∠β互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.21.3【分析】将方程的解代入方程后,对等式进行变形即可求解.【详解】解:将1x =代入方程可得:31a b +=,①393a b +=,故答案为:3.【点睛】本题考查了方程的解,解题关键是理解方程的解的含义,并能利用等式的性质对等式进行变形.22.4【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x =3+1,合并同类项,可得:x =4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.23.x +5=2(x ﹣1)【分析】根据绳子的长度不变,得出关于x 的一元一次方程,即为答案.【详解】解:依题意,得:x +5=2(x ﹣1).故答案为:x +5=2(x ﹣1).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.7【分析】首先根据题意,可得:13x -=2,然后去分母、移项、合并同类项,求出方程的解是多少即可.【详解】解:根据题意,可得:13x -=2, 去分母,可得:x ﹣1=6,移项,可得:x =6+1,合并同类项,可得:x =7.故答案为:7.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.25.5【分析】设该车车身总长为x m ,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x ,则根据题意列方程x -0.618x =1.9,然后解方程即可.【详解】解:设该车车身总长为x m ,①汽车倒车镜设计为整个车身黄金分割点的位置,①汽车倒车镜到车尾的水平距离为0.618x ,①x -0.618x =1.9,解得x ≈5,即该车车身总长约为5米.故答案为:5.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.26.3【分析】根据一元一次方程的定义,可列方程,即可求m 的值.【详解】解:①2230m x -+=是关于x 的一元一次方程,①21m -=解得:3m =故答案为:3.【点睛】本题考查了一元一次方程的定义,,利用一元一次方程的定义解决问题是本题的关键.27.3-【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).据此可得出关于m 的方程,继而可求出m 的值.【详解】①关于x 的方程()||235m m x--=是一元一次方程,①30m -≠,21m -=,解得:3m =-,故答案为3-.【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不为0,特别容易忽视的一点就是系数不为0的条件.这是这类题目考查的重点.28.-7或3【详解】试题分析:两数差的绝对值表示两点之间的距离.设这个点表示的数为=5,解得:x=3或x=-7.考点:绝对值29.10【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180144n n -⋅=,解得10n =.故答案为:10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.30.812700150y x x y -=⎧⎨+=⎩【分析】设这艘游轮上层的游客人数为x 人,下层的游客人数为y 人,根据“游轮上共有游客150人,而且下层票的总票款是上层票的总票款多700元”列方程组求解可得.【详解】这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,由题意得812700150y x x y -=⎧⎨+=⎩. 故答案为812700150y x x y -=⎧⎨+=⎩. 【点睛】本题主要考查二元一次方程组的应用,理解题意找出题目中所蕴含的等量关系是列出方程组求解的关键.31.3【分析】先求出两个多项式的积,再根据一次项系数为1,得到关于m 的一次方程,求解即可.【详解】解:()()235x m x -+263105x mx x m =-+-()261035x m x m =--+①积的一次项系数为1,①1031m -=,解得:3m =.故答案为:3.【点睛】本题主要考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则,是解决本题的关键.32.122°45′【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大24°30′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】解:设这个角为x ,则x -(90°-x )=24°30′,解得x =57°15′,这个角的补角的度数为180°-57°15′=122°45′.故答案为:122°45′.【点睛】此题考查余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单.33.1-【分析】利用正方体及其表面展开图的特点,列出方程()()2360x x -++=解答即可.【详解】解:由题意得:()()2360x x -++=解得:=1x -故答案为:1-.【点睛】本题考查了正方体相对两个面上的文字和一元一次方程的应用.注意正方体的空间图形,从相对面入手,分析及解答问题.34.12【分析】由题可知每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据大的一片是小的一片的3倍,列出方程解答即可.【详解】解:设农场有x 名工人,每名工人每天除草量为y ,依题意有2xy +0.5xy =3(0.5xy +2×2y ),2.5xy =1.5xy +12y ,xy =12y ,x =12.故农场有12名工人.故答案为:12.【点睛】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据题意找到关系即可解答.35.80.2570.25x x -=+.【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人樱桃一样多得出等式求出答案.【详解】解:设她们采摘用了x 小时,根据题意可得:8x-0.25=7x+0.25,故答案为:8x-0.25=7x+0.25【点睛】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键. 36.3x >【分析】先将3x =代入方程120ax +=,求得a 的值;再将a 的值代入不等式,然后系数化1即可.【详解】先将3x =代入120ax +=,得3120a +=,解得4a =-;把4a =-代入不等式26a x +<-,得426x -+<-,解得:3x >;故答案为:3x >.【点睛】本题考查了解一元一次方程及解一元一次不等式,注意不等式两边除以负数,不等式要变号.37.3【分析】将1x =代入方程,然后令k 的系数为0,得到关于a b 、的二元一次方程组,求解即可.【详解】解:将1x =代入方程23kx a +=1+6x bk -得(4)270b k a ++-=由题意可得:40270b a +=⎧⎨-=⎩,解得724a b ⎧=⎪⎨⎪=-⎩ 则17171(4)382822a b +=+⨯-=-= 故答案为:3【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.38.403【分析】设AM =x ,则MB =3x ,则AB =4x ,利用23AN MB =可得到85AN x =,则利用MN =35x 列方程35x =2,然后解方程求出x 即可得到AB 的长. 【详解】解:设AM =x ,则MB =3x ,①AB =AM +MB =4x , ①23AN NB =,AB =AN +NB ①AN =2855AB x =, ①MN =AN ﹣AM =8355x x -=x , ①35x =2,解得x =103, ①AB =4×103=403. 故答案为403. 【点睛】本题主要考查了比例线段,根据比例的性质用代数式表示线段的长是解答本题的关键.39.3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 40.①A=99°,①B=33°,①C=48°【分析】设①B=x ,则①A=3x ,①C=x+15,再由三角形内角和定理求出x 的值即可.【详解】解:设①B=x ,则①A=3x ,①C=x+15,①①A+①B+①C=180°,①x+3x+x+15=180,解得:x=33,①①A=99°,①B=33°,①C=48°.【点睛】本题考查三角形的内角和定义,难度不大,关键是运用方程思想进行解题. 41.(1)19;(2)10;(3);(4)14.5x =.【详解】试题分析:(1)先算乘除,再算加减即可;(2)利用分配律计算简单方便;(3)先去括号,再移项合并同类项,最后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,最后系数化为1即可试题解析:(1)=18-6×(14-)×23 2分 =19 4分(2)= 2分=–1+8+3=10 4分(3)3(25)29x x --+=2分4分(4)3(23)4(2)12,x x --+=694812,x x ---= 2分 229,x =14.5x = 4分考点:1.有理数的混合运算;2.解一元一次方程.42.(1)11①;(2)7km【分析】(1)根据题意可直接进行列式求解;(2)设此处的高度为xkm ,然后根据题意列出方程求解即可.【详解】解:()1根据题意列得:150020(6)111000C ,答:山顶的温度为11C . ()2设此处的高度为xkm ,根据题意列得:18624x -=-解得:7x =.答:此处的高度为7km .【点睛】本题主要考查列算式计算与一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.43.(1)甲方案为:15a+60;乙方案为:16a ;(2)乙方案优惠;(3)甲方案优惠;【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a 名学生,甲方案为:(15a+60)元;乙方案为:16a 元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键. 44.(1)油箱中原有汽油10升;(2)乙、丙两地的距离为13.2千米.【分析】(1)若设油箱中原有汽油x 升,分别表示出每次的耗油量,根据题意即可列出方程解答即可;(2)利用耗油量的比与行驶路程的比相等列出方程解答即可.【详解】解:(1)设油箱中原有汽油x 升,由题意得111()6445x x x x ---⨯= 解得:x =10答:油箱中原有汽油10升.(2)设乙、丙两地的距离为a 千米,由题意得11122::(1)445a =-⨯ 解得:a =13.2答:乙、丙两地的距离为13.2千米.【点睛】本题主要考查一元一次方程的应用,根据题意列出方程是解题的关键. 45.(1)a =3.25,m =180;(2)她家2017年的年用水量是235立方米.【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m <200,从而求出a 及m 的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得a =325100=3.25, 根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,列出方程:3.25m +4.4(200﹣m )=673,解得m =180.(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元), ①673<827<849,①她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据题意,得3.25×180+4.4(x ﹣180)=827,解得x =235.答:她家2017年的年用水量是235立方米.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a 及m 的值.46.(1)-9;(2)x =﹣1.【分析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32) =﹣1×[﹣4﹣2]×(﹣32) =﹣1×(﹣6)×(﹣32) =﹣9;(2)3(3x ﹣1)﹣12=2(5x ﹣7)9x ﹣3﹣12=10x ﹣149x ﹣10x =﹣14+3+12﹣x =1x =﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.47.(1)31;(2)2x =【分析】(1)按照先算乘方、再算乘除、后算加减的顺序计算即可;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)()2232113232⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭ =-9×19-(-8)÷14=-1+32=31;(2)12111263x x x --+-=-, 3(x-1)-(2x-1)=6-2(1+x),3x-3-2x+1=6-2-2x ,3x-2x+2x=6-2+3-1,。
最新 一元一次方程易错题(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.2.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【答案】(1)解:设原计划租用x辆45座客年根据题意,得45x+15=60(x-1)解得x=5则45x+15=45×5+15=240.答:这批游客共240人,原计划租5辆45座客车。
(2)解:租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元).租60座客车:240÷60=4(辆),租念为300×4=1200(元).答:租用4辆60座客车更合算。
七年级一元一次方程易错题(Word版 含答案)
3.如图 1,O 为直线 AB 上一点,过点 O 作射线 OC,∠ AOC=30°,将一直角三角板 (∠ M=30°)的直角顶点放在点 O 处,一边 ON 在射线 OA 上,另一边 OM 与 OC 都在直线 AB 的上方.
(1)将图 1 中的三角板绕点 O 以每秒 3°的速度沿顺时针方向旋转一周.如图 2,经过 t 秒 后,OM 恰好平分∠ BOC.①求 t 的值;②此时 ON 是否平分∠ AOC?请说明理由;
(3)解:由题意得 200x+7600=7800, 解得 x=1. 符合实际意义,
答: 有可能 ,杭州厂运往南昌的机器为 1 台.
【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运 费),列式后化简即可。 (2)根据(1)中的表达式等于 8400,列方程并求解。 (3)根据(1)中的表达式等于 7800,列方程并求解,若方程的解符合实际意义,则有可 能,否则就不可能。
∠ CON=∠ COM=45°,又三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度 旋转,设∠ AON 为 3t,∠ AOC 为 30°+6t,根据∠ AOC﹣∠ AON=45°得出含 t 的方程,求解得 出 t 的值 ; ( 3)根据∠ AON+∠ BOM=90°,∠ BOC=∠ COM,及三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转,故设∠ AON 为 3t,∠ AOC 为 30°+6t,从而得到∠ COM
【答案】 (1)
(2)解:设
=m,方程两边都乘以 100,可得 100×
由
=0.7373…,可知 100×
即 73+x=100x
最新一元一次方程易错题(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
一元一次方程易错题
一元一次方程3.1一元一次方程类型一:等式的性质1.下列说法中,正确的个数是()①若mx=my,则mx﹣my=0;②若mx=my,则x=y;③若mx=my,则mx+my=2my;④若x=y,则mx=my.A.1 B.2 C.3 D.4考点:等式的性质。
点评:主要考查了等式的基本性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.变式:2.已知x=y,则下面变形不一定成立的是()A.x+a=y+a B.x﹣a=y﹣a C.D.2x=2y3.等式的下列变形属于等式性质2的变形为()A.B.C.2(3x+1)﹣6=3x D.2(3x+1)﹣x=2类型二:一元一次方程的定义1.如果关于x的方程是一元一次方程,则m的值为()A.B.3 C.﹣3 D.不存在考点:一元一次方程的定义。
点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.变式:2.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.3.已知3x|n﹣1|+5=0为一元一次方程,则n=.4.下列方程中,一元一次方程的个数是个.(1)2x=x﹣(1﹣x);(2)x2﹣x+=x2+1;(3)3y=x+;(4)=2;(5)3x﹣=2.类型三:由实际问题抽象出一元一次方程1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340 C.2x+4×72=4×340 D.2x﹣4×20=4×3402.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②③④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④3.某电视机厂10月份产量为10万台,以后每月增长率为5%,那么到年底再能生产()万台.A.10(1+5%)B.10(1+5%)2C.10(1+5%)3D.10(1+5%)+10(1+5%)24.一个数x,减去3得6,列出方程是()A.3﹣x=6 B.x+6=3 C.x+3=6 D.x﹣3=65.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.则方程为()A.B.C.D.6.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,有后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为:()A.B.C.2π(80+10)×8=2π(80+x)×10D.2π(80﹣x)×10=2π(80+x)×87.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44 B.4x+2(14﹣x)=44C.4x+2(x﹣14)=44 D.2x+4(x﹣14)=448.把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成5块,如此下去,至剪完某一次后,共得纸片总数N可能是()A.1990 B.1991 C.1992 D.19939.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少设定价为x,则下列方程中正确的是()A.x﹣20=x+25B.x+20=x+25 C.x﹣25=x+20 D.x+25=x﹣2010.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A. B.C.D..3.2一元一次方程的解法类型一:一元一次方程的解1.当a=0时,方程ax+b=0(其中x是未知数,b是已知数)()A.有且只有一个解B.无解 C.有无限多个解 D.无解或有无限多个解考点:一元一次方程的解。
