七年级数学期中测试试卷
24-25学年七年级数学上学期期中模拟卷(山西专用,测试范围:人教版2024七上第1章-第4章)解析

2024-2025学年七年级数学上学期期中模拟卷
(山西专用)
(考试时间:120分钟试卷满分:120分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准
考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上册第1章-第4章。
5.难度系数:0.85。
第Ⅰ卷
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
A .29
B .32
C .37【答案】C 【详解】解:当1n =时,铜币的个数112=+=,
当2n =时,铜币的个数1124=++=,
A .11
B .11-
C .13【答案】C
第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
三、解答题:本题共8小题,共75分。
解答应写出文字说明、证明过程或演算步棸。
∴()()210 1.52 2.5>-->>+->-->-. ............................................................................817.(8分)计算:
(2)解:根据解析(1)可知,点A向左运动,每秒运动2个单位,点则A、B两点相遇时间为:。
七年级数学期中试卷完整版

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √2D. 02. 下列各数中,最小的是()A. -3B. 0C. 1D. -2.53. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. -a < -bD. a - b < 04. 下列各式中,是分式的是()A. 2x + 3B. 3/xC. 5x^2D. 4/x^2 + 15. 下列各数中,能被3整除的是()A. 12B. 15C. 18D. 206. 下列各式中,是绝对值表达式的是()A. |x|B. x^2C. √xD. |x| + 17. 下列各式中,表示x的倒数的是()A. 1/xB. xC. x^2D. 1 + x8. 若a = 2,b = 3,则下列各式中正确的是()A. a^2 + b^2 = 13B. a^2 - b^2 = 13C. a^2 + b^2 = 5D. a^2 - b^2 = 59. 下列各式中,是同类项的是()A. 2x^2B. 3xyC. 4x^2yD. 5x^2 + 2xy10. 下列各式中,是方程的是()A. 2x + 3 = 7B. 3x^2 - 5 = 0C. x^2 + 2x - 3 = 0D. 2x + 3 > 5二、填空题(每题4分,共40分)11. 有理数a,b满足a + b = 0,则a、b互为()12. 若x - 3 = 5,则x =()13. 3/4的倒数是()14. |x| = 5的解集是()15. 若a = 2,b = -3,则a^2 + b^2 =()16. 下列各式中,是二次根式的是()17. 若x^2 - 5x + 6 = 0,则x的值为()18. 下列各式中,是正比例函数的是()19. 下列各式中,是反比例函数的是()20. 若y = kx + b(k≠0),则当x=0时,y的值为()三、解答题(每题10分,共30分)21. 简化下列各数:(1)-2.5 - (-3.5)(2)3/4 ÷ (-4/5)22. 解下列方程:(1)2x - 3 = 7(2)5x^2 - 2x - 3 = 023. 已知:a、b、c为三角形的三边,且满足a + b > c,求证:a + c > b。
2024-2025学年人教版数学七年级上册期中考试模拟测试卷[含答案]
![2024-2025学年人教版数学七年级上册期中考试模拟测试卷[含答案]](https://img.taocdn.com/s3/m/337d8aeea1116c175f0e7cd184254b35effd1a5b.png)
2024年版七年级上学期期中数学模拟考试测试卷(测试范围:七年级上册第一章——第四章)一、单选题(每题3分,共30分)1.如果微信账单中收入100元记作100+元,那么20-元表示( )A .支出80元B .收入80元C .支出20元D .收入20元2.我国的陆地面积约为29600000km ,将9600000用科学记数法表示应为( )A .59.610´B .69.610´C .79.610´D .89.610´3.如果单项式3a x y +与5b xy -是同类项,那么()2024a b +=( )A .1B .1-C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 既不是正数也不是负数,则a b c ++等于( )A . 1-B .0C .1D .25.计算-22的结果为( )A .2-B .4-C .2D .46.实数a ,b 在数轴上的位置如图所示,则( )A .a b >B .a =bC .a b >D .0b >7.若关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,则x y +的值是( )A .6B .7C .8D .98.下面计算正确的是( )A .651a a -=B .2223a a a +=C .()a b a b-+=-+D .()222a b a b+=+9.下列说法中正确的个数是( )(1)﹣a表示负数;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是3;(3)单项式229xy -的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数.A .0个B .1个C .2个D .3个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .6070B .6067C .2023D .2024二、填空题(每题3分,共18分)11.12024-相反数是 ;绝对值是 ;倒数是 .12.如果单项式23m x y +与21n x y -的差是单项式,那么m n +=.13.现规定一种新运算“*”:()*a b a b b a =---.则()2*3-的值为 .14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++-的值为.15.在3-、4、5、6-这四个数中,任取两个数相乘,所得的积最大是 ,所得的积最小是 .16.某出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需要付5元车费),超过3千米后,每增加1千米,加收1.5元.某人乘这种出租车从甲地到乙地共支付车费29元,设此人从甲地到乙地的路程为x 千米,则x 的最大值是 .三、解答题17.计算(1)()()()3524---+-+(2)221232éùæöæö-+-+-ç÷ç÷êúèøèøëû18.先化简,再求值()()22342223a b a b ---+,其中21a b ==-,19.请画出数轴,将下列各数:0, 3.5-,3-,4,113,4.5,表示在数轴上,并用“<”连接起来.20.小明从家A 出发,向西走了300米到超市B ,继续向西走了150米到文具店C ,又向东走了700米到达快递超市D ,最后回到家.(1)用一个单位长度表示100米,以东为正方向,家A 为原点,画出数轴并在数轴上标明A B C D ,,,的位置;(2)小明家A 到快递超市D 多远?(3)小明一共行走了多少米?21.某果园老板从果园里随机摘取了取部分水果样品,检测抽取样品每个的质量是否符合标准,超过的部分用正数来表示,不足的部分用负数来表示,准确记录如下表:与标准质量的差值/克4-―20135个数235453(1)这批水果样品的总质量比按标准质量计算的总质量多还是少?多或少几克?(2)若每个水果的标准质量为50克,成本为0.5元/克,则抽取样品的总成本是多少元?(3)在(2)的条件下,该水果正常情况下按每克加价50%后,按克称重出售.但这批水果是抽检过的样品,所以在出售时打八折,并且在售出过程中还会有10%的质量损耗,求这批抽检的水果的总利润是多少元?22.已知:b 是最小的正整数,且a 、b 满足()230c a b -++=,请回答问题(1)请直接写出a ,b ,c 的值:a =________;b =________;c =________;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即02x ££时),请化简式子:1123x x x +--++(请写出化简过程)23.如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用p 表示)(1)求窗户的面积;(2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.24.把四张形状大小完全相同的小长方形卡片(如图1),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图2,3),盒子底面未被卡片覆盖的部分用阴影表示.设图2中阴影部分图形的周长为1l ,图3中两个阴影部分图形的周长的和为2l ,(1)用含m ,n 的式子表示图2阴影部分的周长1l (2)若1254l l =,求m ,n 满足的关系?1.C【分析】本题考查了正数和负数的应用.用正数和负数可以表示一对相反的量,如果收入记作正,则支出则记作负.【详解】解:若收入100元记作100+元,则20-元可表示为支出20元,故选:C .2.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将9600000用科学记数法表示应为69.610´.故选:B .3.A【分析】本题考查了同类项的定义:所含字母相同,相同字母的指数也相同的项叫同类项.根据同类项的定义列出方程,再求解即可.【详解】解:∵单项式3a x y +与5b xy -是同类项,∴311a b +==,,解得2a =-,1b =,∴()()()2024202420242111a b +=-+=-=.故选:A .4.B【分析】本题考查了正整数、负整数、有理数的加减法.先分别根据正整数、负整数的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】解:由题意得:1a =,1b =-,0c =,则1(1)00a b c ++=+-+=,故选:B .5.B【分析】根据有理数乘方法则计算即可得答案.【详解】-22=-4,故选:B .【点睛】本题考查有理数乘方,熟练掌握运算法则是解题关键.6.A【分析】观察数轴得:0,b a b a <<>,即可求解.【详解】解:观察数轴得:0,b a b a <<>,故B ,C ,D 选项错误,不符合题意;A 选项正确,符合题意.故选:A【点睛】本题主要考查了有理数与数轴,绝对值的意义,有理数的大小比较,观察数轴得到0,b a b a <<>是解题的关键.7.A【分析】本题考查了同类项,单项式522x a b +与36y a b --的和仍是单项式,说明两个单项式是同类项,相同字母的指数相等,所以得到53x +=,62y -=,解出2x =-,8y =,最后得到x y +的值.理解两个单项式的和仍是单项式,说明这两个单项式是同类项是解答本题的关键.【详解】解:∵关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,∴53x +=,62y -=,∴2x =-,8y =,∴286x y +=-+=,故选:A .8.D【分析】根据合并同类项的法则判断A 、B ;根据乘法分配律判断C 、D .【详解】解:A 、65-=a a a ,故错误,不符合题意;B 、a 与2a 不是同类项,不能合并,故错误,不符合题意;C 、()a b a b -+=--,故错误,不符合题意;D 、()222a b a b +=+,故正确,符合题意;故选:D .【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.9.B【分析】根据小于0的数为负数判断①,根据多项式的次数是最高次项的次数可判断②,根据单项式的系数是单项式中的数字因数可判断③,根据0的绝对值等于0可判断④,根据有理数包含整数和分数可判断⑤.【详解】解:①当a <0时,-a 是正数,故说法错误;②多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是4,故说法错误;③单项式229xy -的系数为29-,故说法错误;④若|x |=﹣x ,则x ≤0,故说法错误;⑤一个有理数不是整数就是分数,故说法正确,综上,正确的说法有一个,故选:B .【点睛】本题考查负数、多项式的次数、单项式的系数、绝对值以及有理数的分类,理解各自的概念是解答的关键.10.A【分析】本题考查了图形的变化类.根据图形的变化,后一个图形的正方形的个数都比前一个图形的正方形的个数多3个,第n 个图形的正方形的个数为()324n -+即可求解.【详解】解:观察图形可知:图②中共有4个正方形,即304´+;图③中共有7个正方形,即314´+;图④中共有10个正方形,即324´+;……图n 中共有正方形的个数为()324n -+;所以第2024个图中共有正方形的个数为:()32024246070-+=.故选:A .11.12024 120242024-【分析】本题主要考查相反数,倒数和绝对值的定义.相反数:只有符号不同的两个数互为相反数, 倒数:如果两个数的乘积等于1,那么这两个数就叫做互为倒数,绝对值:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,根据定义解题即可.【详解】解:12024-的相反数是12024,12024-的绝对值是:1120242024-=,12024-的倒数是2024-,故答案为:12024,12024,2024-.12.2【分析】本题考查了合并同类项,同类项的定义;所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出m n ,的值,代入计算即可.【详解】解:∵23m x y +与21n x y -的差是单项式,∴23m x y +与21n x y -是同类项,∴22m +=,11n -=,解得:0m =,2n =,∴022m n +=+=,故答案为:2.13.10-【分析】本题主要考查了有理数的加减运算和化简绝对值,根据已知()*a b a b b a =---,代入数值运算求出即可.【详解】解:∵()*a b a b b a =---,∴()()()2*323325510-=-----=--=-.故答案为:10-.14.7-【分析】根据相反数的定义得出0m n +=,根据倒数的定义得出1cd =,即可求解.【详解】解:∵m 、n 互为相反数,c 、d 互为倒数,∴0m n +=,1cd =,∴310031107m n cd ++-=+´-=-,故答案为:7-.【点睛】本题主要考查了相反数和倒数的定义,解题的关键是掌握相反数相加的0,乘积为1的两个数互为倒数.15. 20 30-【分析】本题考查有理数的乘法法则和有理数的大小比较.根据两数相乘,同号得正、异号得负求两数的积,再由正数大于负数,即可求解.【详解】解:∵()36=184520-´-<´=,∴积最大是20,∵()()()()56465343´-<´-<´-<´-,∴积最小是()5630´-=-,故答案为:20,30-.16.19【分析】本题考查了一元一次不等式的应用.已知从甲地到乙地共需支付车费29元,从甲地到乙地经过的路程为x 千米,从而根据题意列出不等式,从而得出答案.【详解】解:因支付车费为29元,所以x 肯定大于3千米,故有()1.53529x -+£,解得:19x £.可求出x 的最大值为19千米.故答案为:19.17.(1)0(2)156-【分析】本题主要考查了有理数的混合运算,按照混合运算法则计算即可.(1)有理数加减运算,从左向右计算即可;(2)先算乘方,再算乘除,最后再算加减.【详解】(1)解:()()()3524---+-+3524=-++-0=;(2)解:221232éùæöæö-+-+-ç÷ç÷êúèøèøëû43466æö=--+ç÷èø674=--156=-.18.21612a b -,76【分析】本题考查了整式的加减-化简求值.先将多项式去括号,再合并同类项,然后将a 和b 的值代入计算即可得出答案.【详解】解:()()22342223a b a b ---+2212646a b a b =-+-21612a b =-,当2a =,1b =-时,原式()2162121=´-´-6412=+76=.19.数轴见解析,13.530144.53-<-<<<<.【分析】本题考查了有理数的大小比较,在数轴上表示有理数.先在数轴上标记各个数,根据数轴上的点表示的数:右边的数总比左边的数大,可得答案.【详解】解:如图,在数轴上表示各数如下:∴13.530144.53-<-<<<<.20.(1)见解析(2)小明家A 到快递超市D 距离为250米;(3)小明一共行走了1400米.【分析】本题主要考查有理数加减法在实际中的运用,掌握数轴表示有理数的方法,数轴上求两点之间距离的方法,有理数加减法的运算等知识是解题的关键.(1)根据数轴表示有理数的方法即可求解;(2)运用数轴求两点之间的距离的方法即可求解;(3)运用有理数的加减法运算即可求解.【详解】(1)解:小明从家A 出发,用一个单位长度表示100米,以东为正方向,∴以小明家A 为原点,根据题意,小明到各点的位置如图所示,;(2)解:由(1)中数轴图示可知,小明家A 到快递超市D 距离为250米;(3)解:小明行走的路程为3001507502501400+++=米.答:小明一共行走了1400米.21.(1)这批样品的总质量比按标准质量计算的总质量多,多22克(2)抽取样品的总成本是560元(3)全部销售完这批抽检的袋装商品的总利润是44.8元【分析】本题考查正负数的意义,有理数混合运算的实际应用.理解题意和正负数的意义,正确列出算式是解题关键.(1)计算出超过和不足的质量和,如果是正数,即多,如果是负数,即少;(2)先求出抽取样品的总质量,再乘以0.5元/克即可;(3)求出售出的总质量和售价,再根据总利润=售价×总质量求解即可.【详解】(1)解:()()24325041533520´-+´-+´+´+´+´=,答:这批样品的总质量比按标准质量计算的总质量多,多22克.(2)解:()23545350201120+++++´+=克,11200.5560´=元,答:抽取样品的总成本是560元.(3)解:()1120110%1008´-=克,()0.50.550%0.80.6+´´=元,10080.656044.8´-=元,答:全部销售完这批抽检的袋装商品的总利润是44.8元.22.(1)1a =-,1b =,3c =;(2)46x +或28x +.【分析】本题考查了数轴与绝对值:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定1x +,1x -,3x +的符号,然后根据绝对值的意义即可化简.【详解】(1)解:∵b 是最小的正整数,∴1b =.∵()230c a b -++=∴300c a b -=ìí+=î,∴1a =-,1b =,3c =;(2)解:∵02x ££,∴10x +>,30x +>,当01x ££时,10x -£,当12x <£时,10x ->,∴当01x ££时,1123x x x +--++()1123x x x =++-++1126x x x =++-++46x =+;当12x <£时,1123x x x +--++()()1123x x x =+--++1126x x x =+-+++28x =+.综上所述,1125x x x +--+-的值为46x +或28x +.23.(1)()2214m 2a p æö+ç÷èø(2)()()15m a p +(3)制作这种窗户需要的费用是654002p æö+ç÷èø元【分析】本题考查了列代数式表示实际问题,解题的关键是分清数量关系,抓住关键词语,正确的列出代数式.(1)窗户的面积4=个小正方形的面积+半圆的面积;(2)窗框用料的总长度为所有小正方形的边长之和+半个圆的弧长3+条半径;(3)总费用为:玻璃的费用+窗框的费用.【详解】(1)解:窗户的面积21222a a a p =+´,22142a a p æö=+ç÷èø2m ;(2)窗框的总长123842a a a a p =´+++,15a a p =+,(15)(m)a p =+;(3)21425(15)202a a p p æö+´++´ç÷èø214125(15)1202p p æö=+´´++´´ç÷èø25100(20300)2p p æö=+++ç÷èø654002p =+(元).\制作这种窗户需要的费用是654002p +元.24.(1)22m n+(2)23m n =【分析】本题考查整式加减的应用:(1)观察图形,可知,阴影部分的周长等于长方形ABCD 的周长,计算即可;(2)设小卡片的宽为x ,长为y ,则有2y x m +=,再将两阴影部分的周长相加,通过合并同类项即可求解2l ,根据1254l l =,即可求m 、n 的关系式.【详解】(1)解:由图可知,阴影部分的周长等于长方形ABCD 的周长,故()1222m n m n l =+=+;(2)设小长形卡片的宽为x ,长为y ,则2y x m +=,∴2y m x =-,所以两个阴影部分图形的周长的和为:()()2222m n y n x +-+-()()22222m n m x n x =+-++-222424m n m x n x =+-++-4n =,即2l 为4n ∵1254l l =,∴52244m n n+=´整理得:23m n =.。