方程与不等式之一元一次方程易错题汇编附答案解析
方程与不等式之一元一次方程易错题汇编附答案解析一、选择题1.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为( ) A .27元 B .27.8元C .28元D .28.4元【答案】C 【解析】 【分析】设该商品的标价是x 元,根据按标价的九折出售,仍可获利20%列方程求解即可. 【详解】解:设该商品的标价是x 元, 由题意得:0.9x -21=21×20%, 解得:x =28,即该商品的标价为28元, 故选:C . 【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++= D .16090()4802x x ++=【答案】D 【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣2(2x ﹣4)=﹣(x ﹣7) D .以上答案均不对【答案】C 【解析】 【分析】两边同时乘以6即可得解. 【详解】解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--.故选C. 【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.5.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.甲、乙两人环湖竞走,环湖一周为 400 米,乙的速度是80 米/分,甲的速度是乙的 114倍,且竞走开始时甲在乙前 100 米处,多少分钟后两人第一次相遇?设经过 x 分钟两人第一次相遇,所列方程为( ) A .80 x+ 100=54 ⨯ 80 x B .80 x + 300=54⨯ 80 x C .80 x - 100=54⨯ 80 x D .80 x - 300=54⨯ 80 x 【答案】B 【解析】 【分析】根据相遇时乙的路程+300=甲的路程列出方程即可. 【详解】 解:甲的速度为:54⨯ 80米/分,相遇时甲比乙多行了400-100=300米,根据题意可得: 80 x + 300=54⨯ 80 x , 故选:B 【点睛】本题考查了一元一次方程的应用,能找出题中的等量关系是解题的关键.7.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a = B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B 【解析】 【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项. 【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的, 故选:B. 【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.8.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C.【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.11.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C地300米,故④正确,故选:C.【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.12.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
中考一元一次方程易错题50题含答案解析
中考一元一次方程易错题50题含答案解析一、单选题 1.解一元一次方程()11123x x +=-时,去分母正确的是( ) A .()312x x +=B .()213x x +=C .()312x x +=-D .()213x x +=-2.下列方程是一元一次方程的是( ) A .S=abB .2+5=7C .4x +1=x+2D .3x+2y=63.若方程3x +5=11的解也是关于x 的方程6x +3a =22的解.则a 的值为( ) A .103B .310C .﹣6D .﹣843=的解为( ) A .x =4B .x =7C .x =8D .x =10.5.下列方程中是一元一次方程的是( ) A .210x-=B .21x =C .21x y +=D .132x -=6.下列变形不正确的是( ) A .由2x -<,得<2x - B .由3x -=,得3x =- C .32x -=,得5x = D .由23x +<,得1x <7.若方程3256x a b x--=的解是非负数,则a 与b 的关系是( ) A .56a b ≤-B .56a b ≥C .56a b ≥-D .2856ba -≥8.有一群鸽子和一-些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则下列方程正确的是( ) A .3568x x -=+B .3568x x+=-C .3568x x -+= D .3568x x +-= 9.下列方程的解是x =﹣2的是( ) A .x +1=2 B .2﹣x =0C .12x =1D .22x -=﹣2 10.解方程20.250.10.10.030.02x x-+=时,把分母化为整数,得( ) A .20025101032x x -+= B .20.250.11032x x-+= C .20.250.10.132x x-+= D .20025100.132x x-+= 11.一个角加上30°后,等于这个角的余角,则这个角的度数是( )A.30°B.40°C.45°D.50°12.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则a与b的和是()A.20B.21C.22D.2313.某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x人,则下列方程正确的是()A.4x﹣20=5x+30B.4x+20=5x﹣30C.4x﹣20=5x﹣30D.4x+20=5x+3014.已知x=2是关于x的方程x-5m=3x+1的解,则m的值是()A.-1B.1C.5D.-515.若整数a既使关于x的一元一次方程22x a-=有非负数解,又使关于x的分式方程11222axx x--=--有正整数解,则满足条件的所有a的和为()A.-2B.-1C.0D.116.A,B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车速度120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t 的值是()A.2B.2.5C.10或12.5D.2或2.5 17.解方程-3x=2时,应在方程两边()A.同乘以-3B.同除以-3C.同乘以3D.同除以3 18.某班分组去两处植树,第一组26人,第二组22人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组,才能使第一组的人数是第二组的3倍?设从第二组抽调x人,则可列方程为()A.26+x=3×26B.26=3(22﹣x)C.3(26+x)=22﹣x D.26+x=3(22﹣x)19.三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .3020.解方程21101136x x ++-=时,去分母正确的是( ) A .21(101)1x x +-+= B .411016x x +-+= C .2(21)(101)1x x +-+=D .2(21)(101)6x x +-+=二、填空题21.已知A ,B 两镇相距30千米,甲、乙二人同时从A ,B 两镇相向而行,甲每小时行16千米,乙每小时行14千米,甲、乙二人经过几小时相遇?(1)分析:如果设两人经过x 小时相遇,则甲行的路程为__________千米,乙行的路程为__________千米.根据甲、乙所行路程之和等于___________千米,即可列出方程. (2)解:设两人经过x 小时相遇. 根据题意,得___________. 解这个方程,得1x =.因此,甲、乙二人经过_________小时相遇.22.某外贸企业抓住优化疫情防控后的商机,投入资金生产某外贸产品,按疫情防控优化前的销售价格可获利20%,而优化疫情防控后产品价格增长了30%,生产成本仅增长了2%,最后该企业可比疫情优化前多盈利85万元,问该企业投入生产成本______万元.23.规定一种新运算:a *b =a 2﹣2b ,若2*[1*(﹣x )]=6,则x 的值为 _____. 24.将公式v =v 0+at (a ≠0)变形成已知v ,v 0,a ,求t 的表示形式,即t =_____. 25.某商场在销售某商品时,将其提价100%,物价部门查处后,限定其提价幅度只能是原价的14%,则该商品现在降价的幅度是_____.26.某次数学测试共20道选择题,答对一道得5分,答错或不答倒扣2分.小明在这次考试中得了79分,则他答对了____道题.27.若x =1是方程﹣2mx +n ﹣1=0的解,则2020+n ﹣2m 的值为______. 28.写出一个以5x =为解的一元一次方程__________.29.已知方程3x+43y=1,用含x 的代数式表示y 为________;当y=﹣12时,x=________.30.如果关于x 的一元一次方程0ax b +=的解是2x =,那么方程0bx a -=的解为____.31.数轴上点A 和点B 表示的数分别是1-和3,点P 到A 、B 两点的距离之和为6,则点P 表示的数是______ .32.当x =______时,代数式31x +的值与代数式23x -()的值互为相反数. 33.(a-3)x a²-8+3=4是关于x 的一元一次方程,则a 的值是 34.3x =是一元一次方程3245x a +-=的解,则a 的值等于___________. 35.我国古代《洛书》古称龟书,传说有神龟出于洛水,其甲壳上记载着一个世界上最古老的的幻方,如图所示,若将1~9这九个数字填入这个3×3的幻方中,恰好能使三行、三列、对角的三个数字之和分别相等.根据题意,要求幻方中的m 则可列方程为___________________,进而可求得m=_____,n=_____.36.一个正数的平方根分别是1x -+和2x +5,则这个正数是______37.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.若一家水果商店以6元/kg 的价格购买了5000kg 该种水果,不考虑其他因素,要想获得约15000元的利润,销售此批水果时定价应为_____元/kg . 38.若方程2(a ﹣x)﹣3(x+1)=21的解是x =﹣2,则a 的值为_____.39.一般地,任何一个无限循环小数都可以写成分数形式,现以无限循环小数0.7•为例进行讨论:设0.7•=x ,由0.7•=0.777…可知,10x ﹣x=7.7•﹣0.7•=7,即10x ﹣x=7.解方程,得x=79.于是,得0. 7•= 79.则0.4•=____________;0.7•5•=____________ .40.如图,一个长方形征好分成A 、B 、C 、D 、E 、F 这6个正方形,其中最小的正方形A边长为1,则这个长方形的面积是_____________.三、解答题41.解方程:0.10.20.710.30.4x x---=.42.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?43.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?44.192728xx--=45.当m为何值时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同?46.解下列方程(1)2x-(5x+16)=3-2(3x-4);(2)+=1.47.下框中是小明对课本P108练一练第4题的解答.请指出小明解答中的错误,并写出本题正确的解答.48.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为________元,每件乙种商品利润率为________;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?49.如图,甲、乙两人利用不同的交通工具,沿同一路线从A地出发到距离A地350千米的B地办事,甲先出发,乙后出发,甲、乙两人距A地的路程和时间的关系如图所示,根据图示提供的信息解答:()1乙比甲晚______小时出发;乙出发______小时后追上甲;()2分别求甲、乙两人离开A地的路程s关于t的函数关系式;()3求乙比甲早几小时到达B地?50.综合与实践:为抗击新冠肺炎疫情,某药店对消毒液和口罩开展优惠活动.消毒液每瓶定价25元,口罩每包定价8元,优惠方案有以下两种:①以定价购买时,买一瓶消毒液送一包口罩;①消毒液和口罩都按定价的80%付款.现某客户要到该药店购x>.买消毒液40瓶,口罩x包(40)(1)若该客户按方案①购买,需付款_______元(用含x的式子表示);若该客户按方案①购买,需付款______元(用含x的式子表示并化简).x=,通过计算说明按方案①,方案①哪种方案购买较为省钱?(2)若80(3)试求当x取何值时,方案①和方案①的购买费用一样.参考答案:1.C【分析】根据等式的性质2,方程两边都乘6即可. 【详解】解:()11123x x +=-, 去分母,得()312x x +=-, 故选:C .【点睛】本题考查了解一元一次方程,能正确运用等式的性质进行变形是解此题的关键. 2.C【详解】A. ① S =ab 有三个未知数,故不是一元一次方程; B. ①2+5=7没有未知数,故不是一元一次方程;C. ①4x +1=x +2有一个未知数,且未知数的次数都是1,两边都是整式,故是一元一次方程;D. ①3x +2y =6有两个未知数,故不是一元一次方程; 故选C. 3.A【分析】求出第一个方程的解得到x 的值,将x 的值代入第二个方程计算即可求出a 的值.【详解】解:方程3x +5=11,解得:x =2, 将x =2代入6x +3a =22,得:12+3a =22, 解得:a =103. 故选:A .【点睛】本题主要考查了一元一次方程的解的定义,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解是解题的关键. 4.D【分析】将等式两边同时平方得到一元一次方程x ﹣1=9,解方程并检验即可解题. 【详解】将方程两边平方得x ﹣1=9 解得:x =10经检验:x =10是原无理方程的解 故选D .【点睛】本题考查了无理方程及一元一次方程的解法,解本题的关键是注意解出方程之后一定要进行检验,确保式子有意义. 5.D【分析】根据一元一次方程的定义逐一判断即可得到答案. 【详解】解:210x -=是分式方程,故A 错误;21x =是一元二次方程,故B 错误;21x y +=是二元一次方程,故C 错误;132x -=是一元一次方程,故D 正确; 故选D .【点睛】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键. 6.A【分析】根据不等式的性质和等式的性质逐一进行判断即可. 【详解】解:A 、由2x -<,得2x >-,本选项不正确; B 、由3x -=,得3x =-,本选项正确; C 、由32x -=,得5x =,本选项正确; D 、由23x +<,得1x <,本选项正确; 故选:A【点睛】此题考查了不等式与等式的性质,熟练掌握它们的性质是解本题的关键. 7.C【分析】根据解一元一次方程的一般步骤求出表示x 的代数式,然后根据方程的解为非负数列不等式求解即可. 【详解】解:3256x a b x--= 186510x a b x -=-,①2856x b a =+, ①5628b a x +=, ①方程的解为非负数, ①560b a +≥, ①56a b ≥-,故选C .【点睛】本题考查了解一元一次方程,根据一元一次方程解得情况确定参数的值,根据题意列出不等式是解题的关键. 8.C【分析】根据题意,(x-3)是6的倍数,(x+5)是8的倍数,建立方程即可. 【详解】设原有x 只鸽子, 根据题意,得 3568x x -+=, 故选C.【点睛】本题考查了一元一次方程的应用,抓住鸟笼个数不变或鸟数量不变构建一元一次方程是解题的关键. 9.D【分析】分别把2x =-代入到四个选项中去,使得方程左右两边相等的选项即为所求. 【详解】解:A 、把2x =-代入到12x +=中,方程左边=-1,右边=2,左右两边不相等,故此选项不符合题意;B 、把2x =-代入到20x -=中,方程左边=4,右边=0,左右两边不相等,故此选项不符合题意;C 、把2x =-代入到112x =中,方程左边=-1,右边=1,左右两边不相等,故此选项不符合题意;D 、把2x =-代入到222x -=-中,方程左边=-2,右边=-2,左右两边相等,故此选项符合题意; 故选D .【点睛】本题主要考查了方程的解,解题的关键在于能够熟练掌握方程的解得定义:使得方程左右两边相等的未知数的值叫做方程的解. 10.D【分析】根据题意直接把分子分母同时乘以100,即可得出答案. 【详解】解:20.250.10.10.030.02x x-+=, 把分母化为整数,得20025100.132x x-+=.故选:D .【点睛】此题考查了解一元一次方程的一般步骤,解题的关键是熟练掌握利用分数的性质把分母化为整数.11.A【分析】利用题中的“一个角+30°=这个角的余角”作为相等关系列方程求解.【详解】解:设这个角的度数是x ,则x +30°=90°﹣x ,解得x =30°.答:这个角的度数是30°.故选:A .【点睛】此题主要考查了余角的概念以及运用.解此题的关键是熟悉互为余角的两角的和为90°.12.C【分析】根据图1可知,斜对角的两个数之和相等,继而即可求解.【详解】解:根据图1可知,斜对角的两个数之和相等,①81422a b +=+=,故选:C .【点睛】本题考查了幻方,根据幻方的特点,每一横行、每一竖列以及两条对角线上的3个数之和相等推出空格内的数,结合幻方斜对角的两个数之和相等是解题的关键. 13.B【分析】设该校七年级一班有学生x 人,根据“如果每人分4本,则剩余20本;如果每人分5本,则还缺30本”.【详解】解:设该校七年级一班有学生x 人,依题意,得:420530x x+=﹣ 故选:B【点睛】本题考查了一元一次方程的实际应用,审清题意是正确找到等量关系的前提. 14.A【分析】把x =2代入原方程可得关于m 的方程,解方程即得答案.【详解】解:把x =2代入方程x -5m =3x +1,得2-5m =6+1,解得:m =﹣1. 故选:A .【点睛】本题考查了一元一次方程的解和简单的一元一次方程的解法,属于基本题目,熟练掌握基本知识是解题关键.15.B【分析】方程变形后表示出解,由解为非负数确定出a 的范围,再由分式方程有正整数解,确定出所有a 的值,求出之和即可.【详解】解:方程22x a -=, 解得:22a x +=, 由方程有非负数解,得到202a +,即2a ≥-, 分式方程去分母得:1241x ax -+=-, 解得:4(2)2x a a=≠-, 2,x ≠0,a ∴≠ 方程有正整数解,21a ∴-=,或24,a -=解得: 1a =或2,a =-则所有a 的和为211-+=-,故选:B .【点睛】此题考查了一元一次方程的解与分式方程的解,始终注意分母不为0这个条件. 16.D【分析】分两种情况讨论:①两车相遇之前相距50千米;①两车相遇之后又相距50千米,根据路程=速度⨯时间,列方程求解即可得到答案.【详解】解:①当两车相遇之前相距50千米时,根据题意,1208045050t t +=-,解得:2t =;①当两车相遇之后又相距50千米时,根据题意,1208045050t t +=+,解得: 2.5t =,综上可知,经过t 小时两车相距50千米,则t 的值是2或2.5,故选D .【点睛】本题考查了一元一次方程的应用,利用分类讨论的思想,根据题意找出等量关系是解题关键.17.B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.D【详解】试题分析:设从第二组抽调x 人,则第一组有x+26人,第二组有22﹣x 人,根据第一组的人数是第二组的3倍,列出方程.解:设从第二组抽调x 人,则第一组有x+26人,第二组有22﹣x 人,由题意得,x+26=3(22﹣x ).故选D .考点:由实际问题抽象出一元一次方程.19.D【分析】先求出三个数的比,然后运用比例的性质,即可求出答案.【详解】解:由题意可得,①第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,①三个数之比为10:15:24,设三个数分别为10x 、15x 、24x ,则10152498x x x ++=,解得:2x =,①第二个数为1530x =.故选:D .【点睛】本题考查了比例的性质,解一元一次方程,解题的关键是熟练掌握题意,运用比例的性质进行解题.20.D【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线右括号的作用,以及去分母时不能漏乘没有分母的项.【详解】方程两边同时乘以6得:()()2211016x x +-+=,故选D .【点睛】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项. 21.(1)16x ,14x ,30;(2)161430x x +=,1【分析】(1)如果设两人经过x 小时相遇,则甲行的路程为16x 千米,乙行的路程为14x 千米.根据甲、乙所行路程之和等于30千米,即可列出方程;(2)设两人经过x 小时相遇.根据题意,列方程求解即可.【详解】(1)16x ,14x ,30;(2)设两人经过x 小时相遇根据题意:161430x x +=解得:1x =【点睛】此题考查了ー元一次方程的应用,涉及了行程问题,解题的关键是读懂题意,正确把握已知条件,准确列出方程.22.250【分析】设该企业投入生产成本x 万元,则按疫情防控优化前的销售价格可获利为:20%x 万元,优化疫情防控后可获利为:()()()120%130%12%0.54x x x ++-+=(万元),再利用该企业可比疫情优化前多盈利85万元,列方程,再解方程即可.【详解】解:设该企业投入生产成本x 万元,则按疫情防控优化前的销售价格可获利为:20%x 万元,优化疫情防控后可获利为:()()()120%130%12%0.54x x x ++-+=(万元), ①0.5420%85x x -=,解得:250x =,答:该企业投入生产成本为250万元.故答案为:250【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键. 23.-1【分析】首先根据题意,可得:1*[(﹣x )=12﹣2×(﹣x )=1+2x ,所以2*[(1+2x )=6,所以22﹣2(1+2x )=6;然后根据解一元一次方程的方法,求出x 的值为多少即可.【详解】解:①a *b =a 2﹣2b ,①1*(﹣x )=12﹣2×(﹣x )=1+2x ,①2*[1*(﹣x )]=6,①2*(1+2x )=6,①22﹣2(1+2x )=6,去括号,可得:4﹣2﹣4x =6,移项,可得:﹣4x =6﹣4+2,合并同类项,可得:﹣4x =4,系数化为1,可得:x =﹣1.故答案为:﹣1.【点睛】此题主要考查新定义运算与解方程,解题的关键是根据题意得到一元一次方程. 24.0v v a- 【分析】根据等式的性质把v =v0+at 变形,即可得出答案.【详解】解:①v =v 0+at ,①at =v ﹣v 0, ①0v v t a-=, 故答案为:0v v a-. 【点睛】本题考查了列代数式,等式性质的应用,掌握等式的性质是解题的关键. 25.43%【分析】根据题意,可以列出相应的方程,从而可以得到该商品现在降价的幅度,本题得以解决.【详解】解:设该商品现在降价的幅度为x ,原来的价格为a 元,a (1+100%)(1−x )=a (1+14%),解得,x =43%,故答案为:43%.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程. 26.17【分析】设小明答对y 道题,根据得分79分,构建方程求解.【详解】解:设小明答对y 道题,根据题意得5y -(20-y )×2=79,解得y =17,答:小明答对17道题.故答案为:17.【点睛】本题考查一元一次方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题.27.2021【分析】把x=1代入方程求出n -2m 的值,原式变形后代入计算即可求出值.【详解】解:把x =1代入方程得:﹣2m +n ﹣1=0,整理得:n ﹣2m =1,则原式=2020+(n ﹣2m )=2020+1=2021.故答案是:2021.【点睛】此题考查了一元一次方程的解,利用了整体代入的思想,方程的解即为能使方程左右两边相等的未知数的值.28.315x =【详解】本题答案不唯一,例如2x=10,x-5=0,3x=15,x+7=12等,故答案可以是:3x=15(答案不唯一).【点睛】本题考查了一元一次方程的解,此题的答案不唯一,只要写出的方程是关于x 的一元一次方程,解为5即可.29. 394x - 173 【详解】3x +43y =1,43y =1-3x ,y =34-94x ;将y =-12代入方程得3x -16=1,x =173. 故答案为34-94x ;173. 点睛:注意区分用x 表示y 和用y 表示x 两种说法.30.12x =- 【分析】将2x =代入原方程,可得出2b a =,将其代入方程0bx a -=中,解之即可得出结论.【详解】解:将2x =代入原方程得20a b +=,2b a ∴=-,∴方程0bx a -=为20ax a --=,解之得12x=-,∴方程0bx a-=的解为122a axb a===--.故答案为:12x=-.【点睛】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.31.4或-2【分析】设点P表示的数为x,分点P在点A的左边和点B的右边两种情况分别列方程求解即可.【详解】解:设点P表示的数为x①AB=|-1-3|=4<6①点P在点的左边时,-1-x+3-x=6,解得:x=-2点P在点B的右边时,x-3+x-(-1)=6.解得:x=4①点P表示的数是-2或4.故答案为-2或4.【点睛】本题考查了数轴上两点间的距离的表示方法,读懂题意、分类列出方程是解答本题的关键.32.7-【详解】分析:利用互为相反数两数相加为0,求出方程的解即可得到x的值.详解:根据题意得:3x+1+2(3﹣x)=0,去括号得:3x+1+6﹣2x=0,移项合并得:x=﹣7.故答案为﹣7.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.33.-3【分析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:30²81a a -≠-⎧⎨⎩= 解得:a=-3故答案为:-3【点睛】本题考查一元一次方程的定义,解题的关键是熟练运用一元一次方程的定义,本题属于基础题型.34.0【分析】将3x =代入方程,进行求解即可.【详解】解:①3x =是一元一次方程3245x a +-=的解,①33245a ⨯+-=,解得:0a =;故答案为:0.【点睛】本题考查一元一次方程的解,解一元一次方程.熟练掌握使等式成立的未知数的值,是方程的解,是解题的关键.35. 9+5=8+m 6 2【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【详解】如图,①“每行、每列、每条对角线上的三个数之和相等”根据题意可得 9+5+x=8+m+x解得m=6,又y+5+6=y+9+n故解得n=2故填:9+5=8+m;6;2.【点睛】本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个数之和相等是解题的关键.36.49【分析】根据题意,结合平方根的性质列出方程,求解方程即可得到结论.【详解】解:一个正数的平方根有两个,且互为相反数,∴由一个正数的平方根分别是1x -+和2x +5,可知()()1250x x -+++=,即60x +=,解得6x =-,∴()221749x -+==, 故答案为:49.【点睛】本题考查平方根的性质,根据题意列出方程求解是解决问题的关键. 37.10.【分析】根据表格中的数据可知,损耗率约等于10%,然后根据题意,即可列出相应的方程,从而可以得到水果的定价.【详解】设销售此批水果时定价为x 元/kg ,由表格可知,水果的损耗接近10%,则5000×(1﹣10%)x ﹣5000×6=15000,解得,x =10,答:销售此批水果时定价应为10元/kg ,故答案为:10.【点睛】本题主要考查一元一次方程的实际应用,找到等量关系,列出一元一次方程,是解题的关键.38.7【分析】把x =﹣2代入方程得出关于a 的方程解答即可.【详解】把x =﹣2代入方程2(a ﹣x)﹣3(x+1)=21,可得:2(a+2)﹣3(﹣2+1)=21,解得:a =7,故答案为7.【点睛】本题考查了一元一次方程的解,关键是把x =﹣2代入方程得出关于a 的方程解答.39. 497599 【分析】(1)根据题意设0.4•=x ,由0. 4•=0.444…可知,10x-x 的值进而求出即可;(2)根据题意设0. 7•5•= x ,由0. 7•5•=0.7575…可知,100x-x 的值进而求出即可;【详解】解:(1)设0.4•=x,由0. 4•=0.444…可知,10x-x=4. 4•-0.4•=4,即10x-x=4.解方程,得49 x=于是,得0.4•= 4 9故答案为4 9 .(2)设0. 7•5•= x,由0. 7•5•=0.7575…可知,100x-x=75.7•5•- 0. 7•5•=75,即100x-x=75.解方程,得x=75 99,于是,得0. 7•5•=75 99,故答案为75 99.【点睛】此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成分数形式.40.143【分析】设正方形E的边长为x,则原长方形的长为(3x+1),宽为(2x+3),然后根据长方形的对边相等列方程求解即可.【详解】解:设正方形E的边长为x,则D正方形的边长是x+1,C正方形的边长是x+2,B 正方形的边长是2x-1,①原长方形的长为(3x+1),宽为(2x+3),根据题意,得2x-1+x=x+2+x+1,解得:x=4.当x=4时,3x+1=13,2x+3=11,①长方形的面积=13×11=143.故答案为:143.【点睛】此题考查了一元一次方程的实际应用,解题的关键是正确分析题意,找到各正方形的边长之间的关系.41.2922 x=【分析】根据解一元一次方程的步骤即可得到答案.【详解】方程整理得:123x --17104x -=, 去分母得:()()412123710x x --=-,去括号得:48122130x x --=-,移项合并得:2229x =, 解得:2922x =. 【点睛】本题考查解一元一次方程,正确计算是解题关键.42.经过1.5小时,两车相距30千米.【分析】设经过x 小时后,两车相距30千米,根据“甲车行驶的路程加上15千米,减去乙车行驶的路程等于30千米”建立方程,解方程即可得.【详解】解:设经过x 小时后,两车相距30千米,由题意得:50154030x x +-=,解得 1.5x =,答:经过1.5小时,两车相距30千米.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键. 43.(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.【详解】(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,①2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =①330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键.44.545x 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】192728x x --= 去分母得:45692x x移项、合并同类项得:554x系数化为1得:545x 【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.45.m=﹣4【详解】试题分析:根据方程的解相同,可得关于m 的方程,根据解方程,可得答案. 解:解4x+2m=3x ﹣5,得x=﹣5﹣2m .解6x ﹣8=10,得x=3.关于x 的方程4x+2m=3x ﹣5的解和方程6x ﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x 的方程4x+2m=3x ﹣5的解和方程6x ﹣8=10的解相同.46.(1)x =9(2) x =-【详解】试题分析:(1)按照去括号、移项、合并同类项,系数化为1的解方程的步骤解方程即可;(2)先将分子分母中的小数化为整数,然后按照去分母、去括号、移项、合并同类项,系数化为1的解方程的步骤解方程即可.试题解析:(1)2x -(5x +16)=3-2(3x -4)2x -5x -16=3-6x +8 2分2x -5x +6x =3+8+163x =27x =9 4分(2)+=1原方程整理得:+=1 1分4(x -20)+3(30-7x )=12 2分4x -80+90-21x =12 3分4x -21x =12+80-90 4分-17x =2x =- 5分考点:解一元一次方程.47.48名【分析】根据方程中的x 表示的意义和设的x 的意义得出答案即可,进一步设出这个班的人数,根据每组6人比每组8人多2组列出方程解答即可.【详解】解:小明的错误是“他设中的x 和方程中的x 表示的意义不同”.正确的解答:设这个班共有x 名学生, 根据题意,得268x x -= 解这个方程,得x=48.答:这个班共有48名学生.48.(1)40;60%;(2)购进甲商品40件,乙商品10件;(3)小华在该商场购买乙种商品7件或8件。
中考一元一次方程易错题50题含答案