2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一至第四章。
5.难度系数:0.75。
一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。
七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。
()2. 一个数的平方和它的立方一定相等。
()3. 一个等边三角形的三个角都是60度。
()4. 两个负数相乘的结果是正数。
()5. 一个数的倒数乘以它自己等于1。
()三、填空题1. 2的平方根是______。
2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。
3. 1千克等于______克。
4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。
5. 一个数的因数是它自己,那么这个数是______。
四、简答题1. 请简述勾股定理的内容。
2. 请解释等差数列的定义。
3. 请解释比例的基本性质。
4. 请简述分数的基本性质。
5. 请解释正方形的性质。
五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。
2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。
3. 一个数加上7后,再乘以3,结果是60,求这个数。
4. 一个数的2倍加上4等于18,求这个数。
5. 一个数的3/4等于15,求这个数。
六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
(新北师大版2024)2024-2025学年七年级数学上学期期中押题测试卷(一)(解析版)

2024-2025学年七年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:新北师版(2024)七年级上册第一章~第三章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.如果收入10元记作+10元,那么支出5元记作()A.+5元B.−5元C.+10元D.−10元【答案】B【分析】本题主要考查了正负数的意义,掌握正负数的意义是解题的关键.根据正负数的意义,收入为正,那么支出为负进行选择即可.【详解】解:由题意可知:收入为正,那么支出为负,支出5元记作−5元.故选:B2.如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是().A.勤B.洗C.手D.戴【答案】C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".3.2024年春节小长假期间旅游创新高,达到474000000人次,同比上涨34.3%,将474000000用科学记数法表示为()A.0.474×109B.474×106C.4.74×108D.47.4×107【答案】C【分析】本题考查科学记数法,解题的关键是熟记科学记数法的定义:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【详解】解:将474000000用科学记数法表示为4.74×108.故选:C.4.下列运算正确的是()A.3a+4a=7a B.−2x+6x=8x C.9x−7x=2D.m+n=mn【答案】A【分析】根据合并同类项法则逐个进行判断即可.【详解】解:A、3a+4a=7a,故A正确,符合题意;B、−2x+6x=4x,故B不正确,不符合题意;C、9x−7x=2x,故C不正确,不符合题意;D、m与n不是同类项,不能合并,故D不正确,不符合题意;故选:A.【点睛】本题主要考查了合并同类项法则,解题的关键是掌握相关运算法则并熟练运用.5.已知代数式3m−2n的值是3,则代数式6m−4n−2的值是()A.1B.4C.−8D.不能确定【答案】B【分析】把原式化为:2(3m−2n)−2,再整体代入求值即可.【详解】解:∵3m−2n=3,∴6m−4n−2=2(3m−2n)−2=2×3−2=4,故选B【点睛】本题考查的是代数式的求值,掌握整体代入法求解代数式的值是解题的关键.6.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a+b>0B.b−a<0C.ab>0D.|a+b|<|a|+|b|【答案】D【分析】根据a,b在数轴上的对应点的位置得到−2<a<−1<0<b<1,进行逐一判断即可.【详解】解:由数轴可得:−2<a<−1<0<b<1,则|a|>|b|,∴a+b<0,b−a>0,ab<0,|a+b|<|a|+|b|,故A、B、C错误,D正确,故选D.【点睛】本题考查了有理数的乘法、数轴、绝对值、有理数的加法,解决本题的关键是掌握有理数的乘法、数轴、绝对值、有理数的加法.7.若x m y3与9x2y n是同类项,则m+n的值是( )A.5B.6C.4D.3【答案】A【分析】把字母相同,且相同字母的指数也相同的几个项叫做同类项,由同类项的定义可得m与n的值,则可得m+n的值.【详解】由于x m y3与9x2y n是同类项,则m=2,n=3,所以m+n=2+3=5.故选:A.【点睛】本题考查了同类项的概念及求代数式值,关键是掌握同类项的概念.8.下列说法正确的是()A.−3xy25系数是−35,次数是2B.−2π2a3b是六次单项式C.3与π是同类项D.x2+1x−3是二次三项式【答案】C【分析】此题主要考查了同类项、多项式与单项式,正确把握多项式的次数确定方法是解题关键.9.若|x|=5,|y|=2且|x−y|=x−y,则x+y=()A.3或−7B.−7或−3C.7或3D.−3或7【答案】C【分析】首先根据绝对值的性质可得x=±5,y=±2,然后由x>y,求出x和y的值,分别代入x+y 即可求解.【详解】解:∵|x|=5,|y|=2,∴x=±5,y=±2,又∵|x−y|=x−y∴x>y,∴x=5,y=2,或x=5,y=−2,当x=5,y=2时,x+y=5+2=7;当x=5,y=−2时,x+y=5−2=3;∴x+y的值为7或3.故选:C.【点睛】本题主要考查代数式求值、有理数的加法和绝对值的计算,根据题意分情况计算是解题的关键.10.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,根据这个规律,则21+22+23+24+ (22018)末位数字是A.6B.4C.2D.0【答案】A【分析】根据题目中的式子可以知道,末位数字出现的2、4、8、6的顺序出现,从而可以求得21+22 +23+24+...+22018的末位数字,本题得以解决.【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,...,∴2018÷4=504...2,∵(2+4+8+6)×504+2+4=10086,∴21+22+23+24+...+22018末位数字是6,故选A.【点睛】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末尾数字.二、填空题(本题共6小题,每小题3分,共18分.)11.比较大小:−38−49.(填“>”、“=”或“<”)12.当x=时,式子2x+1与3x−6的值互为相反数.【答案】1【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x+1+3x﹣6=0,移项得:2x+3x=6﹣1,合并同类项得:5x=5,解得:x=1.故答案为:1.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,熟练掌握解一元一次方程的步骤是解题的关键.13.把5.296精确到百分位的近似数是.【答案】5.30【分析】本题主要考查了求一个数的近似数.精确到百分位只需要对千分位上的数字6进行四舍五入即可.【详解】解:5.296精确到百分位的近似数是5.30,故答案为:5.30.14.单项式−3x2y3的系数是.515.九宫格起源于中国古代的神秘图案河图和洛书.如图,将3,2,1,0,−1,−2,−3,−4,−5填入九宫格内,使每行、每列、每条对角线上三个数的和都相等,则a的值为.16.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.【答案】11【分析】本题考查了数字类规律探究,有理数的乘方,先探究规律:第n 次捏合可拉出2n 根细面条,然后根据规律列式计算,理解乘方的意义是解题的关键.【详解】解:根据题意有,第一次捏合可拉出21=2根细面条,第二次捏合可拉出22=4根细面条,第三次捏合可拉出23=8根细面条,…,第n 次捏合可拉出2n 根细面条,令:2n =2048,解得:n =11,故答案为:11.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)计算:(1)(−5)+10−2+(−1);(2)−22+[12−(−3)×2]÷2;(3)−112+13÷|−124|;(4)112×57−−×212+−÷125.18.(6分)化简求值:(2x2y−3xy2)−3(x2y−2xy2)+2(x2y−4xy2),其中x=−1,y=2.【答案】xy(x−5y);22【分析】先去括号,合并同类项化简原式,再将x,y代入求值即可.【详解】原式=(2x2y−3xy2)−(3x2y−6xy2)+(2x2y−8xy2)=2x2y−3x y2−3x2y+6x y2+2x2y−8x y2=x2y−5x y2=xy(x−5y)当x=−1,y=2时,原式=(−1)×2×(−1−5×2)=(−1)×2×(−11)=22【点睛】本题主要考查代数式的化简求值,掌握去括号,合并同类项的法则是解题的关键.19.