中考一元一次方程易错题50题含答案解析一、单选题1.下列方程中是一元一次方程的是( ) A .5=ab B .2+5=7 C .2x +1=x+3D .3x+5y=82.一个角的余角比它的补角的14多15°,设这个角为α,下列关于α的方程中,正确的是( )A .190(180)154αα-=-+B .190(180)154αα-=--C .()1180180154αα-=-+ D .()1180180154αα-=-- 3.某商品的标价为200元,9折销售仍赚40元,则该商品的进价为( ) A .140B .120C .100D .1604.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度3千米/时,求甲乙两码头的距离.设甲乙两码头的距离为x 千米.则可列方程为( ) A .2(3) 2.5(3)x x +=- B .23 2.53x x +=-C .332 2.5x x-=+ D .332 2.5x x+=- 5.小颖按如图所示的程序输入一个正数x ,最后输出的结果为94,则满足条件的x 的不同值最多有( )A .1个B .2个C .3个D .4个6.根据等式的性质,下列变形正确的是( ) A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-57.下列方程变形中属于移项的是( ) A .由2x =﹣1得x =﹣12 B .由2x=2得x =4C .由5x +b =0得5x =﹣bD .由4﹣3x =0得﹣3x +4=08.方程2x x =的根为( )A.0B.12C.1D.29.已知x=y,则下列等式中,不一定成立的是()A.x-3=y-3B.x+5=y+5 C.-2x=-2y D.x y m m=10.一根绳子剪成两段,第一段长4m7,第二段占全长的47,两段绳子相比().A.第一段长B.第二段长C.一样长D.无法确定11.根据“x比某数的23多5”的数量关系可得出某数是()A.253x÷-B.()253x+÷C.352x⨯-D.()253x-÷12.如图,已知∠COE=90°的顶点O在直线AB上,OF平分∠AOE,OC平分∠AOF,则∠BOE的度数是()A.30°B.40°C.50°D.60°13.一套书降价15后,售价为120元.这套书原来售价是()A.150元B.144元C.140元14.若方程(a+3)x|a|-2+6=0是关于x的一元一次方程,则a的值是()A.3B.3-C.3±D.2±15.按下面的程序计算:如果n值为正整数,最后输出的结果为5468,则开始输入的n值可能有().A.2种B.3种C.4种D.5种16.把方程2-371745x x-+=去分母,正确的是()A.2-(3x-7)=4(x+17)B.40-15x-35=4x+68C .40-5(3x -7)=4(x +17)D .40-15x +35=4x +1717.下列说法中,正确的是( ) A .2.40万精确到百位B .4abc-的系数是-4,次数是3 C .多项式231x y xy +-是五次三项式 D .若ax ay =,则x y =18.已知函数()2322m y m x n -=-++,(m ,n 是常数)是正比例函数,+m n 的值为( ) A . 4-或0B . 2±C .0D . 4-19.新世纪綦江商都一件商品标价为420元,进价为280元,要使利润率为5%,应该打( )折 A .9B .8C .7D .6二、填空题20.如果=1x -是关于x 的方程30.53x a +=的解,那么a 的值为________. 21.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是_____.22.阅读框图,在五个步骤中,依据等式的性质2的步骤有______(只填序号).23.如果21460a x +=﹣是关于x 的一元一次方程,那么a =_____.24.如果单项式155m n a b ++与2123m n a b ++是同类项,则m =_________,n =___________ 25.如果3-是关于x 的方程23x m +=的解,那么m 的值为__________. 26.若分式3122x x -+的值为0,则x 的值为__________. 27.若3x =是方程36x a +=的解,则a 的值为________.28.大同长城1号旅游公路是市民休闲旅游的好去处.周日,小王和小李参加了某自行车队在云州区1号旅游公路段组织的骑行活动.小王从某地出发7分钟后,小李也从同一地沿同一方向骑行.已知小王和小李骑行的平均速度分别为20千米/小时和25千米/小时.设小李骑行x 小时后追上小王,则根据题意可列方程为___________. 29.已知代数式22433A x xy y =+-+,22B x xy -=+,若2A B -的值与y 的取值无关,则x 的值为______.30.当x 的值为______时,代数式87x -与62x -的值互为相反数.31.已知关于x 的一元一次方程2020202120192018x a x b +=+的解为2x =,那么关于y 的一元一次方程2020(3)20212019(3)2018y a y b -+=-+的解为______.32.若关于x 的方程222x m xx ---=的解是非负数,则正整数m 的值是________. 33.两学生利用温差测某座山峰的高度,在山顶测得温度是−2∠,在山脚测得温度是4∠,已知山峰高度每增加100米,气温大约下降0.6∠,这座山峰的高度大约是______米.34.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元,一律9折 ③一次性购物超过300元,一律8折小李两次购物分别付款80元,252元,如果他一次性购买以上两次相同的商品,应付款________35.|x |=3,|y |=2,且x -y =-5,则x +y 等于________. 36.方程()32x 4a 4x 1102++=-的解为x=3,则a 的值为______ . 37.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元.38.冬季仙女山是重庆市民近郊看雪旅游的绝佳选择.“平安”旅游公司推出仙女山、芙蓉洞精品两日游,跟团费为500元/人,且每参团一人,公司给推销人员60元奖金.为提高推销人员的积极性,该公司根据总参团人数给出新的发放奖金比例,见表1.小乔在4个小区进行推销,已知A 小区和D 小区参团人数相等,其余小区参团人数见表2,则小乔获得的奖金比按原方式获得的奖金增加了25%,则A 小区参团人数是______人. 表1注:奖金比例即奖金占跟团费的百分比 表2三、解答题 39.解方程 (1)85 6 y y -= (2)121224x x+--=+ 40.关于x 的方程:3x +m =2的解也是方程:x - (1-x ) =1的解,求m 的值.41.阅读理解:我们知道,无限循环小数以转化为分数,例如:将0.3转化为分数时,可设0.3x =,方程两边同乘以10得3.310x =,即3x 10x +=,则1x 3=,所以10.33=. 拓展应用:依照以上方法,将0.36••化成分数.42.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?43.检验下列各数是不是方程2(x +34)-12x =12 (x -1)+2的解.(1)x =0;(2)x =-1.44.如图,L 1,L 2∠分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样.(1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h ,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).45.【材料阅读】我们知道:在数轴上,一个数所对应的点与原点之间的距离叫做这个数的绝对值. 对于“两点间的距离”,是指两点之间线段的长度,若一个数的绝对值为1,则这个数在数轴上的点与原点间的距离为1,该点表示的数为1或1-. 【问题解决】如图,数轴上的点A ,B 表示的数分别为8-,5(即点A ,B 到原点的距离分别是8个单位,5个单位)(1)点A ,B 间的距离为________.(2)将数轴在点C 处折叠,若点A ,B 重合,则点C 表示的数为________.(3)点A ,B 均沿数轴正方向,分别以3个单位/秒、2个单位/秒的速度同时匀速运动,请列方程解决下面的问题:经过多长时间,点A ,B 间的距离为2?46.在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且12x x ≠,12y y ≠,若PQ 为某个矩形的一条对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 对角矩形.图∠为点P ,Q 的对角矩形的示意图.已知点(2,0)A ,点(,3)B m .(1)当4m =时,在图∠中画出点A 、B 的对角矩形,其面积为__________ (2)若点A 、B 的对角矩形面积是15,求m 的值;(3)若点(0,1)C ,在线段AC 上存在一点D ,使得点D 、B 的对角矩形是正方形,直接写出m 的取值范围__________.47.某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)如果甲用户的月用水量为12吨,则甲需缴的水费为 元; (2)如果乙用户缴的水费为39.2元,则乙月用水量 吨;(3)如果丙用户的月用水量为a 吨,则丙用户该月应缴水费多少元?(用含a 的代数式表示,并化简)48.将连续的奇数1,3,5,7,9,…排成如图所示的数阵.用框框住5个数.(1)将此框上、下、左、右平移,可以框住另外5个数,若中间的数为a,用代数式表示此框中由小到大的另4个数,并求这五个数的和.(2)此框中的5个数的和能等于2020吗?若能,请写出这5个数;若不能,请说明理由.参考答案:1.C【分析】判断一个方程是否是一元一次方程,看它是否具备以下三个条件:∠只含有一个未知数,∠未知数的最高次数是1,∠未知数不能在分母里,这三个条件缺一不可. 【详解】A. 5=ab 含有两个未知数,故不是一元一次方程; B. 2+5=7不含未知数,故不是一元一次方程; C.2x+1=x+3符合一元一次方程的定义,故是一元一次方程; D. 3x+5y=8含有两个未知数,故不是一元一次方程; 故选C.【点睛】本题考查了一元一次方程的识别,熟练掌握一元一次方程的定义是解答本题的关键. 2.A【分析】设这个角为α,它的余角为90α︒-,它的补角为180α︒-,由题意列方程即可. 【详解】解:设这个角为α,它的余角为90α︒-,它的补角为180α︒-,则 190(180)154αα---=,∠190(180)154αα-=-+,故选:A .【点睛】本题考查的是余角与补角含义,一元一次方程的应用,利用余角与补角的含义建立方程是解本题的关键. 3.A【分析】设商品进价为x 元,则售价为每件0.9×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.9×200元,由题意得 0.9×200=x +40, 解得:x =140,答:商品进价为140元. 故选:A .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.4.C【分析】根据题意列出方程求解即可. 【详解】由题意得 332 2.5x x -=+ 故答案为:C .【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 5.D【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出. 【详解】解:3x +1=94, 解得:x =31>0, 3x +1=31, 解得:x =10>0 3x +1=10 解得x =3>0, 3x +1=3解得:x =23>0, 3x +1=23, 解得:x =﹣19<0故符合条件的答案有4个. 故选:D .【点睛】此题考查了代数式求值,弄清题中的程序框图是解本题的关键. 6.B【分析】将等式移项,合并同类项,系数化为1即可.【详解】解:A 中1233x y -=,2x y =-,错误,故不符合要求;B 中322x x =+,2x =,正确,故符合要求;C 中233x x -=,3x =-,错误,故不符合要求;D 中357x -=,375x =+,错误,故不符合要求;故选B .【点睛】本题考查了等式的性质.解题的关键在于正确的移项、合并同类项、系数化为1.7.C【分析】根据一元一次方程的解法直接进行排除选项即可.【详解】A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.8.A【分析】移项、合并同类项,据此求出方程的解是多少即可.【详解】解:移项,可得:2x -x =0,合并同类项,可得:x =0.故选:A .【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.9.D【分析】等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.【详解】解:A 、∠ x=y ,根据等式性质1,在等式的两边都同时减去3,等式依然成立,∠ x-3=y-3正确,不符合题意;B 、∠ x=y ,根据等式性质1,在等式的两边都同时加上5,等式依然成立,∠ x+5=y+5正确,不符合题意;C 、∠ x=y ,根据等式性质2,在等式的两边都同时乘以-2,等式依然成立,∠-2x=-2y 正确,不符合题意;D、∠ x=y ,根据等式性质2,在等式的两边都同时除以同一个不为0的整式m,等式才依然成立,由于此题没有强调m≠0,∠x ym m=不一定成立,此题错误,符合题意.故答案为:D.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.10.B【分析】把这根绳子的长度设为x,第二段占全长的47,则第一段占全长的4(1)7-,通过比较两段长度所占的分率,即可确定哪段长.【详解】解:设这根据绳子的长x m,第二段占全长的47,则第二段长为:47x m第一段长为:43 (1)77x x -=,∠34 77=x,∠43x=,∠第二段长为:44416 77321=⨯=x,∠第一段长412=m721<1621m,∠两段绳子相比第二段长,故选:B.【点睛】本题考查了实数的大小比较,以及解一元一次方程,解题的关键是知道第一段是告诉的具体长度,第二段是告诉的分率,求第一段所占的分率,通过比较,即可确定哪段长.11.D【分析】根据题意,找准等量关系列出方程即可.【详解】解:根据x比某数的23多5,可得:()253x-÷,故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,找的方法是通过题目中的关键词如:差,和,倍等.12.D【分析】根据角平分线的性质可得AOF EOF ∠=∠和AOC COF ∠=∠,设AOC x ︒∠=,根据90COE COF EOF ︒∠=∠+∠=列出方程求解出x 的值,就可得出AOE ∠的度数,根据补角的性质求出∠BOE 的度数.【详解】解:∠OF 平分∠AOE ,,AOF EOF ∴∠=∠∠OC 平分∠AOF ,,AOC COF ∴∠=∠设AOC x ︒∠=,则2,2,,COF x AOF x FOE x ︒︒︒∠=∠=∠=90,COE COF EOF ︒∠=∠+∠=290,x x +=∴解得30,x =430120,AOE AOC AOF EOF ︒︒∴∠=∠+∠+∠=⨯=18060.EOB AOE ︒∴∠=︒-∠= 故选:D .【点睛】此题考查了角平分线有关的计算问题,解题的关键是掌握角平分线的性质、补角的性质以及解一元一次方程的方法.13.A 【分析】根据题意,降价15后,售价为120元,则现售价为原来售价的45,由此设这套书原来售价是x 元,建立一元一次方程,解出方程,即可.【详解】解:设这套书原来售价是x 元,根据题意得11205x x -= 解得150x =故选:A .【点睛】本题考查了一元一次方程的应用,根据题意建立方程是解题的关键.14.A【分析】利用一元一次方程的定义判断即可.【详解】解:∠方程(x+3)x|a|-2+6=0是关于x的一元一次方程,∠|a|-2=1,且a+3≠0,解得:a=3,故选A.【点睛】本题考查的是一元一次方程的定义,根据题意列出关于a的式子是解答此题的关键.15.D【分析】利用逆向思维来做,分析第一个数就是直接输出5468,可得方程5x+3=5468,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:根据题意得:5n+3=5468,解得:n=1093;5n+3=1093,解得:n=218;5n+3=218,解得:n=43;5n+3=43,解得:n=8;5n+3=8,解得:n=1;则开始输入的n的值可能有5种.故选D.【点睛】此题主要考查一元一次方程,注意理解题意与逆向思维的应用是解题的关键.16.C【分析】根据去分母的法则,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号作出选择.【详解】解:两边同乘以20,得40-5(3x-7)=4(x+17)故选C【点睛】本题考查了解一元一次方程去分母的步骤.在解方程去分母时,要注意以下问题:方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.A【分析】根据近似数的定义、单项式的系数及次数定义、多项式的次数及项数和等式的基本性质判断即可.【详解】A. 因为2.40万=24000,2.40中0所在的数位为百位,所以2.40万精确到百位,故A 正确; B. 4abc -的系数是14-,次数是3,故B 错误; C. 多项式231x y xy +-中,最高次项是23x y ,次数为3,所以是三次三项式,故C 错误;D. 若ax ay =,若0a =时,等式两边不能同时除以0,所以D 错误.故选A .【点睛】此题考查的是近似数的精确数位的判断,单项式的系数和次数判断,多项式的次数及项数判断和等式的基本性质,掌握近似数的定义、单项式的系数及次数定义、多项式的次数及项数和等式的两边不能同时除以0是解决此题的关键.18.D【分析】按正比例函数的定义解答,正比例函数的定义是形如=y kx (k 是常数,)的函数,叫做正比例函数.【详解】∠函数()2322my m x n -=-++,(m ,n 是常数)是正比例函数,∠23=120+2=0m m n ⎧-⎪-≠⎨⎪⎩①②③,解得,=22=2m m n ±⎧⎪≠⎨⎪-⎩,∠=2=2m n -⎧⎨-⎩, ∠4m n +=-.故选:D .【点睛】本题主要考查了正比例函数等,解决问题的关键是熟练掌握正比例函数的定义,解方程或不等式.19.C【分析】设该商品应该打x 折,根据“(售价-进价)÷进价=利润率”建立方程,再解方程即可得.【详解】设该商品应该打x 折,则该商品的售价为4200.142x x ⨯=元, 由题意得:422805%280x -=, 解得7x =,即该商品应该打7折,故选:C .【点睛】本题考查了一元一次方程的应用,依据题意,正确建立方程是解题关键. 20.12【分析】把=1x -代入方程30.53x a +=中,即可得到一个关于a 的方程,解方程即可求得a 的值.【详解】解:把=1x -代入方程30.53x a +=中,得30.53a -+=,解得:12a =,故答案为:12.【点睛】本题主要考查一元一次方程的解,解题的关键是熟练掌握一元一次方程的求解方法.21.3(x ﹣2)=2x +9【分析】设车有x 辆,根据“今有三人共车,二车空;二人共车,九人步”,即可得出关于x 的一元一次方程,此题得解.【详解】解:设车有x 辆,依题意,得:3(x ﹣2)=2x +9.故答案为:3(x ﹣2)=2x +9.【点睛】本题考查一元一次方程的应用,能根据题意找出等量关系,并依次列出方程是解决此题的关键.22.∠∠【分析】等式两边乘同一个数或除以一个不为零的数,结果仍得等式,依据性质2进行判断即可.【详解】∠去分母,是在等式的两边同时乘以10,依据是等式的性质2;∠系数化为1,在等式的两边同时除以16,依据是等式的性质2;故答案为:∠∠【点睛】本题主要考查了等式的基本性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.23.1【分析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:2a ﹣1=1,∠a =1,故答案为:1【点睛】本题主要考查了一元一次方程以及解一元一次方程,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.24. 0 2【分析】根据同类项的定义知:a 与b 的指数分别相等,得到两个方程,解方程即可. 【详解】解:155m n a b ++与2123m n a b ++是同类项∴121m m +=+,523n n +=+解得:0m =,2n =故答案为:0,2【点睛】本题考查了同类项的定义,相关知识点有:同类项的定义、解一元一次方程等,根据定义得出方程是解题关键.25.9【分析】将3x =-代入23x m +=,解关于m 的方程,即可得到结果.【详解】∠3x =-是关于x 的方程20x m +=的根∠2(3)3m ⨯-+=,解得:9m =故答案为:9.【点睛】本题考查一元一次方程的解,如果题中已知方程的解,就可以将x 的值代入原方程,然后就可以求出方程中所含参数的值.26.4 【分析】根据分式A B的值为零的条件A =0且B≠0解答即可.【详解】∠分式3122x x -+的值为0, ∠3x-12=0,且x+2=0,解得:x=4,故答案为:4.【点睛】本题考查分式的意义、解一元一次方程,熟练掌握分式值为零的条件是解答的关键.27.3-【分析】把3x =代入方程36x a +=,求解即可.【详解】解:∠3x =是方程36x a +=的解,∠336a ⨯+=,解得:3a =-;故答案为:3-.【点睛】本题考查一元一次方程的解的定义.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.28.7202560x x ⎛⎫+= ⎪⎝⎭【分析】根据题意得小王骑行的时间为760x +,小李骑行的时间为x ,由路程等于速度乘以时间列出方程即可. 【详解】解:设小李骑行x 小时后追上小王, 根据题意得:7202560x x ⎛⎫+= ⎪⎝⎭, 故答案为:7202560x x ⎛⎫+= ⎪⎝⎭. 【点睛】本题考查了一元一次方程的应用,理解题意,正确列出方程是解本题的关键. 29.12【分析】先把A 、B 代入2A B -进行化简,然后根据题意进行求解即可.【详解】解:由题可知: 2A B -()22243322x xy y x xy =+-+--+222433224x xy y x xy =+-+-+-631xy y =--(63)1x y =--;∠2A B -值与y 的取值无关,∠630x -=,即12x =. 故答案为12.【点睛】本题主要考查整式的加减及一元一次方程的解法,熟练掌握整式的加减及一元一次方程的解法是解题的关键.30.16 【分析】根据相反数相加得0,构建一元一次方程求解即可.【详解】解:根据题意得:87620x x -+-=,移项合并得:61x =, 解得:16x =. 故答案为:16. 【点睛】本题主要考查了相反数的定义以及解一元一次方程,熟练掌握相反数相加得0,通过相反数的定义构建方程求解是解题的关键.31. 5.y =【分析】求关于y 的一元一次方程2020(3)20212019(3)2018y a y b -+=-+的解,把3y 看成整体未知数x ,则有32y -=,即可得到答案. 【详解】解: 关于x 的一元一次方程2020202120192018x a x b +=+的解为2x =, ∴ 在关于y 的一元一次方程2020(3)20212019(3)2018y a y b -+=-+的方程中有: 32,y -=5,y ∴=故答案为: 5.y =【点睛】本题考查的是一元一次方程的特殊的解法,掌握把某个整体看成未知数是解题的关键.32.1或2【分析】根据解一元一次方程的一般步骤求出表示x 的代数式,然后根据方程的解为非负数列不等式,求出m 取值范围取正整数即可.【详解】解:222x m x x ---=, 解得:22m x -=, ∠关于x 的方程222x m x x ---=的解是非负数, ∠202m -≥, 解得:2m ≤,∠m 为正整数,∠m 的值为:1或2,故答案为:1或2.【点睛】本题考查了解一元一次方程,根据一元一次方程解得情况确定参数的值,根据题意列出不等式是解题的关键.33.1000.【分析】设山峰上升了x 个100米,温度从4∠变成−2∠,根据题意写出方程,求解即可.【详解】设山峰上升了x 个100米,温度从4∠变成−2∠,根据题意得4−0.6x =−2, 解得:x =10,山峰的高度=10×100=1000米.【点睛】本题考查方程的应用,合理设未知数是关键.34.288元或316元【分析】设小李第二次购物的商品在不优惠时的费用为x 元,分100300x <≤和300x >两种情况,分别根据优惠方案∠和∠建立方程,解方程求出x 的值,从而可得小李两次购物的商品在不优惠时的总费用,然后根据优惠方案即可得出答案【详解】解:因为在优惠方案∠下,最低付款为10090%90⨯=(元),且8090<, 所以小李第一次购物的商品在不优惠时的费用为80元,设小李第二次购物的商品在不优惠时的费用为x 元,因为30090%270⨯=,30080%240⨯=,所以分以下两种情况:(1)当100300x <≤时,则90%252x =,解得280x =,符合题设,此时小李两次购物的商品在不优惠时的总费用为80280360+=(元),所以如果他一次性购买以上两次相同的商品,应付款为36080%288⨯=(元);(2)当300x>时,则80%252=,解得315x=,符合题设,此时小李两次购物的商品在不优惠时的总费用为80315395+=(元),所以如果他一次性购买以上两次相同的商品,应付款为39580%316⨯=(元);综上,应付款为288元或316元,故答案为:288元或316元.【点睛】本题考查了一元一次方程的应用,分两种情况讨论,并正确建立方程是解题关键.35.-1.【分析】根据题意,首先求出x和y的值,再把x、y的代入x+y,求出x+y的值.【详解】因为|x|=3,|y|=2,所以x=±3,y=±2,又x﹣y=﹣5,所以x=﹣3,y=2,则x+y=﹣3+2=﹣1.故答案为-1.【点睛】此题考查方程的解和解方程,绝对值,解题关键解在于掌握绝对值的性质. 36.10【详解】分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.就得到关于a的一个方程,解方程就可求出a.详解:把x=3代入方程可得3a10+5=8解得a=10.故答案为10.点睛:本题主要考查了方程解的定义,已知x=3是方程的解实际就是得到了一个关于字母a的方程.37.140【分析】首先根据题意,设这件商品的成本价为x元,则这件商品的标价是(1+40%)x 元;然后根据:这件商品的标价×80%x-=15,列出方程,求出x的值是多少即可.【详解】解:设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元,∠(1+40%)x×80%-x=15,∠1.4x×80%-x=15,整理,可得:0.12x=15,解得:x=125;∠这件商品的成本价为125元.⨯+⨯=⨯⨯=元;∠这件商品的实际售价为:125(140%)80%125 1.40.8140故答案为:140.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.38.15【分析】设A小区的参团人数为x人,根据按新方式获得的奖金=按原方式获得的奖金(1+25%)列出方程,解方程即可【详解】解:设A小区的参团人数为x人,则D小区的参团人数也为x人根据题意得:∠当2x+30>40时,即x>5()()()⨯⨯⨯⨯⨯⨯;5002010%+5002015%+5002x+30-4020%=601+25%2x+30解得:x=15∠当2x+30≤40时,即0≤x≤5时()()()⨯⨯⨯;5002010%+5002x+30-2015%=601+25%2x+30此方程无解则A小区的参团人数为15人【点睛】本题考查了一元一次方程的实际应用,读懂题意找出等量关系是解题的关键39.(1)y=2(2)4x=【分析】(1)合并同类项,系数化1即可得解;(2)去分母,去括号,移项,合并同类项,系数化1,即可得解;【详解】(1)解:3y =6y =2(2)去分母得()()21482x x +-=+-去括号得22-482x x +=+-移项得28224x x +=+-+合并同类项得312x =化系数为1得4x =【点睛】本题考查解一元一次方程,其解题步骤是:去分母,去括号,移项,合并同类项,系数化1,求出解.40.m =-1【分析】先求出方程x -(1-x )=1的解,然后把x 的值代入方程3x +m =2,求出m 的值.【详解】解:解方程x -(1-x )=1,得:x =1,将x =1代入方程3x +m =2得:3+m =2,解得:m =-1.【点睛】题目主要考查一元一次方程的解及解一元一次方程,熟练掌握运算法则是解题关键.41.411【分析】设x= 0.36••,则x=0.3636…∠,根据等式性质得:100x=36.3636…∠,再由∠-∠得方程100x-x=36,解方程即可.【详解】解:设x= 0.36••,则x=0.3636…∠,根据等式性质得:100x=36.3636…∠,由∠-∠得:100x-x=100x=36.3636…-0.3636…,即:100x-x=36,99x=36解方程得:x=3699= 411 . 所以 0.36••=411. 【点睛】本题考查一元一次方程的应用,解题的关键是正确理解题意,看懂例题的解题方法.42.每件服装的标价是200元【分析】设每件服装的标价是x元,根据该服装的进价不变,即可得出关于x的一元一次方程,此题得解.【详解】设每件服装的标价是x元,根据题意得,0.5x+20=0.8x-40解得x=200答:每件服装的标价是200元.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.43.(1)见解析;(2)见解析.【分析】(1)将x=0直接代入方程的左右进而判断即可;(2)将x=-1直接代入方程的左右进而判断即可.【详解】(1)把x=0分别代入原方程的左边和右边,得左边=2×(0+34)-12×0=32,右边=12×(0-1)+2=32,因为左边=右边,所以x=0是原方程的解;(2)把x=-1分别代入原方程的左边和右边,得左边=2×(-1+34)-12×(-1)=0,右边=12×(-1-1)+2=1,因为左边≠右边,所以x=-1不是原方程的解.【点睛】此题主要考查了方程的解,正确计算得出方程左右的值是解题关键.44.(1)y2=0.012x+20(0≤x≤2000).(2)当照明时间为1000h时,两种灯的费用相等.(3)节能灯使用2000h,白炽灯使用500h.【分析】(1)根据l1经过点(0,2)、(500,17),得方程组解之可求出解析式,同理l2过(0,20)、(500,26),易求解析式;(2)费用相等即y1=y2,解方程求出时间;(3)求出交点坐标,结合函数图象回答问题.【详解】(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2,由图可知L1过点(0,2),(500,17),。
第三章一元一次方程易错题
第三章一元一次方程易错题第三章一元一次方程易错题第三章一元一次方程易错题一.选择题(共7小题) 1.已知下列方程:①;②0.3x=1;③;④x﹣4x=3;⑤x=6;⑥x+2y=0.其B.3中一元一次方程的个数是() A.22.若关于x的方程(m﹣2)x+3=0是一元一次方程,则m的值是()A.±3 B.3 C.﹣3 D.都不对 3.已知x=﹣2是方程5x+12=﹣a的解,则a+a﹣6的值为() A.0 B.6C.﹣6 D.﹣184.若等式x=y可以变形为A.a>0 B.a<0 C.a≠0 D.a为任意有理数 5.下列等式变形正确的是()A.如果s=ab,那么b= B.如果x=6,那么x=3 C.如果x﹣3=y﹣3,那么x﹣y=0 6.方程D.如果mx=my,那么x=y去分母得()A.3(2x+3)﹣x=2(9x﹣5)+6 B.3(2x+3)﹣6x=2(9x﹣5)+1 C.3(2x+3)﹣x=2(9x﹣5)+1 D.3(2x+3)﹣6x=2(9x﹣5)+67.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为() A.二.填空题(共13小题)8.某市为鼓励市民节约用水,做出如下规定:小明家9月份缴水费20元,那么他家9月份的实际3用水量是 m.9.已知(|m|﹣1)x﹣(m+1)x+8=0是关于x的一元一次方程,则m= .10.已知(a﹣3)x+6=0是关于x的一元一次方程,则方程的解为. 11.若x=﹣2是方程mx﹣6=15+m的解,则m=. 12.当x=13.如果代数式7x﹣3与互为倒数,则x的值等于.14.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为15.x表示一个两位数,y表示一个三位数,如果将x放在y的左边,则得到一个五位数是.16.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如下表:则完成这项工作共需天.17.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为42元,则标价为.18.一家商店将某种衣服按成本价加价40%作为标价,又以8折卖出,结果每件服装仍可获利15元,如设这种服装每件的成本价为x元,则根据题意可列方程为. 19.一队民工参加工地挖土及运土,平均每人每天挖土5方或运土3方,如果安排24人来挖土及运土,那么要安排人运土,才能恰好使挖出的土及时运走.20.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场450元的商品,他获得的优惠额为元.三.解答题(共8小题) 21.解下列一元一次方程(1)﹣3x+7=4x+21;(2)(3)9y﹣2(﹣y+4)=3;(4)22.已知x=3是方程23.已知|a﹣3|+(b+1)=0,代数式的解,n满足关系式|2n+m|=1,求m+n的值.的值比的值多1,求m的值.24.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.25.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家5月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)26.A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?27.一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了93分,你认为哪个同学说得对?请说明理由.28.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?第三章一元一次方程易错题参考答案与试题解析一.选择题(共7小题)1.(2021秋•天津期末)已知下列方程:①;②0.3x=1;③;④x﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是() A.2 B.3 C.4 D.5 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【解答】解:①是分式方程,故①错误;②0.3x=1,即0.3x﹣1=0,符合一元一次方程的定义.故②正确;③,即9x+2=0,符合一元一次方程的定义.故③正确;④x﹣4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x ﹣6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(2021秋•印江县期末)若关于x的方程(m﹣2)x值是() A.±3 B.3C.﹣3 D.都不对【分析】根据一元一次方程的定义列出方程求解即可.+3=0是一元一次方程,则m的【解答】解:∵方程(m﹣2)x+3=0是一元一次方程,∴|m|﹣2=1,且m﹣2≠0,解得m=±3,故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.3.(2021秋•海安县期末)已知x=﹣2是方程5x+12=﹣a的解,则a+a﹣6的值为()A.0 B.6 C.﹣6 D.﹣18【分析】此题可先把x=﹣2代入方程然后求出a的值,再把a的值代入a+a﹣6求解即可.【解答】解:将x=﹣2代入方程5x+12=﹣a 得:﹣10+12=﹣1﹣a;解得:a=﹣3;2∴a+a﹣6=0.【点评】此题考查的是一元一次方程的解,先将x的值代入方程求出a的值,再将a的值代入a+a﹣6即可解出此题.4.(2021秋•黄冈校级期中)若等式x=y可以变形为A.a>0 B.a<0C.a≠0 D.a为任意有理数【分析】根据等式的两边都乘或都除以同一个不为0的整式,结果不变,可得答案【解答】解:x=y,a≠0,【点评】本题考查了等式的性质,注意等式的两边都乘或都除以同一个不为0的整式,结果不变. 5.(2021秋•枣庄校级月考)下列等式变形正确的是() A.如果s=ab,那么b= B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0 D.如果mx=my,那么x=y【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【解答】解:A、如果s=ab,那么b=,当a=0时不成立,故A错误, B、如果2x=6,那么x=3,故B错误,C、如果x﹣3=y﹣3,那么x﹣y=0,故正确,D、如果mx=my,那么x=y,如果m=0,式子不成立,故D错误.故选C.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立; 2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.(2021秋•闽清县校级月考)方程去分母得()A.3(2x+3)﹣x=2(9x﹣5)+6 B.3(2x+3)﹣6x=2(9x﹣5)+1 C.3(2x+3)﹣x=2(9x﹣5)+1 D.3(2x+3)﹣6x=2(9x﹣5)+6【分析】利用等式的性质乘以分母的最小公倍数,注意x和1不要漏乘,就可以得到去分母的式子.【解答】解:方程的两边都乘以6可得: 3(2x+3)﹣6x=2(9x﹣5)+6.故选D.【点评】本题考查一元一次方程去分母的知识,去分母乘以分母各项的最小公倍数,关键不要漏乘.7.(2021秋•龙亭区校级期中)某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.则方程为() A.C.【分析】关系式为:甲4天的工作量+甲乙合作(x﹣40)天的工作量=1,把相关数值代入即可求解.【解答】解:甲4天的工作量为:甲乙合作其余天数的工作量为:∴可列方程为:【点评】找到工作量之间的等量关系解决本题的关键;易错点是得到甲乙合作的工作时间.二.填空题(共13小题) 8.(2021秋•昆明校级期末)某市为鼓励市民节约用水,做出如下规定:小明家9月份缴水,然后设实际用水量为xm,根据10m以上每增加 1m,收费1.00元,可得出方程,解出即可.【解答】解:由题意得,10m以下,收费不超过5元,则小明家9月份用水量超过10m,设实际用水量为xm,则5+(x﹣10)×1=20,解得:x=25.答:他家9月份的实际用水量是25m.故答案为:25.【点评】本题考查了一元一次方程的应用,属于基础题,解答本题需要先判断出实际用水量超过10m,然后结合方程思想求解.9.(2021秋•东湖区期末)已知(|m|﹣1)x﹣(m+1)x+8=0是关于x的一元一次方程,则m= 1 .【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程.【解答】解:由一元一次方程的特点得解得m=1.故填1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(2021春•达州校级期中)已知(a﹣3)x+6=0是关于x的一元一次方程,则方程的解为 x=1 .