(6分)如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).【答案】(1)圆柱;(2)48πcm2.【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面半径径为2cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40πcm2,底面积为:2πr2=8πcm2.∴该几何体的表面积为40π+8π=48πcm2.【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.20.(8分)小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘来):−5,+8,−14,+5,+6,−9,+10.问:(1)小虫是否回到出发点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫共可得到多少粒芝麻?【答案】(1)小虫没有回到出发点O(2)小虫离开出发点O最远是11厘米(3)小虫共可得到114粒芝麻【分析】本题考查了正负数的意义,有理数的四则运算等知识;(1)向左、向右爬行的距离相加即可作出判断;(2)依次计算出前2个、前3个、前4个、…、前6个、7个数的和,其中最大的数即是小虫离开出发点O最远的距离;(3)所有路程绝对值的和与2的积即可奖励的芝麻数.【详解】(1)解:−5+8+(−14)+5+6+(−9)+10=+1所以小虫没有回到出发点O.(2)解:−5+8=+3,+3+(−14)=−11,−11+5=−6,−6+6=0,0+(−9)=−9,−9+10=+1所以小虫离开出发点O最远是11厘米.(3)解:(|−5|+|+8|+|−14|+|+5|+|+6|+|−9|+|+10|)×2=57×2=114所以小虫共可得到114粒芝麻.21.(10分)阅读材料:我们知道,4x−2x+x=(4−2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)−2(a+b) +(a+b)=(4−2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a−b)2看成一个整体,合并6(a−b)2−2(a−b)2+3(a−b)2=;(2)已知x2−2y=4,求3x2−6y−21的值;(3)拓广探索:已知a−5b=3,5b−3c=−5,3c−d=10,求(a−3c)+(5b−d)−(5b−3c)的值.【答案】(1)7(a−b)2(2)−9(3)8【分析】(1)利用整体的思想进行合并即可;(2)先对3x2−6y−21进行变形,然后整体代入即可;(3)首先根据题意将原式进行变形,然后整体代入即可.【详解】(1)解:6(a−b)2−2(a−b)2+3(a−b)2=(6−2+3)(a−b)2=7(a−b)2;故答案为:7(a−b)2;(2)解:∵x2−2y=4,∴3x2−6y−21=3(x2−2y)−21=12−21=−9;(3)∵a−5b=3,5b−3c=−5,3c−d=10,∴(a−3c)+(5b−d)−(5b−3c)=a−3c+5b−d−5b+3c=(a−5b)+(5b−3c)+(3c−d)=3−5+10=8.【点睛】本题主要考查代数式求值和整式的加减运算,掌握整体代入法是解题的关键.22.(10分)11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15=⋯,(1)第5个式子是_____;第n个式子是_____;(2)从计算结果中找规律,利用规律计算:11×2+12×3+13×4+14×5+⋯+12023×2024;(3)计算:(由此拓展写出具体过程):11×3+13×5+15×7+⋯+199×101.23.(10分)甲乙两家体育用品店出售同款羽毛球拍和羽毛球.每副羽毛球拍定价80元,每个羽毛球2元.甲商店推出的优惠方案是:买一副球拍赠送5个羽毛球;乙商店的优惠方案是:按总价的九折优惠.某学校想购买20副羽毛球拍和x个羽毛球(其中x≥100).(1)若到甲商店购买,应付多少元?(用含x的代数式表示)(2)若到乙商店购买,应付多少元?(用含x的代数式表示)(3)当x=200时,应选择去哪家商店购买更合算?为什么?【答案】(1)(2x+1400)元(2)(1.8x+1440)元(3)去任意一家商店购买即可,理由见解析【分析】本题考查列代数式,代数式求值:(1)根据甲商店的优惠方法,列出代数式即可;(2)根据乙商店的优惠方案,列出代数式即可;(3)求出x=200时,两家需花费的费用,进行比较即可.【详解】(1)解:20×80+2(x−20×5)=(2x+1400)元;(2)(80×20+2x)×0.9=(1.8x+1440)元(3)去任意一家商店购买即可,理由如下:当x=200时,2x+1400=400+1400=1800元;1.8x+1440=1.8×200+1440=1800元;故选择甲、乙商店购买的费用相同.24.(10分)若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a−b|,且a,b满足|a−1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB−AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB−AC的值.【答案】(1)1,−2,3;(2)−3或−1;(3)AB−AC的值不随着时间t的变化而变化,值为2.【分析】(1)根据绝对值及平方的非负性,求出a,b的值,从而求出线段AB的长;(2)设P对应的数为y,再由PA+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况即可确定AB,AC的变化情况,即可确定AB−AC的值.【详解】(1)∵|a−1|+(b+2)2=0,∴a−1=0,b+2=0,解得:a=1,b=−2,∴线段AB的长为:1−(−2)=3,故答案为:1,−2,3;(2)由(1)得:b=−2,∴c=2,设P对应的数为y,由图知:①P在A右侧时,不可能存在P点;②P在B左侧时,1−y−2−y=2−y,解得: y=−3,③当P在A、B中间时,3=2−y,解得: y=−1,故点P对应的数是−3或−1;(3)AB−AC的值不随着时间t的变化而变化,理由如下:t秒钟后,A点位置为:1+4t,∴B点的位置为: −2−t,C点的位置为: 2+9t,∴AB=1+4t−(−2−t)=5t+3AC=2+9t−(1+4t)=5t+1,∴AB–AC=5t+3−(5t+1)=2,∴AB−AC的值不随着时间t的变化而变化,值为2.【点睛】此题考查了非负数的应用,数轴的应用,数轴上的距离,理解数轴上点的距离是解题的关键.。
七年级期中考试数学试卷及答案

ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】

22.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140 个,平均每天
生产 20 个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周
的生产情况(超 产记为正、减产记为负):
星期 一 二 三 四 五 六 日
增减产值 +10 -12 -4 +8 -1 +6 0 (1)根据记录的数据求出小明妈妈星期三生产玩具的个数; (2)根据记录的数据求小明妈妈本周实际生产玩具多少个; (3)该厂实行“每周计件工资制”,每生产一个玩具可得工资 5 元,若超额完成任务,则超过部 分每个另奖 3 元;少生产一个则倒扣 3 元,那么小明妈妈这一周的工资总额是多少元? 23.已知有理数 a,b,c 在数轴上对应点的位置如图所示:
2024-2025 学年七年级数学上学期期中模拟卷
注意事项:
(考试时间:120 分钟 试卷满分:120 分)
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案 标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上
D. - 2m2n 的系数是 - 2
5
5
6.已知有理数 a,b 在数轴上的位置如图所示,则下列关系不正确的是( )
A. a + b < 0
B. a + b > 0
C. ab < 0
D. a - b < 0
试卷第 1 页,共 7 页
7.下列去括号正确的是( )
A. x - 4 y - 2 = x - 4 y - 2 C. x + y - 3 = x + y - 3
2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。
5.难度系数:0.72。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。
2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案

2023-2024学年度第一学期期中质量检测七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−152.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少( )g为合格A.200B.198C.197D.1963.下列各数中,绝对值最小的是( )A.−2B.3C.0D.−34.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A.−3B.−1C.1D.25.计算−3−1的结果是( )A.−4B.−2C.4D.26.若∠α与∠β互余,∠α=72°30´,则∠β的大小是( )A.17°30´B.18°30´C.107°30´D.108°30´7.如图,AB=CD,那么AC与BD的大小关系是( )A.AC=BDB.AC <BDC.AC >BDD.不能确定8.如图,下列几何语句不正确的是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段9.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3的关系满足( )A.∠1−∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠310.如图,将△AOB 绕着点O 顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=15°,则旋转角度是( )A.15°B.25°C.40°D.55°11.下列各对数中,互为相反数的是( )A.−(−2)和2B.+(−3)和−(+3)C.12和−2D.−(−5)和−|+5| 12.如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A.50°B.75°C.100°D.120°A B CD O AD C OBA B O A C B D13.若1÷2×(−6)□9=6,请推算□内的符号应是( )A.+B.−C.×D.÷14.已知a ,b 都是实数,若(a+2)2+|b −1|=0,则(a+b)2023的值是( )A.−2023B.−1C.1D.202315.已知本学期某学校下午上课的时间为14时20分,则此时刻钟表上的时针与分针的夹角为( )度.A.40°B.50°C.60°D.70°16.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE,则∠GFH 的度数α是( )A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF 位置的变化而变化二、细心填一填(请把结果直接填在题中的横线上,相信自己一定会填对的!共12分)17. −5的倒数是__________.18.比较大小:−35_______−34(填“<”或“>”). 19.对于有理数a 、b ,定义一种新运算,规定a ☆b=a 2−|b|,则3☆(−2)=________.20.如图,已知∠COD=∠AOB=75°,当∠COD 绕着点O 旋转且OC 在∠AOB 内部时,∠AOD+∠BOC=_________. A B DC F H EG三、耐心解一解21.试试你的基本功(每题7分,共14分)(1)(−16+712−38)×24; (2) −22−[(−3)×(−43) −(−2)3] 四、用心答一答(只要你认真探索,善于思考,一定会获得成功!本题共46分)22.(本题共8分)如图,点B 是线段AC 上一点,且AB=20,BC=8.(1)图中共有_____条线段.(2)试求出线段AC 的长.(3)如果点O 是线段AC 的中点.请求线段OB 的长.23.(本题共8分)质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“−”记录,记录如下:−6,−3,−2,0,+1,+4,+5,−1.(1)通过计算,求出8袋洗衣粉总计超过或不足多少克?这8袋洗衣粉的总重量是多少克?(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元?24.(本题共8分)C B AO A CBO D如图,已知∠AOB=120°,OC 是∠AOB 内的一条射线,且∠AOC︰∠BOC=1︰2.(1)求∠AOC 的度数.(2)过点0作射线OD ,若∠AOD=12∠A0B ,求∠COD 的度数.(画出草图即可)25.(本题10分)【问题情境】利用旋转开展数学活动,探究体会角在旋转过程中的变化.【操作发现】如图①,∠AOB=∠COD=90°且两个角重合.(1)将∠COD 绕着顶点O 顺时针旋转45°如图②,此时OB 平分∠____;∠BOC 的余角有________个(本身除外),分别是________________.【实践探究】(2)将∠COD 绕着顶点O 顺时针继续旋转如图③位置,若∠BOC=45°,射线OE 在∠BOC 内部,且∠BOC=3∠BOE,请探究.①求∠DOE 的度数.②∠BOC 的补角分别是:____________________.26.(本题共12分)如图,在一条直线上,从左到右依次有点A 、B 、C ,其中AB=4cm ,BC=2cm.以这条直A B (D )O 图① (C ) 图② AC B DO AC BD OE 图③ A CO B线为基础建立数轴,设点A、B、C所表示数的和是p.(1)如果规定向右为正方向,以1cm为单位长度建立数轴.①若以B为原点O,则点C表示的数是_______,点A表示的数为_______;此时p=_______;若以C为原点O,则点B表示的数是_______,点A表示的数为_______;此时p=_______.②若改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值.发现观察p值的变化规律发现原点每向右移动1cm,p值______(增大或减小)______cm.(2)若点A表示的数是−1,则点C表示的数是________,若折叠数轴,使点A与点C 重合,则折点表示的数是________.2023-2024学年度第一学期期中质量检测参考答案七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−151.解:正数的相反数是负数,绝对值相等,两者之和为0,故选B。
河南省信阳市2024-2025学年七年级上学期数学期中测试卷

河南省信阳市2024-2025学年七年级上学期数学期中测试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.据省统计局数据,今年上半年,我省2894家规模以上文化及相关产业企业实现营业收入965.68亿元,数据“965.68亿”用科学记数法表示为()A .8965.6810⨯B .89.656810⨯C .109.656810⨯D .110.9656810⨯3.当1x =时,代数式2x -+的值等于()A .1B .-1C .3D .-34.如图,点A 在数轴上表示的数为1,将点A 向左移动4个单位长度得到点B ,则点B 表示的数为()A .−2B .3-C .5-D .55.代数式2315,0,,33,,5x x x x y x y+--++中,整式有()A .3个B .4个C .5个D .6个6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是在计算()A .()()52-+-B .()52-+C .()52+-D .5+27.下列关于单项式223x y -的说法中,正确的是()A .系数是23-,次数是3B .系数是−2,次数是3C .系数是23-,次数是2D .系数是23,次数是38.铁棍山药是河南焦作的著名特产之一,其营养价值丰富.小豫利用网络销售山药,包装后由某快递公司发货,其收费标准:5千克以内收费a 元,超过5千克的部分每千克按3元收费.小豫寄8千克的包裹,需要支付()A .()24a +元B .()15a +元C .()9a +元D .()53a +元9.计算2322223333m n +++++⨯⨯⨯⨯L L 1444444244444431444442444443个个的结果是()A .23m n +B .23n m +C .23+m n D .32m n +10.已知整数1234,,,,a a a a ,满足下列条件:121321,2,3,a a a a a =-=-+=-+ .以此类推,2024a 的值是()A .1013-B .2025-C .1012-D .2024-二、填空题11.用“>”或“<”填空:3-1-.12.请写出一个含字母a 的三次二项式是.13.数轴上表示2的点与表示5-的点之间的距离为.14.如图,将形状、大小完全相同的“·”与线段按照一定规律摆成下列图案,其中第1个图案用了6个“·”,第2个图案用了11个“·”,第3个图案用了16个“·”,第4个图案用了21个“·”……按此规律排列下去,则第n 个图案用的“·”个数是(用含n 的代数式表示).15.定义运算:当a b ≥时,2a b a b ⊗=-;当a b <时,a b a b a b-⊗=+(其中0a b +≠).那么225⊗=(),22⊗-=.三、解答题16.(1)计算:()11112263⎛⎫-+⨯- ⎪⎝⎭.(2)计算:()3232628-+⨯-+-÷.17.已知代数式22a b -和()()a b a b +-,请你按要求解答下列问题.(1)当5,3a b ==时,计算两个代数式的值.(2)当2,6a b =-=时,计算两个代数式的值.(3)观察(1)和(2)中代数式的值,发现代数式22a b -_____()()a b a b +-.(填“>”“<”或“=”)18.某汽车上午8点从甲地出发匀速地行驶到乙地,行驶里程为400千米,汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/时).(1)用含t 的式子表示v ,并说明v 与t 成什么比例关系?(2)若行驶路段全程速度限定为不超过120千米/时,该汽车能否在当天上午11点前到达乙地?请说明理由.19.已知多项式215m x y xy n ++-是关于,x y 的五次三项式,且单项式23n x y 的次数与该多项式的次数相同.(1)求,m n 的值.(2)当1,2x y =-=时,求多项式215m x y xy n ++-的值.20.近几年,全球的新能源汽车发展迅猛,新能源汽车产销量都大幅增加.小明家将汽油车换成了一辆新能源汽车,他连续七天记录了每天行驶的路程(如下表).以20千米为标准,多于20千米的记为“+”,不足20千米的记为“-”,刚好20千米的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程/千米6+8-9-03-14+10+(1)小明家的新能源汽车这七天一共行驶了多少千米?(2)已知原汽油车每行驶100千米需用汽油6升,汽油价8.2元/升,而新能源汽车每行驶100千米耗电量为15千瓦时,电费标准为0.6元/千瓦时,请计算小明家换成新能源汽车后这七天的行驶费用比原汽油车节省多少钱?21.小新同学设计了几张如图所示的写有不同运算的卡片A B C D ,,,,小新给出一个有理数,让他的同桌小丽选择A B C D ,,,的顺序,进行一次运算(每次运算不同卡片只能用一次).例如:小新给出的数是1-,若小丽选择了D C B A →→→的顺序,则计算结果为()()()()2132213226⎡⎤--⨯-+=-⨯-+=⎣⎦.(1)当小新给出的数是5,小丽选择了A C B D →→→的顺序,列出算式并计算结果.(2)当小新给出的数是6-,小丽选择了()()__________C D →→→的顺序,若列式计算的结果刚好为160-,请判断小丽选择的顺序.22.