【分析】此题的关键是根据一元一次方程的定义确定a的值,所以|a|﹣2=1并且a﹣3≠0,确定a的值后代入原方程即可求得方程x的解,看似一个方程其实是方程里面另有一个方程.【解答】解:由一元一次方程的特点得:|a|﹣2=1 ∴|a|=3,∴a=3或﹣3,又a﹣3≠0,∴a≠3,∴a=﹣3,代入原方程得:﹣6x+6=0,解得x=1.故填:x=1.【点评】本题的考点是一元一次方程的定义及其解法,只要能深刻理解一元一次方程的定义就能使问题变得简单. 11.(2021秋•景洪市期末)若x=﹣2是方程mx﹣6=15+m的解,则m=【分析】根据一元一次方程的解的定义,把方程的解代入方程,就得到一个关于m的方程,求出方程的解即可.【解答】解:∵x=﹣2是方程mx﹣6=15+m的解,把x=﹣2代入方程得:﹣2m﹣6=15+m,解方程得:m=﹣7,故答案为:﹣7.【点评】vebt考查了对解一元一次方程,一元一次方程的解的理解和掌握,关键是检查学生①理解一元一次方程的解的定义,②根据定义得出一个关于m的方程.题目比较典型,培养了学生分析问题和解决问题的能力.12.(2021秋•房县期末)当x=【分析】本题比较简单,根据题意易知【解答】解:根据题意列方程得,=﹣3解此方程即可.去分母得:2(x﹣1)=6x+3﹣18,去括号得:2x﹣2=6x+3﹣18,移项得:2x﹣6x=3﹣18+2,合并同类项得:﹣4x=﹣13,系数化为1得:x=【点评】本题列出方程不难,但是解方程要仔细.13.(2021秋•黄冈期末)如果代数式7x﹣3与互为倒数,则x的值等于【分析】根据倒数的定义列出方程然后求解.【解答】解:根据题意得:(7x﹣3)×=1,去分母、去括号得:7x﹣3=3,移项、合并同类项得:7x=3+3,系数化为1得:x=.故填.【点评】本题的关键在于根据题意列出等式,有一定的难度,同学们要注意读准题意. 14.(2021秋•南浔区校级期中)如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为 63【分析】把x=﹣2代入x﹣1,求出结果,再把结果代入x﹣1,求出,直到结果大于50,即是输出结果.【解答】解:当x=﹣2时,x﹣1=(﹣2)﹣1=3,当x=3时,x﹣1=8,当x=8时,x﹣1=8﹣1=63>50,故答案为:63.【点评】本题考查了代数式求值的应用,解此题的关键是理解题意,题型较好,难度不大,主要培养学生的理解能力和计算能力. 15.(2021秋•泗洪县期中)x表示一个两位数,y表示一个三位数,如果将x放在y的左边,则得到一个五位数是 1000x+y .【分析】了解一个数的数位表示的意义,根据题意知,把一个两位数x放在一个三位数y的左边,相当于x扩大了1000倍.故五位数可表示为1000x+y.【解答】解:这个五位数为1000x+y.【点评】能够熟练正确运用字母表示一个数.解题的关键是要知道:把一个两位数x 放在一个三位数y的左边,相当于x扩大了1000倍. 16.(2021春•金台区期中)甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,【分析】本题首先依据题意找出等量关系即工作总量为1,列出方程并解答.【解答】解:依题意可知甲的工作效率为÷3=,设这项工作共需x天,,乙的工作效率为解得:x=9,∴完成这项工作共需9天.【点评】本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程④作答. 17.(2021•河东区一模)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为42元,则标价为 56元.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是x元,根据题意则有:0.9x=42(1+20%),解可得:x=56.故答案为:56元.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答. 18.(2021春•青浦区期末)一家商店将某种衣服按成本价加价40%作为标价,又以8折卖出,结果每件服装仍可获利15元,如设这种服装每件的成本价为x 元,则根据题意可列方程为(1+40%)x×80%﹣x=15 .【分析】根据题意知,标价是以成本价为单位“1”的,所以用(1+40%)x表示,以8折卖出时是以标价为单位“1”的,所以在标价的基础上乘80%,然后减去成本价就是利润,由此可以进行列式.【解答】解:由题意知,标价是以成本价为单位“1”的,所以用(1+40%)x表示,以8折卖出时是以标价为单位“1”的,所以在标价的基础上乘80%,然后减去成本价就是利润15元,所以列式为:(1+40%)x×80%﹣x=15,故答案为:(1+40%)x×80%﹣x=15.【点评】本题考查了一元一次方程的应用,此题的关键是两次单位“1”的确定,先以成本价为单位“1”标价,再以标价为单位“1”进行打折. 19.(2021春•湖北校级期末)一队民工参加工地挖土及运土,平均每人每天挖土5方或运土3方,如果安排24人来挖土及运土,那么要安排 15 人运土,才能恰好使挖出的土及时运走.【分析】通过理解题意可知本题的等量关系:挖出的土=运走的土.根据这个等量关系,可列出方程组,再求解.【解答】解:设安排x人运土,则有(24﹣x)人挖土.根据题意得:5(24﹣x)=3x,解得:x=15.故填15.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答. 20.(2021•芜湖)某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受450元的商品,他获得的优惠额为 120 元.【分析】此题等量关系:优惠额=标价×(1﹣折数)+奖券的金额.【解答】解:胡老师获得的优惠额为450×(1﹣80%)+30=120元,故填“120”.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.三.解答题(共8小题) 21.(2021秋•营山县校级期中)解下列一元一次方程(1)﹣3x+7=4x+21;(2)(3)9y﹣2(﹣y+4)=3;(4)【分析】首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.【解答】解:(1)移项得:﹣3x﹣4x=21﹣7,合并得:﹣7x=14,系数化为1得:x=﹣2;(2)去分母得:2(x+4)﹣10=5(x﹣2)+10x,去括号得:2x+8﹣10=5x﹣10+10x,移项得:2x﹣15x=﹣8,系数化为1得:x=(3)去括号得:9y+2y﹣8=3,移项合并得:11y=11,系数化为1得:y=1;(4)方程可变形为去分母得:9(30x﹣15)﹣2(20x﹣10)=18(4﹣8x)整理得:270x﹣135﹣40x+20=72﹣144x移项合并得:374x=187系数化为1得:x=.【点评】熟悉解一元一次方程的步骤,尤其是第四小题注意首先对各个分式进行化简整理,小数化为整数,在进行解方程的步骤:去分母.22.(2021秋•江西校级期末)已知x=3是方程式|2n+m|=1,求m+n的值.【分析】把x=3代入方程|2n+m|=1,求出n的值,进而求出m+n的值.【解答】解:把x=3代入方程得:3(2+)=2,解得:m=﹣.把m=﹣代入|2n+m|=1,得:|2n﹣|=1得:①2n﹣=1,②2n﹣=﹣1.解①得,n=,,,求出m的值,把m的值代入关系式的解,n满足关系解②得,n=.∴(1)当m=﹣,n=(2)当m=﹣,n=时,m+n=﹣.时,【点评】本题求m、n的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.23.(2021秋•鞍山期末)已知|a﹣3|+(b+1)=0,代数式多1,求m的值. 2的值比的值【分析】先根据|a﹣3|+(b+1)=0求出a,b的值,再根据代数式的值多1列出方程=22的值比+1,把a,b的值代入解出x的值.【解答】解:∵|a﹣3|≥0,(b+1)≥0,2且|a﹣3|+(b+1)=0,∴a﹣3=0且b+1=0,解得:a=3,b=﹣1.由题意得:解得:m=0,∴m的值为0.【点评】考查了非负数的和为0,则非负数都为0.要掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为.注意移项要变号.24.(2021秋•克拉玛依区校级期末)一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.【分析】应先设出飞机在无风时的速度为x,从而可知在顺风时的速度为飞机在无风中的速度加上风速,飞机在逆风中的速度等于飞机在无风中的速度减去风速,又已知了顺风飞行和逆风飞行所用的时间,再根据路程相等,列出等式,求解即可.【解答】解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3 ,,解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.【点评】此题主要考查一元一次方程的实际运用,关键在于根据飞机在顺风时的速度为风速加上在无风中的速度,飞机在逆风中的速度等于在无风中的速度减去风速,列出等式.25.(2021秋•新洲区期中)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家5月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)【分析】(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a>10时,分别进行计算即可.【解答】解:(1)10×2+(16﹣10)×2.5=35(元),答:应交水费35元;(2)设黄老师家5月份用水x吨,由题意得10×2+2.5×(x﹣10)=30,解得x=14,答:黄老师家5月份用水14吨;(3)①当0<a≤10时,应交水费为2a(元),②当a>10时,应交水费为:20+2.5(a﹣10)=2.5a﹣5(元).【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,分清楚如何计算水费.26.(2021秋•建平县期末)A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?【分析】(1)如果两人同时出发相向而行,那么是相遇问题,设两人同时出发相向而行,需经过x小时两人相遇,即x小时他们共同走完64千米,由此可以列出方程解决问题;(2)此小题有两种情况:①还没有相遇他们相距16千米;②已经相遇他们相距16千米.但都可以利用相遇问题解决;(3)若甲在前,乙在后,两人同时同向而行,此时是追及问题,设z小时后乙超过甲10千米,那么z小时甲走了14z千米,乙走了18z千米,然后利用已知条件即可列出方程解决问题.【解答】解:(1)设两人同时出发相向而行,需经过x小时两人相遇,根据题意得:14x+18x=64,解方程得:x=2(小时).答:两人同时出发相向而行,需经过2小时两人相遇;(2)设两人同时出发相向而行,需y小时两人相距16千米,①当两人没有相遇他们相距16千米,根据题意得:14y+18y+16=64,解方程得:y=1.5(小时);②当两人已经相遇他们相距16千米,依题意得14y+18y=64+16,∴y=2.5(小时).答:若两人同时出发相向而行,则需1.5或2.5小时两人相距16千米;(3)设甲在前,乙在后,两人同时同向而行,则z小时后乙超过甲10千米,根据题意得:18z=14z+64+10,解方程得:z=18.5(小时).答:若甲在前,乙在后,两人同时同向而行,则18.5小时后乙超过甲10千米.【点评】此题是一个比较复杂行程问题,既有相遇问题,也有追及问题.解题的关键是读懂题意,正确把握已知条件,才能准确列出方程解决问题.27.一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了93分,你认为哪个同学说得对?请说明理由.【分析】设甲做对了x道,则答错(25﹣x)道,根据得分为71分列方程求解即可判断,同理可对乙、丙两同学的答题情况作出判断.【解答】解:设甲做对了x道,则答错(25﹣x)道.根据题意得:4x﹣(25﹣x)=71.解得:x=19.2.∵x不是整数,∴甲同学说的错误.设乙做对了y道,则答错(25﹣y)道.根据题意得:4y﹣(25﹣y)=62.解得:y=17.4.∵y不是整数,∴乙同学说的错误.设丙做对了z道,则答错(25﹣z)道.根据题意得:4z﹣(25﹣z)=93.解得:z=23.6.∵z不是整数,∴丙同学说的错误.所以三个人的说法全部错误.【点评】本题主要考查的是一元一次方程的应用,根据每个同学的得分列出方程是解题的关键.28.(2021春•孝义市月考)某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?【分析】等量关系为:镜片数量=2×镜架数量,把相关数值代入即可求解.【解答】解:设x人生产镜片,则(60﹣x)人生产镜架.由题意得:200x=2×50×(60﹣x),解得x=20,∴60﹣x=40.答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套.【点评】解决本题的关键是得到镜片数量和镜架数量的等量关系.。
【精选】七年级一元一次方程易错题(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。
【答案】(1)解:根据约定的方法可得:m=x+2x=3x;n=2x+3;(2)解:x+2x+2x+3=m+n=y当y=-7时,5x+3=-7解得x=-2.∴n=2x+3=-4+3=-1【解析】【分析】(1)根据约定:上方相邻两数之和等于这两数下方箭头共同指向的数,分别列式即可;(2)根据约定可得m+n=y,代入上题的关系整理可得关于x的一元一次方程,解出x, 代入n的表达式求值即可.2.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.3.阅读下列例题,并按要求回答问题:例:解方程.解:①当时,,解得;②当时,,解得.所以原方程的解是或.(1)以上解方程的方法采用的数学思想是________.(2)请你模仿上面例题的解法,解方程:.【答案】(1)分类讨论(2)解:①当时,,解得,②当时,,解得,∴原方程的解是或.【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.4.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x的方程是“中点方程”,求代数式的值.【答案】(1)解:没有符合要求的“奇异方程”,理由如下:把代入原方程解得:x= ,若为“中点方程”,则x= ,∵≠ ,∴不符合“中点方程”定义,故不存在(2)解:∵,∴(2a-b)x+b=0.∵关于x的方程是“中点方程”,∴x= =a.把x=a代入原方程得:,∴ =【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可.5.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。
新初中数学方程与不等式之一元一次方程易错题汇编含答案(1)
新初中数学方程与不等式之一元一次方程易错题汇编含答案(1) 一、选择题1.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.2.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.3.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.设边长为80cm 的正方形地砖的造价为x 元,∵两种地砖每平方厘米的造价相同, ∴9060608080x =⨯⨯, 解得:x=160,故选:B .【点睛】 本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.4.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.7.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程; ③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.8.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8-【答案】D【解析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -= 解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【分析】【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.12.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.13.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣7 【答案】D【解析】【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-,故选:D.【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键14.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里【答案】C【解析】【分析】【详解】 试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里.故选C15.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--【答案】B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确;C. 由104x =,得x=0,故错误;D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.16.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( )A .3B .1C .1-D .3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++= B .202014530x -+= C .202013045x -+= D .202014530x ++= 【答案】B【解析】【分析】根据题意列出符合题意的方程即可.【详解】根据题意可得 202014530x -+= 故答案为:B .【点睛】本题考查了一元一次方程的工程问题,掌握解一元一次方程的方法是解题的关键.18.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为( )某市居民用水阶梯水价表A .250m 3B .270m 3C .290m 3D .310m 3【答案】C【解析】【分析】利用表格中数据得出水费超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【详解】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,则该同学家的用水量包括第三阶梯水价费用,依题意得:180×5+80×7+(x−260)×9=1730,解得x=290.故选C.【点睛】本题考查了一元一次方程的应用.19.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于()A.10分 B.15分 C.20分 D.30分【答案】C【解析】解:根据题意列方程得:260t+800=300t,解得:t=20,故选C.点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.20.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为()A.27元B.27.8元C.28元D.28.4元【答案】C【解析】【分析】设该商品的标价是x元,根据按标价的九折出售,仍可获利20%列方程求解即可.【详解】解:设该商品的标价是x元,由题意得:0.9x-21=21×20%,解得:x=28,即该商品的标价为28元,故选:C.【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.。