阅读理解有一种整式处理器,能将二次多项式处理成一次多项式,处理的方法是将二次多项式的二次项系数与一次项系数的和(和为非零数)作为一次多项式的一次项系数,将二次多项式的常数项作为一次多项式的常数项.例如:多项式2328A x x =+-,经过处理器可得到多项式()32858B x x =+-=-.若关于x 的二次多项式A 经过处理器得到多项式B ,根据以上方法,解决下列问题:(1)已知多项式2256A x x =-+-,经过处理器得到多项式B =______.(2)若多项式2563A x x =-+经过处理器得到多项式B ax b =+,求2025a b 的值.(3)已知()2625,M x m x m M =-+-++是关于x 的二次多项式,经过处理器得到的一次多项式是7N kx =+,求k 的值.23.综合与实践已知多项式32412621,x y x a -++是该多项式五次项的系数,b 是该多项式四次项的系数,c 是常数项.如图,在数轴上点,,A B C 所对应的数分别是,,a b c ,O 为原点.(1)a =______,b =______,c =______.(2)数轴上有一动点M 从点A 出发,以每秒3个单位长度的速度沿数轴向终点C 运动,运动时间为t 秒.当点M 运动到点B 时,点N 从点O 出发,以每秒3个单位长度的速度沿数轴向点C 运动,当点M 到达终点C 时,点N 的运动也停止.①6t ≥时,点M 表示的数是______,点N 表示的数是______.(用含t 的代数式表示)②当点M 到达终点C 时,求此时点N 在数轴上所表示的数.③若点,M N 所对应的数分别是,m n ,当6t >时,求b m c n -+-的值.。
七年级期中数学试卷及答案

七年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是质数?A.21B.37C.39D.49答案:B2.一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是多少?A.32cmB.36cmC.46cmD.52cm答案:B3.下列哪个数是偶数?A.101B.102C.103D.104答案:D4.一个长方形的长是8cm,宽是4cm,那么这个长方形的面积是多少?A.12cm²B.24cm²C.32cm²D.48cm²答案:D5.下列哪个数是奇数?A.111B.112C.113D.114答案:C二、判断题(每题1分,共20分)1.2是质数。
()答案:对2.一个等边三角形的三个角都是60度。
()答案:对3.15是偶数。
()答案:错4.一个正方形的四条边都相等。
()答案:对5.0是奇数。
()答案:错三、填空题(每空1分,共10分)1.1+2+3++100的和是______。
答案:50502.一个正方形的边长是6cm,那么它的面积是______cm²。
答案:363.两个质数相乘,它们的积是______。
答案:合数4.一个长方形的长是10cm,宽是5cm,那么它的周长是______cm。
答案:305.下列哪个数既是偶数又是质数?______。
答案:2四、简答题(每题10分,共10分)1.请问什么是质数?答案:一个大于1的自然数,除了1和它本身外,不能被其他自然数整除的数。
2.请问什么是等腰三角形?答案:有两条边相等的三角形。
五、综合题(1和2两题7分,3和4两题8分,共30分)1.有一个长方形的长是10cm,宽是5cm,求这个长方形的面积和周长。
答案:面积是50cm²,周长是30cm。
2.有一个等腰三角形,底边长是12cm,腰长是13cm,求这个三角形的周长。
答案:周长是38cm。
福州屏东中学2023-2024学年第一学期七年级期中数学试卷附详细答案

福州屏东中学2023-2024学年第一学期七年级期中数学试卷班级________姓名________座号________(完卷时间120分钟满分150分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与2023的和为0的是( )A.2023B. −2023C.12023 D.−120232.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.4.26×104B.42.6×104C.4.26×105D.0.426×1053.算式5a+4a=9a是应用了( )A.加法结合律B.乘法结合律C.分配律D.乘法分配律4.下列式子变形正确的是( )A. −(x−1)= −x−1B.12(2m+1)=m+lC.2(a+b)=2a+bD.2x−12(4x−2)=15.下列说法中正确的是( )A.x+y2是单项式 B、−πx的系数为−1C.−5不是单项式D.−5a2b的次数是36.《庄子》中记载:“一尺之捶,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完,若按此方式截一根长为1的木棍,第5天截取后木棍剩余的长度是( )A.1−125 B.1−124C.125D.1247.某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为( )A.0.7a元B.a0.7元 C.a0.3元 D.0.3a元8.若a >1,则|a|,−a ,1a的大小关系正确的是( )A.|a|>−a >1aB.1a>−a >|a| C.|a|>1a>−a D.−a >|a|>1a9.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(−4)的过程,按照这种方法,图2表示的过程应是在计算( )A.5+2B.5+(−2)C.(−5)+2D.( −5)+(−2) 10.有理数a ,b ,c 满足abc ≠0,a <b 且a+b <0,|a|a +|b|b+|c|c=−1,那么|ab|ab+|bc|bc+|ac|ac+|abc|abc的值为( )A.0B.2C.0或2D.0或−2 二、填空题(本题共8小题,每小题4分,共32分)11.某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作______. 12.多项式3ab 2−2ab −1的次数为______. 13.比较大小:−65______−76(填“<”或“>”).14.若有理数a ,b 互为倒数,c ,d 互为相反数,则(c+d)2023+(1ab)2=______.15.若5a 3b n 与−8a m b 2的和为单项式,则m+n=______.16.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,设水流速度是x 千米/时,则3小时后甲船比乙船多航行的路程为______千米.17.观察下面的数:2x ,−4x 2,8x 3,−16x 4,32x 5,…则第n 个数为______(n 是正整数).18.已知a ,b ,c 满足2a 2−b=4,a 2+c=5,则4a 2−3b −2c 的值为______.图1图2三、解答题(本题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题12分)计算(1)−23−(−134) −(−23)+(−1.75) (2)−3×116÷(−23)(3)−14−16×[2−(−3)2] (4)(−992425)×520.(本小题8分) (1)化简:5a+3b −6a+7b.(2)先化简,再求值:5(a 2b −3ab 2)−2(a 2b −7ab 2),其中a=−1,b=2.21.(本小题6分)为践行劳动教育,学校特意划出一块长方形土地供学生劳作.如图,长方形EFGH 土地一面靠墙,现将不靠墙的三面向内推进x m 修建小路,在小路内侧用篱笆围出一块长方形菜地ABCD. (1)当x =1时,求篱笆的长度. (2)用x 的代数式表示篱笆的长度.22.(本小题8分)已知M=2a 2+3ab −2a −1,N=a 2+2ab −1. (1)求M −2N.(2)若M −2N 的值与a 的取值无关,试求b 的值. 23.(本小题8分)已知有理数a 、b 、c 在数轴上的位置.(1)a+b_____0;a+c_____0;b −c_____0 (用“>,<,=”填空). (2)试化简|a+b|−|a|.24.(本小题8分)某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户bacF20mG家庭的水费:月用水量不超过20m 3时,按2元/m 3计算;月用水量超过20m 3时,其中的20m 3仍按2元/m 3计算,超过部分按2.6元/m 3计算(1)小花家第二季度用水情况如下表,小花家这个季度共缴纳水费多少元? (2)若小花家7月用水量为am 3,请你用含a 的代数式表示当月的水费支出.25.(本小题8分)观察下列两个等式:1−34=3×1×34−2,2−47=3×2×47−2,给出定义如下:我们称使等式a −b=3ab −2成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b),如:数对(1,34),(2,47),都是“同心有理数对”.(1)判断数对(3,1),(−1,−12)是“同心有理数对”吗?如果是,请说明理由.(2)若(m ,n)是“同心有理数对”.①则(−n , −m)_____“同心有理数对”(填“是”或“不是”). ②求3m(n −1)+[2m −n+2(n −3)]的值. 26.(本小题10分)2023年春节将至,某灯具厂为抓住商业契机原计划每人每天生产某种景观灯10盏,以便投入市场进行销售.但由于各种原因,实际每人每天生产景观灯数与计划每人每天生产景观灯数相比有出入,下表是该灯具厂某月(30天)的工人小吴每天生产情况(增产记为正,减产记为负):(1)求这个月该灯具厂工人小吴每天实际平均生产景观灯多少盏.(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得20元,若超额完成任务,则超过部分每盏另外奖励6元,少生产一盏扣10元,那么这个月该灯具厂工人小吴的工资总额是多少元?27.(本小题10分)已知:a是最大的负整数,且a、b、c满足(c−6)2+|a+b|=0.(1)直接写出a=________,b=________,c=________.(2)a,b,c所对应的点分别为A,B,C,若点A以每秒m(0<m<3)个单位长度的速度运动,点B和点C分别以每秒3个单位长度和6个单位长度的速度向右运动,假设1秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.①当点A向右运动,且m=34时,请问:3BC−4AB的值是否随着时间t的变化而变化.②当3BC−2AB的值不随着时间的变化而变化,求m的值.福州屏东中学2023-2024学年第一学期七年级期中数学试卷参考答案班级________姓名________座号________(完卷时间120分钟满分150分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与2023的和为0的是( )A.2023B. −2023C.12023 D.−120231.解:互为相反数的两个数之和为0,故选B。