一元一次方程易错题(Word版 含答案)
1.某旅行社组织一批游客外出旅游,原计划根用 45 座客车若干辆,但有 15 人没有座 位:若租用同样数量的 60 座客年,则多出一辆车无人坐,且其余客车恰好坐满。已知 45 座客车租金为每辆 220 元,60 座客车租金为每辆 300 元,问: (1)这批游客的人数是多少?原计划租用多少辆 45 座客车? (2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算? 【答案】 (1)解:设原计划租用 x 辆 45 座客年 根据题意,得 45x+15=60(x-1) 解得 x=5 则 45x+15=45×5+15=240. 答:这批游客共 240 人,原计划租 5 辆 45 座客车。
由已知得 15x+35(100-x)=2700 解得 x=40
答:购进甲商品 ,购进乙商品(100-x)件。 利润 W=5x+10(100-x) 根据题意可得 5x+10(100-x)≤760 和 x≤50; 解得 48≤x≤50, ∴ 进货方案有三种 ①甲 48 件,乙 52 件, ②甲 49 件,乙 51 件 ③甲 50 件,乙 50 件
(2)解:由(1)知,需租 5 辆 45 座客车或 4 辆 60 座客车; 而租 5 辆 45 座客车的费用为 5×5000=25000(元), 租 4 辆 60 座客车的费用为 4×6000=24000(元). 故,租 4 辆 60 座客车更合算 【解析】【分析】(1)设需单独租 45 座客车 x 辆,根据单独租用 45 座客车若干辆,刚好 坐满;如果单独租用 60 座客车,可少租 1 辆,且余 15 个座位列出方程解出答案即可; (2)根据(1)知,需租 5 辆 45 座客车或 4 辆 60 座客车和租用 45 座客车的租金为每辆
一元一次方程易错题集
第5章《一元一次方程》易错题集(01):5.1 一元一次方程选择题1.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1 C.,a﹣1 D.a,2.下列说法中,正确的个数是()①若mx=my,则mx﹣my=0;②若mx=my,则x=y;③若mx=my,则mx+my=2my;④若x=y,则mx=my.A.1 B.2 C.3 D.43.已知x=y,则下面变形不一定成立的是()A.x+a=y+a B.x﹣a=y﹣a C.D.2x=2y4.等式的下列变形属于等式性质2的变形为()A.B.C.2(3x+1)﹣6=3x D.2(3x+1)﹣x=25.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=26.如果关于x的方程是一元一次方程,则m的值为()A.B.3 C.﹣3 D.不存在7.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3408.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④9.某电视机厂10月份产量为10万台,以后每月增长率为5%,那么到年底能再生产()万台.A.10(1+5%) B.10(1+5%)2C.10(1+5%)3D.10(1+5%)+10(1+5%)210.一个数x,减去3得6,列出方程是()A.3﹣x=6 B.x+6=3 C.x+3=6 D.x﹣3=611.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.则方程为()A.B.C.D.12.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,又后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为()A.B.C.2π(80+10)×8=2π(80+x)×10D.2π(80﹣x)×10=2π(80+x)×813.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44 B.4x+2(14﹣x)=44 C.4x+2(x﹣14)=44 D.2x+4(x﹣14)=4414.把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成5块,如此下去,至剪完某一次后,共得纸片总数N可能是()A.1990 B.1991 C.1992 D.199315.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少设定价为x,则下列方程中正确的是()A.x﹣20=x+25 B.x+20=x+25C.x﹣25=x+20 D.x+25=x﹣2016.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A. B.C.D.17.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x人,其中列方程不正确的是()A.200x+50(22﹣x)=1400 B.1400﹣200x=50(22﹣x)C.=22﹣x D.50x+200(22﹣x)=1400填空题18.若2x3﹣2k+2k=41是关于x的一元一次方程,则x=.19.已知3x|n﹣1|+5=0为一元一次方程,则n=.20.下列方程中,一元一次方程的个数是个.(1)2x=x﹣(1﹣x);(2)x2﹣x+=x2+1;(3)3y=x+;(4)=2;(5)3x﹣=2.21.小聪用正方形在2007年某月的日历上任意框出3×3个数,经计算得知这9个数的和为162,你猜这9个数中,左下角的那个数是.第5章《一元一次方程》易错题集(01):5.1 一元一次方程参考答案选择题1.D;2.C;3.C;4.C;5.A;6.B;7.A;8.D;9.D;10.D;11.D;12.A;13.A;14.D;15.D;16.C;17.D;填空题18.;19.2或0;20.2;21.24;。
七年级数学上册 一元一次方程易错题(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.3.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.4.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.5.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需________元,一次性购买12根跳绳需________元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.【答案】(1)150;240(2)解:设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得: x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【解析】【解答】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.6.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.7.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x的方程是“中点方程”,求代数式的值.【答案】(1)解:没有符合要求的“奇异方程”,理由如下:把代入原方程解得:x= ,若为“中点方程”,则x= ,∵≠ ,∴不符合“中点方程”定义,故不存在(2)解:∵,∴(2a-b)x+b=0.∵关于x的方程是“中点方程”,∴x= =a.把x=a代入原方程得:,∴ =【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可.8.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.9.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.10.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【答案】(1)解:∵经过t秒点P和点O相遇,∴有,解得,∴,∴点P和点Q相遇时的位置所对应的数为(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,①若点P和点Q在相遇前相距1个单位长度,则,解得:,②若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:,综合上述,当P出发秒或秒时,P和点Q相距1个单位长度(3)解:若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为P点,所表示的数为;若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为Q点,所表示的数为 .【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。
一元一次方程易错题(5)
1,m 为何值时,关于x 的方程4x −2m=3x −1的解是x=2x −3m 的解的2倍。
2,某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩 3,某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的路灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有___盏。
4,轮船在顺水中的速度为80 千米/ 时,在逆水中的速度为60 千米 /时,则水流的速度为_________千米/ 时.5,某项工作甲单独做4天完成,乙单独做6天完成,若甲先干2天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为___,由此可列出方程___.(0.52+0.05)+(400−350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?(3)小华家某月用电m 度,需缴纳电费多少元?7,某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?8,某超市推出如下优惠方案:(1)一次购物不超过100元不享受优惠;(2)一次购物超过100元、但不超过300元一律9折;(3)一次购物超过300元一律八折。
王波两次购物分别付款80元,252元,如果王波一次性购买与上两次相同的商品。
则应付款多少元?9,若方程x−13=x−62的解也是关于x 的方程|5x-b|=10的解,求b 的值10,当弟弟长到哥哥现在的年龄时,哥哥是39岁;当哥哥是弟弟现在年龄时,弟弟是27岁,问哥哥,弟弟现在各多少岁?11,解方程:20%+(1−20%)(320−x)=320×40%12,方程2-3x-3=0的解与关于x 的方程k+x 2-3k-2=2x 的解互为倒数,求k 的值. 13,某同学在解方程2x−13=x+a3−2去分母时,方程右边的(−2)没有乘3,因而求得的解为x=2,请你求出a 的值,并正确地解方程。
(word完整版)初一数学一元一次方程易错题训练
初一数学一元一次方程易错题训练一.选择题(共12小题)1. (2015秋?历下区期末)若关于x 的方程mx m 「2-m+3=0是一元一次方程, 则这个方程的解是( )A . x=0B . x=3C . x= - 3 D. x=22. (2015秋?鞍山期末)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车, 若每辆客车乘43人,则只有1人不能上车,有下列四个等式: ①40m+10=43m - 1;②史以LjltL ③2_10二 ,④40m+10=43m+1 ,其中正确的是()40 434043A.①②B.②④C.②③D.③④3. (2014秋?天津期末)某种手机卡的市话费上次已按原收费标准降低了 b 元/分钟,现在又下调20%,使收费标准为a 元/分钟,那么原收费标准为( )(2014秋?麻城市校级期中)若方程2ax- 3=5x+b无解,则a, b 应满足( ) A.5. (2011春?海口期中)如图,天平中的物体 a 、b 、c 使天平处于平衡状态,则物体体c 的重量关系是()A 1 A 1A . 2a=3cB . 4a=9c C. a=2c D . a=c6. (2010秋?宜春期末)设x 表示两位数,y 表示三位数,如果把 x 放在y 的左边组成一个 五位数,可表示为()A . xyB . 1000x+yC . x+yD . 100x+y7. (2010春?黄浦区校级期末) 若当x=1时,多项式a+bx+cx 2+dx 3+ex 4+仅5的值是32,且当 x= - 1该多项式值为0,则a+c+e 的值是( ) A. 8 B. 16 C. 32 D.无法确定8. (2004?枣庄)某块手表每小时比准确时间慢 3分钟,若在清晨4点30分与准确时间对准, 则当天上午该手表指示时间为 10点50分时,准确时间应该是( ) A. 11点10分B. 11点9分C. 11点8分 D. 11点7分9,若 M=3x 2 - 5x+2 , N=3x 2- 4x+2 ,贝U M , N 的大小关系( ) A. M >N B , M=N C . MvN D ,以上都有可能10 .把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成 5块,如此下去,至剪完 某一次后,共得纸片总数 N 可能是( ) A. 1990 B. 1991 C. 1992 D, 199311 .甲、乙两个绿化小组负责在一条东西走向的公路两边种树, 由于两边所种树的数目相同, 商定各种一边.开始时,甲小组先来到公路的北边种树,当他们种完 30棵树时,乙小组来A.■^-a+b B ya+t C 号祟 一匕 4. a 与物,b=- 3 D.,bw — 3了,乙小组对甲小组说你们负责南边,到北边来干吗?”甲小组无奈,只好到南边去种树,乙小组不久就种完了北边的树,看到甲小组还没有种完,于是就到南边去帮助他们,当乙小组在南边种完60棵树时,南边的树也种完了,请你说出乙小组比甲小组多种的棵数是()A. 30B. 60C. 90D. 12012.某商品连续两次提价10%,又提价5%,要恢复原价至少应降价x% (x为整数),则x= ()A. 120B. 21C. 22D. 23二.填空题(共10小题)13.(2014秋?忠县校级月考)关于x的方程x n+1- (2n-3) =0是一元一次方程,则这个方程的解是.14.(2013秋?崇明县校级期末)已知x2+4x - 2=0,那么3x2+12x+2010的值为.15.(2013秋?松滋市校级期末)如果代数式4y2-2y+5的值为9,那么代数式2y2-y+1的值等于.16.(2011秋南阳县校级期末)已知代数式ax3+bx,当x=-1时,代数式的值为5;则当x=1 时,ax3+bx 的值是.17.(2011秋?凤县期末)已知x, y为有理数,现规定一种新的运算 *,满足x*y=xy+1 ,则(1*4) * (-2) =.18.(2009春?达州校级期中)已知(a-3) x|a| 2+6=0是关于x的一元一次方程,则方程的解为.之一b19.(2009春?青羊区期末)对于任意非零实数a, b,定义运算会”如下:a☆b=—,则£扯2^ 1+3 ☆ 2+4^ 3+ • • +2010☆ 2009 的值为.20.王师傅买了一辆新型轿车,油箱的容积为50升,十一”期间王师傅载着全家人到距北京1300公里的某旅游景点去旅游,出发前加满油,汽车每行驶100公里耗油8升,且为了保险起见,油箱里至少应存油6升,则在途中至少需加油次.21.已知:+4(7^-工)二那么代数式震)的值为.22.若方程ax2 - 2x+ax=5是关于x的一元一次方程,则a=.三.解答题(共4小题)23.(2015秋?揭阳期末)A、B两列火车长分别是120m和144m, A车比B车每秒多行5m. (1)两列相向行驶,从相遇到两车全部错开需8秒,问两车的速度各是多少?(2)在(1)的条件下,若同向行驶,A车的车头从B车的车尾追及到A车全部超出B车, 需要多少秒?24.(2015秋?北京校级期中)已知:有理数a、b、c满足abc<0,且a+b+c>0,当▲时,求代数式x19- 95x+1028的值."a b c25.(2015秋?营山县校级期中)解下列一元一次方程(1)- 3x+7=4x+21 ; 戈+4 K-2⑵岁-1=^^+x;5 L(3)9y-2 (- y+4) =3;融-L 5 - 1 2-4x1(4)-------- ------- = ----- .0. 2 0.9 0.5吨的部分,按 2 元/吨收费;超过 10 吨的部分按 2.5 元/吨收费. 5 月份用水 16 吨,问应交水费多少元? 6月份交水费 30 元,问黄老师家 5 月份用水多少吨?7 月用水 a 吨,问应交水费多少元?(用 a 的代数式表示26. ( 2014 秋 ?新洲区期中某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过 10/ :~4y. r [TTt有黄老师豕 有黄老师豕/ : -F^. ~4y. r [TTt有黄老师豕初一数学一元一次方程易错题训练参考答案与试题解析一.