期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册

人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。
2024-2025学年河南省洛阳市涧西区七年级(上)期中数学试卷(含答案)

2024-2025学年河南省洛阳市涧西区七年级(上)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−2024的绝对值是( )A. 2024B. −2024C. 12024D. −120242.在−3,32,5,0,−0.2中,负整数有( )A. 4个B. 3个C. 2个D. 1个3.下列算式的结果等于−6的是( )A. 4−(−2)B. 12÷(−2)C. 4+(−2)D. (−3)×(−2)4.下列计算中,正确的是( )A. |−2|=−2B. (−1)2=−2C. −7+3=−4D. 6÷(−2)=35.我国近年来大力推进国家教育数字化战略行动,经过10余年的探索,截至目前,中国上线慕课数量超过7.68万门,注册用户4.54亿,在校生获得慕课学分认定4.15亿人次,服务国内12.77亿人次学习,建设和应用规模居世界第一.用科学记数法将数据12.77亿表示为( )A. 1.277×108B. 12.77×108C. 1.277×109D. 1277×1076.用代数式表示“m的2倍与n平方的差”,正确的是( )A. (2m−n)2B. 2(m−n)2C. 2m−n2D. (m−2n)27.某厂家要生产一批货物,每天生产的个数与生产的天数之间的关系如表所示:每天生产的个数50060080010001200⋯生产的天数2420151210…若每天生产的个数用m(个)表示,生产的天数用t(天)表示,则下列说法正确的是( )A. 这批货物共有1200个B. 生产的天数t会随着每天生产的个数m的增大而增大C. 要想8天完成这批货物的生产任务,则每天需要生产1500个D. m与t乘积为定值,它们成正比例关系8.某窗户的形状如图所示,其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a=2cm,长方形的长和宽分别为b=2cm和c=1cm(π取3.14).则该窗户的面积为( )A. 20.56cm 2B. 6.28cm 2C. 7.14cm 2D. 14.28cm 29.某玩具店用600元购进了10套玩具.如果每套玩具的售价以65元为标准,超出的记作正数,不足的记作负数,售价记录如下:+3,−2,+4,+2,−1,−3,0,+1,−2,−4(单位:元),则卖完这10套玩具后( )A. 亏损了2元B. 亏损了20元C. 盈利了52元D. 盈利了48元10.若a ≠3,则我们把33−a 称为a 的“卢卡斯数”,例如4的“卢卡斯数”是33−4=−3,−3的“卢卡斯数”是33−(−3)=12.已知a 1=6,a 2是a 1的“卢卡斯数”,a 3是a 2的“卢卡斯数”,a 4是a 3的“卢卡斯数”,⋯⋯,依此类推,则a 2024的值为( )A. −1B. 34C. 43D. 95二、填空题:本题共5小题,每小题3分,共15分。
山西省晋中市昔阳县多校2024-2025学年上学期期中测试七年级数学试卷

山西省晋中市昔阳县多校2024-2025学年上学期期中测试七年级数学试卷一、单选题1.2024-的绝对值是()A .2024B .2024-C .12024D .12024-2.下列计算正确的是()A .1133⎛⎫--=⎪⎝⎭B .111333--=C .211-+=D .()5353-=--3.用一个平面去截一个四棱柱,截面的形状不可能是()A .正方形B .长方形C .六边形D .七边形4.下面的立体图形是由哪个平面图形绕轴旋转一周得到的()A .B .C .D .5.如图,数轴上的点P 表示的数可能是()A .112-B .324-C .15-D .114-6.根据国内旅游抽样调查统计结果,2024年上半年,我国国内出游人次27.25亿,同比增长14.3%,数据“27.25亿”用科学记数法表示为()A .82.72510⨯B .92.72510⨯C .102.72510⨯D .112.72510⨯7.如图是由7个完全相同的小正方体堆叠成的几何体,若在标有①、②、③、④的其中一个小正方体上放置一个小正方体,从正面看该几何体的形状图不会发生变化,则该正方体的标号是()A .①B .②C .③D .④8.云冈石窟是一部镌刻在石头上的北魏史书,一条通往盛唐的路.某批发商以每件50元购进文创衬衣100件,预计每件70元售出.在实际销售过程中,他按预售价将x 件衬衣售出后,决定将剩下的衬衣打九折销售,全部售完后,共可以获得的利润是()元A .20xB .71300x +C .51300x +D .()13100x -9.动车作为一种现代化的铁路交通工具,具有运行速度快、运行稳定、乘客运载能力大、节能环保等优点,它的出现为人们的出行带来了极大的便利.某隧道长1000米,一列匀速行驶的动车车身进入隧道用时15秒,完全通过该隧道用时40秒,则这列动车行驶的速度是()A .30m/sB .35m/sC .40m/sD .45m/s10.数学活动课上,同学们用黑白小正方形按下面的规律拼摆:小明、小亮、小强、小颖通过观察图形,找出了拼摆成的第n 个图案中黑小正方形的数量a 、白小正方形的数量b 和n 之间的关系.下面说法正确的是()A .小明:()222a n n =+-B .小亮:()21b n =+C .小强:()()2211a n n =+--D .小颖:2)1b n =-(二、填空题11.计算()21312⨯-+的结果是.12.若代数式35m -与32m -的值互为相反数,则m 的值是.13.用[]x 表示不超过x 的最大整数,比如:[3.02]3,[5.96]6=-=-,计算[10.24][9.62]-+的结果是.14.如图,在一块长为2m a ,宽为m b 的长方形土地上种植花草,还留下一条条弯曲的小路便于人们观赏,小路的任何地方的水平宽度都是1m ,则种植花草的面积为2m .15.下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形…按此规律,图20中黑色正方形的个数是.三、单选题16.计算.(1)()127⎛⎫-÷- ⎪⎝⎭;(2)()2183⎛⎫-⨯- ⎪⎝⎭;(3)()51248-÷⨯;(4)()()289163-⨯--÷.四、解答题17.数学课上老师和同学们一起学习了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习所学内容(如图所示),请解答下列问题:()()22252m n mn mn m n --+222522m n mn mn m n =--+第一步222252m n m n mn mn =+--第二步247m n mn =-第三步(1)第一步的目的是_______,依据是__________;(2)从第______步开始出现错误,错误的原因是__________;(3)请你进行正确的化简,并求当m ,n 互为倒数时,原式的值.18.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则7-表示的点与_____表示的点重合;(2)若1-表示的点与7-表示的点重合,回答以下问题:①12表示的点与______表示的点重合;②若数轴上点A,点B之间的距离为2024(点A在点B左侧),且A,B两点经折叠后重合,则A表示的数是______,B表示的数是______.19.如图是由7个完全相同的小立方体组成的一个几何体,请在指定位置画出从正面、左面、上面看到的这个几何体的形状图.20.山西因特殊的地理环境,培育出了众多品质一流的特色杂粮,被誉为“小杂粮王国”,某地一家小型杂粮工厂生产荞麦面和红豆面,每天两种产品合计生产2000袋,设每天生产荞麦面x袋.两种产品的成本和定价如下表所示:荞麦面红豆面成本(元/袋)5023定价(元/袋)5628(1)用含x的代数式表示每天的生产成本,并化简;(2)用含x的代数式表示每天获得的利润,并化简;x=时,求每天的生产成本和获得的利润.(3)当80021.随着自媒体时代的到来,很多农产品的售卖改变了传统的销售模式,小明把自家的冬枣产品放到网上利用直播平台进行销售,他原计划每天卖100千克冬枣,但由于种种原因,实际每天的销售量与计划相比有出入,如表是一个星期的销售情况(超额记为正,不足记为负,单位:千克):星期一二三四五六日与计划量的差额2+5-1-4+7-18+5-(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售_____千克;(2)上个星期日小明卖了100千克冬枣,现在用正数表示比前一天多的销售量,负数表示比前一天少的销售量.请你完成销售量变化表(单位:千克):_____.星期一二三四五六日实际销售量比前一天的变化量2+4+5+23-(3)这星期实际销售总量与计划总量相比,增加或减少了多少千克?22.请阅读下面材料,完成相应的任务:“速算”指利用数与数之间的特殊关系进行较快的加减乘除运算.一个两位数与15相乘时,先在这个两位数1的末尾添0得到一个三位数,再用这个三位数加上它本身的一半,即添零加半.如32与15,那么这两个数的积是32后面加0变成320,然后再加上320的一半也就是160,结果为480,即3215320160480⨯=+=.(1)请写出下列各式的运算结果:4515⨯=_______,8715⨯=________;(2)用a 表示两位数十位上的数,用b 表示个位上的数.①这个两位数可以表示为____________:②上述速算方法可用等式表示为:____________;③请说明②中等式的正确性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)自主学习达标检测期中试卷A 卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.