选择题(共12小题)1. (2015秋?历下区期末)若关于x 的方程mx m 「2-m+3=0是一元一次方程, 则这个方程的 解是()A . x=0B . x=3C . x= - 3 D. x=2【分析】只含有一个未知数(元),并且未知数的指数是 1 (次)的方程叫做一元一次方程,它的一般形式是 ax+b=0 (a, b 是常数且a 为),高于一次的项系数是 0.2. (2015秋?鞍山期末)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车, 若每辆客车乘43人,则只有1人不能上车,有下列四个等式: ①40m+10=43m - 1;②史坦声L ③三工二!④40m+10=43m+1 ,其中正确的是()40 43 40 43A.①②B.②④C.②③D.③④【分析】首先要理解清楚题意, 知道总的客车数量及总的人数不变, 然后采用排除法进行分析从而得到正确答案.3. (2014秋?天津期末)某种手机卡的市话费上次已按原收费标准降低了下调20%,使收费标准为a 元/分钟,那么原收费标准为()A. 上4■相.等+bC 孕+bD. 孕-h4 3 4 4【分析】 本题考查变化率的问题,可找出变化关系,列出方程求解.4. (2014秋?麻城市校级期中)若方程 2ax- 3=5x+b 无解,则a, b 应满足( )A . a 走,b 与 B. a=^-, b= - 3 C.2 2【分析】要理解什么情况下才是无解, 如果b+3=0 ,就是有无数解了.5. (2011春?海口期中)如图,天平中的物体 a 、b 、c 使天平处于平衡状态,则物体 a 与物体c 的重量关系是()A . 2a=3cB . 4a=9c C. a=2c D . a=c【分析】 根据图形得出2a=3b, 2b=3c,根据等式性质得出 4a=6b, 6b=9c,推出4a=6b=9c, 即可求出答案.A . xyB . 1000x+yC . x+yD . 100x+yb 元/分钟,现在又b+3 4;6. (2010秋?宜春期末)设x 表示两位数, 五位数,可表示为( )y 表示三位数,如果把 x 放在y 的左边组成一个原方程可化简为x= 3时,必须2a - 5=0 , 2a -5【分析】根据数的各个数位所表示的意义,x 表示两位数,y 表示三位数,如果把x 放在y 的左边组成一个五位数,则x 扩大了1000 倍,y 不变.7.(2010 春?黄浦区校级期末)若当x=1 时,多项式a+bx+cx 2+dx3+ex4+fx 5的值是32,且当x= - 1该多项式值为0,则a+c+e的值是()A.8 B.16 C.32 D .无法确定【分析】根题意分别把x=1、x=-1代入得出方程组,①+②即可求出2a+2c+2e的值,两边都除以2 即可求出答案.8.(2004?枣庄)某块手表每小时比准确时间慢3分钟,若在清晨4点30 分与准确时间对准,则当天上午该手表指示时间为10 点50 分时,准确时间应该是()A.11 点10分B.11 点9分C.11点8分D.11点7分【分析】根据题意假设该手表从 4 时30 分走到10 时50 分所用的实际时间为x 小时,该手表的速度为57 分/小时,再进行计算.9.若M=3x 2 - 5x+2 , N=3x2—4x+2,贝U M , N 的大小关系()A. M >NB. M=NC. MvND.以上都有可能【分析】若比较M , N的大小关系,只需计算M - N的值即可.10.把一张纸剪成5 块,从所得的纸片中取出若干块,每块又剪成 5 块,如此下去,至剪完某一次后,共得纸片总数N 可能是()A.1990 B.1991 C.1992 D.1993【分析】根据剪纸的规律,每一次都是在 5 的基础上多了4 张,则剪了n 次时,每次取出的纸片数分别为xi, x2, x3,…,xn块,最后共得纸片总数N,根据数的整除性这一规律可得出答案.11.甲、乙两个绿化小组负责在一条东西走向的公路两边种树,由于两边所种树的数目相同,商定各种一边.开始时,甲小组先来到公路的北边种树,当他们种完30 棵树时,乙小组来了,乙小组对甲小组说“你们负责南边,到北边来干吗?” 甲小组无奈,只好到南边去种树,乙小组不久就种完了北边的树,看到甲小组还没有种完,于是就到南边去帮助他们,当乙小组在南边种完60 棵树时,南边的树也种完了,请你说出乙小组比甲小组多种的棵数是()A.30 B.60 C.90 D.120【分析】本题可设公路两边各有x 棵树,根据题意分别列出甲乙两个小组分别种的树的棵树,然后计算得出结果.12.某商品连续两次提价10%,又提价5% ,要恢复原价至少应降价x% (x 为整数),则x=()A.120 B.21 C.22 D.23【分析】可设原价为1,应先得到第三次提价后的价格,关系式为:第三次提价后的价格X (1 - x%) =1 ,把相关数值代入求解即可.二.填空题(共10 小题)13.(2014秋?忠县校级月考)关于x的方程x n+1- (2n-3) =0是一元一次方程,则这个方程的解是x= - 3 .【分析】根据一元一次方程的定义,可得x的指数为1,可得n的值,根据n的值,可得一元一次方程,根据解一元一次方程,可得答案.14.(2013秋?崇明县校级期末)已知x2+4x - 2=0,那么3x2+12x+2010的值为2016 .【分析】利用整体思想,求出x2+4x=2,代入即可求得.15.(2013秋?松滋市校级期末)如果代数式4y1 2-2y+5的值为9,那么代数式2y2-y+1的值等于8 .【分析】由4y2- 2y+5的值为9可求得4y2 - 2y=4,所以2y2 - y=2,代入所求代数式即可求得.16.(2011秋南阳县校级期末)已知代数式ax3+bx,当x=-1时,代数式的值为5;则当x=1 时,ax3+bx 的值是-5 .【分析】先将-1代入求出-a- b,然后当x=1时,可将x=1代入化简得出结果.17.(2011秋?凤县期末)已知x, y为有理数,现规定一种新的运算*,满足x*y=xy+1 ,则(1*4) * ( - 2) = - 9 .【分析】根据规定的运算,直接代值计算.18.(2009春?达州校级期中)已知(a-3) x|a|2+6=0是关于x的一元一次方程,则方程的解为x=1 .【分析】此题的关键是根据一元一次方程的定义确定a的值,所以|a|- 2=1并且a-3^0,确定a的值后代入原方程即可求得方程x的解,看似一个方程其实是方程里面另有一个方程.a - b19.(2009春?青羊区期末)对于任意非零实数a, b,定义运算会”如下:a☆b=-,则上很onriq2^ 1+3☆ 2+4^3+ • • +2010☆ 2009 的值为4020【分析】本题先将新定义的式子分解,然后前后项抵消可求得答案.20.王师傅买了一辆新型轿车,油箱的容积为50升,十一”期间王师傅载着全家人到距北京1300公里的某旅游景点去旅游,出发前加满油,汽车每行驶100公里耗油8升,且为了保险起见,油箱里至少应存油6升,则在途中至少需加油2次.【分析】根据题意得一箱油加油前可最多消耗50- 6=44升,此油可行驶空>44=550公里,O根据总路程1300公里,即可得加油次数.20001 113 121.已知上+4(总于那么代数式1&T2+48■[就壬-)的值为y. 1 y y y y 口y y Tit22. 若方程ax 2- 2x+ax=5是关于x 的一元一次方程,则 a=0.【分析】含有一个未知数(元),并且未知数的指数是 1 (次)的方程叫做一元一次方程. 三.解答题(共4小题)23. (2015秋?揭阳期末)A 、B 两列火车长分别是 120m 和144m, A 车比B 车每秒多行5m. (1)两列相向行驶,从相遇到两车全部错开需8秒,问两车的速度各是多少?(2)在(1)的条件下,若同向行驶, A 车的车头从B 车的车尾追及到 A 车全部超出B 车, 需要多少秒?【分析】(1)设B 车的速度为xm/s,则A 车的速度为(x+5) m/s,根据 两列车相向行驶, 从相遇到全部错开需 8秒”列出方程,求出方程的解即可;(2)设A 、B 两车同向行驶,A 车的车头从B 车的车尾追及到 A 车全部超出B 车,需要t 秒,根据此时甲车比乙车多行驶(120+144) m 列出方程,求出方程的解即可.24. (2015秋?北京校级期中)已知:有理数 a 、b 、c 满足abc<0,且a+b+c>0,当工」时,求代数式 x 19- 95x+1028的值. a b e【分析】根据已知得出其中一个为负数,其余两个为正数,分为三种情况:①当a<0时,b>0, c> 0,② 当b<0时,a> 0, c>0,③ 当cv 0时,a>0, b>0,求出x 的值,代入 求出即可. 25. (2015秋?营山县校级期中)解下列一元一次方程 (1) - 3x+7=4x+21 ; (2)1=-__-+x;S 2 |(3) 9y-2 (- y+4) =3;/、3K - 1.5- 1 2 - I (4) ------- ------ ------- = .0. 20.90.5【分析】首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.26. (2014秋?新洲区期中)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家5月份用水多少吨? (3)若黄老师家7月用水a 吨,问应交水费多少元?(用a 的代数式表示)【分析】(1)根据题意可得水费应分两部分:不超过 10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了 10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论: ①当0va 司0时,②当a> 10时,分别进行计算即可.【分析】先由已知中,_J_+l =19991x 19gg 上 1999M +4y=.那么1999H =1 1999+ii y,解方程求出设1999+K 为 已知则变为一元一次方程 1的9工 y 的值.代入变化后的代数式,求值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学七年级二元一次方程组易错题1.不能正确理解二元一次方程组的定义1.已知方程组:① ,② ,③ ,④ ,正确的说法是( ).A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A 或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组 .错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .3.将方程变形时忽略常数项3.利用加减法解方程组 .错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为( ).A. ;B. ;C. .D. .错解:B 或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.2011中考总复习数学教材过关训练:二元一次方程组一、填空题1.已知⎩⎨⎧==5,3y x 是方程ax-2y=2的一个解,那么a 的值是________________. 答案:4提示:方程的定义.+y=7的解有________________个,在自然数的范围内的解分别是________________.答案:无数 x=1,y=5;x=2,y=3;x=3,y=13.若-5x a-3b y 8与3x 8y 5a+b 的和仍是一个单项式,则a=________________,b=_________________.答案:2 -2提示:a-3b=8,5a+b=8,解二元一次方程组.4.某城市现有42万人口,计划一年后城镇人口增加%,农村人口增加%,这样全市人口将增加1%,求这个城市现在的城市人口数与农村人口数.若设农村现有人口为x 万,城镇现有人口为y 万,则所列方程组为___________________. 答案:⎩⎨⎧+=+++=+%)11(42%)1.11(%)8.01(42x y y x 提示:列二元一次方程组.二、选择题5.若x a-b -2ya+b-2=11是二元一次方程,那么a,b 的值分别是 ,-1 ,1 ,0 ,-3 答案:B提示:a-b=1,a+b-2=1,二元一次方程的定义.6.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( )A.⎩⎨⎧==34y xB.⎩⎨⎧==63y x C.⎩⎨⎧==42y x D.⎩⎨⎧==24y x 答案:C提示:用代入法.7.如图7-38,AB ⊥BC,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y,那么下面可以求出这两个角的度数的方程组是图7-38A.⎩⎨⎧-==+1590y x y xB.⎩⎨⎧-==+15290y x y x C.⎩⎨⎧-==+y x y x 21590 D.⎩⎨⎧-==152902y x x 答案:B提示:列二元一次方程组.8.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时,若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从上午到下午一共走了_______________千米(途中休息时间不计).D.答案不唯一答案:C提示:设平均路长为a,山路为b,则4a +3b +6b +4a =5,得a+b=10. 三、解答题9.解方程组:(1)⎩⎨⎧=-+=52,5y x y x (代入法);(2)⎩⎨⎧=-=-22,534y x y x (加减法); (3)⎪⎩⎪⎨⎧=+=-;2223,123y x y x(4)⎩⎨⎧+=-+=-).5(3)1(5,5)1(3x y y x答案:(1)⎩⎨⎧-==;5,0y x (2)⎩⎨⎧-==;1,5.0y x (3)⎩⎨⎧==;2,6y x (4)⎩⎨⎧==.7,5y x 提示:求解二元一次方程组. 10.小颖解方程组⎩⎨⎧=-=+4,72dy cx y ax 时,把a 看错后得到的解是⎩⎨⎧==.1,5y x 而正确解是⎩⎨⎧-==.1,3y x 请你帮小颖写出原来的方程组.答案:⎩⎨⎧=-=+.4,723y x y x 提示:求解关于a 、b 的二元一次方程组.11.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?答案:甲、乙两种商品原来的单价各是40元和60元.提示:设甲、乙两种商品原来的单价各是x 、y 元.由x+y=100,(1+10%)x+(1+40%)y=120解得.12.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.问大、小宿舍各有多少间?答案:大、小宿舍各有16和14间.提示:大、小宿舍各有x 、y 间,由x+y=30,8x+5y=198解得.13.(2010江苏南通中考)某校初三(2)班40名同学为希望工程捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,请你根据已有的信息求出捐款2元和3元的人数分别是多少?答案:捐款2元和3元的人数分别是15人和12人.提示:设捐款2元和3元的人数分别是x 、y 人,由6+2x+3y+28=100,6+x+y+7=40解得.14.一辆汽车在公路上行驶,看到里程碑上是一个两位数,1小时后又看到一里程碑,其上的数也是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程碑上是一个三位数,她是第一次看到的两位数中间加一个0,求汽车的速度和第一次看到的两位数.答案:速度为45千米/时,数字为16.提示:设第一次看到的两位数个位数字是x ,十位数字是y ,10x+y-(10y+x)=100y+x-(10x+y),由题意知y=1解得x.二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y 元,则打九折时的卖出价为元,获利元,因此得方程=20%y;打八折时的卖出价为元,获利元,可得方程=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.分式方程应用题分类解析分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.一、营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料少3元,比乙种原料多1元,问混合后的单价是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.二、工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.三、行程中的应用性问题例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.四、轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.五、浓度应用性问题例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.分析:浓度问题的基本关系是:溶液溶质=浓度.此问题中变化前后三个基本量的关系如下表: 设加入盐x 千克.根据基本关系即可列方程.六、货物运输应用性问题 例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t .问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算)分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n 倍,列出分式方程.《二元一次方程组实际问题》赏析【知识链接】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x辆,小型汽车有y辆.由题意,得解得,故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x天进行精加工, y天进行粗加工.由题意,得解得,故应安排10天进行精加工,5天进行粗加工.【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.列二元一次方程组解应用题之典型题题型一配套问题1.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?题型二年龄问题2.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁?题型三百分比问题3.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?题型四数字问题4.有一个两位数,个位上的数字比十位上的数字大5,如果把这两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.题型五古算术问题5.巍巍古寺在山林,不知寺内几多僧。