如图,AE 和BD 相交于点C ,则图中的对顶角有 ________________________.2.如图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部,则∠AOD 的邻补角是________________.3.杰仔和姚仔去同一电影院看电影,杰仔的票写着7排20座,若杰仔的座位记为(7,20),而姚仔的座位记为(13,6),则姚仔的座位为 .4.若三角形的两边长分别是6,7,则第三边a 的取值范围是 .5.如图,已知AD ⊥BD ,AC ⊥BC ,∠1=25°,∠2的度数为 .6.命题“同角的补角相等”的题设为 ,结论为 . 7.已知点P 在第二象限,试写出一个符合条件的点P ; 8.如图,AB ∥ CD ,BE 、CE 分别平分∠ABC 、∠DCB ,则∠1 + ∠2 = .9.若从一个多边形的一个顶点出发,最多可以引10条对角线,则 它是 边形.10.如图所示,∠C 的度数是_______.11.明明家在电视塔西北300米处,亮亮家在电视塔西南300米处,则明明家在亮亮家的________方向.ABC DE第1题 ABCDEO 第2题A B第5题第8题120︒40︒CBA第10题12.如图,AD 是△ABC 的中线,AE 是△ABD 的中线,若CE = 9cm ,则BC = cm .13.将4cm 长的线段向右平移2cm 得到线段AB ,则AB = . 14.如图,矩形ABCD 平移后得到矩形A 1B 1C 1D 1,若A 1的坐标为(-7,-6),则B 1的坐标为 . 二、选择题(共4小题,每题3分,共12分)15.如图,BA ∥DE ,∠A = 150°,∠D = 140°,则∠C 的度数是( )A .60°B .75°C .70°D .50°16.如图所示,右边的四个图形中,经过平移能得到左边的图形的是( )DCBA17.下面各角能成为某多边形的内角的和的是( )A .270 °B .1080°C .520°D .780° 18.点P (x ,x - 2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 三、解答题(共60分) 19.(5分)推理填空:如图∵∠B = (已知);∴AB ∥CD ( ); ∵∠DGF = (已知);∴CD ∥EF ( ); ∴AB ∥EF ( );∴∠B + =180°( ). 20.(5分)如图,写出△ABC 三顶点的坐标,并在图国描出点A 1(3,3),B 1(2,-2),第12题第14题C 1(4,-1),并说明△ABC 与△A 1B 1C 1的位置关系. 21.(5分)如图,直线AB 、CD 相交于点O ,∠BOE =∠EOD ,且∠AOE =10°,求∠AOC的度数.22.(6分)在△ABC 中,∠A +∠B = 110°,∠C = ∠B ,求∠A 、∠B 、∠C 的度数.ABDO E23.(6分)如图,△ABC中,∠A=36°,∠ABC=40°,BE平分∠ABC,∠E=18°.CE平分∠ACD吗?为什么?24.(6分)(1)在平面直角坐标系中,A、B点的位置如图所示,写出A、B两点的坐标:.(2)若C(-3,-4)、D(3,-3),请在图示坐标系中标出C、D两点.(3)写出A、B、C、D四点到x轴和y轴的距离:A()到x轴的距离为,到y轴的距离为.B()到x轴的距离为,到y轴的距离为.C(-3 ,- 4)到x轴的距离为,到y轴的距离为.D(3 ,- 3 )到x轴的距离为,到y轴的距离为.(4)分析(3)中点的坐标与该点到坐标轴的距离的关系,利用你所发现的结论写出点P (x,y)到x轴的距离为,到y轴的距离为.25.(6分)如图,已知在△ABC中,∠ABC=∠C,BD⊥AC于D点.(1)若∠ABD =40°,求∠C 的度数;(2)若∠DBC =α°,求∠A 的度数(用含α的式子表示).26.(7分)如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数. 27.(7分)如图,AD ⊥BC 于点D ,∠1=∠2,∠CDG =∠B , 试说明EF ⊥BC 的理由.AB C D28.(7分)已知AD 、AE 分别是△ABC 的高和角平分线,∠B =58°,∠C =32°,求∠DAE 的度数.A 231F G C D七年级数学(下)自主学习达标检测期中试卷B 卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.如图,计划把河水引到水池A 中,先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使使所开的渠道最短,这样设计的依据是 .2.如图,直线AB 、CD 相交于O ,且∠AOC =2∠BOC ,则∠AOD 的度数为 .3.有一个英文单词的字母顺序对应如右图中的有序数对分别为(5,3),(6,3),(7,3)(4,1),(4,4)请你把这个英文单词写出来或者翻译成中文为 .4.命题“正数之积是正数”题设是 ;结论是 . 5.已知ΔABC 是一个有两边相等的三角形,若它的两边长分别为8㎝和3㎝,则它的周长为 .6.直角坐标系上第四象限的一点A 到x 轴的距离为4,到y 轴的距离为3,则点A 的坐标为 .7.在平面直角坐标系中,点M (t -3,5-t )在坐标轴上,则t = .8.在△ABC 中,如果∠A ∶∠B ∶∠C =1∶1∶2,根据三角形按角进行分类......,这个三角形是 .9.如图,正方形ABCD 的顶点坐标分别为A (4,3),B (0,3),C (0,-1),则点D 的坐标是__________.10.若P A //MN ,PB //MN ,则P 、A 、B 在同一直线上吗?__________.第1题AB CDEFGH IJK L M N O P Q R S T U VW X Y Z 12345712346第3题第2题ADAABC DE第1题11.把一副常用三角板如图所示拼在一起,那么图中∠ADE 是 度. 12.五边形的对角线共有_______条.13.如图,在∆ABC 中,AE 是中线,如果∆ABE 的面积是8cm 2,则∆ABC 的面积是___________.14.已知点M ()a 2,3a -+在y 轴上,则点M 的坐标为 . 二、选择题(共4小题,每题3分,共12分)15.点P (m ,1)在第二象限角平分线上,则m =( )A .1B .-1C .1或-1D .不能确定 16.如图,直线EF 分别交CD 、AB 于M 、N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( ) A .∠A =∠CB .∠E =∠FC .AE ∥FCD .AB ∥DC17.下列说法①有且只有一条直线垂直于已知直线;②从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;③直线a 外一点A 与直线a 上各点连接而成的所有线段中最短线段的长是8㎝,则点A 到直线a 的距离是8㎝;④在平面直角坐标系中,点(2,0)到原点的距离是2个单位长度;其中正确的个数是 ( ) A .1个 B . 2个 C .3个 D .4个18.等腰三角形的一边长为5㎝,另一边长为10㎝,则其周长为( )A .20㎝B .25㎝C .20㎝或25㎝D .15㎝或25㎝三、解答题(共60分)19.(6分)已知,如图,∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H ,求证:CD ⊥AB .证明:∵∠1=∠ACB (已知)A D EH12EM DCB NAF第16题∴DE∥BC()∴∠2=()∵∠2=∠3(已知)∴∠3=∴CD∥FH()∴∠BDC=∠BHF()又∵FH⊥AB(已知)∴20.(5分)如图,有一块三角形耕地,AB是小河,AB长20米,BC长12米,AC长16米,且AC⊥BC,现要在C处修建一蓄水池,并向小河AB修一条水渠,将河中的水引入水池中,问怎样修水渠才能最短?水渠最短是多少?21.(5分)建立直角坐标系,将坐标为(2,1),(2,3),(3,4),(5,4),(6,3),(6,1),(4,1),(2,1)的点用线段依次连接形成一个图案.把x轴看成河流,将原图案在水中倒影的相应各端点的坐标表示出来,并指出这些点的坐标与原来各点坐标之间的关系.(倒影:两个图案沿x轴折叠后能完全重合.)22.(6分)已知三角形ABC 、点D ,以点D 作为C 平移后的对应点,作三角形ABC 平移后的图形.DCBA23(6分)一个多边形的内角和与外角和的比为9:2,求这个多边形的边数.12A B CD 第22题24.(6分)如图AB ∥DE ,21∠=∠,问AE 与DC 的位置有什么关系?请说明理由.25.(6分)如图,矩形ABCD 四个顶点分别是A ()2,3-,B ()2,3--,C ()2,3-,D ()2,3,将矩形沿x 轴正方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y 轴负方向平移2个单位长度呢?分别画出平移后的图形.26.(6分)如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E ,交AC 于F .已知A =30°,∠FCD =80°,求∠D 的度数.FEDCBA27.(7分)如图,已知∠DAB +∠D =180°,AC 平分∠DAB ,且∠CAD =25°,∠B =95° (1)求∠DCA 的度数;(2)求∠DCE 的度数.BD CE28.(7分)观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(1)如图①,△ABC中,P为边BC上一点,试观察比较BP + PC与AB+ AC的大小,并说明理由.C图①(2)将(1)中点P 移至△ABC 内,得图②,试观察比较△BPC 的周长与△ABC 的周长的大小,并说明理由.C BA P图② (3)将(2)中点P 变为两个点P 1、P 2得图③,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由.C B A P 1P 2CBAP 12图③ 图④ (4)将(3)中的点P 1、P 2移至△ABC 外,并使点P 1、P 2与点A 在边BC 的异侧,且∠P 1BC <∠ABC ,∠P 2CB <∠ACB ,得图④,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由.。