圆心角、弧、弦、弦心距之间的关系—知识讲解

合集下载

圆心角、弧、弦、弦心距之间的关系 讲义

圆心角、弧、弦、弦心距之间的关系  讲义

九年级下册数学——圆心角、弧、弦、弦心距之间的关系讲义【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB 的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 【定理拓展】○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等 ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等 综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( B )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等 【例2】如图2,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( C )图2A.3∶2B.5∶2C.5∶2D.5∶4 【解析】作OE ⊥CD 于E ,则CE=DE=1,AE=BE=2,OE=1.在Rt △ODE 中,OD=2211+=2.在Rt △OEB 中,OB=22OE BE +=14+=5.∴OB ∶OD=5∶2.【例3】半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,若两弦的弦心距分别为OE 、OF ,则OE ∶OF等于( D )A.2∶1B.3∶2C.2∶3D.0 【解析】∵AB 为直径,∴OE=0. ∴OE ∶OF=0.【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】41×360°=90°,∴弦所对的圆心角为90°. 【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD ⊥AB ,OD=DB=AD.设OD=x ,则AD=DB=x.在Rt △ODB 中,∵OD=DB ,OD ⊥AB, ∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=22222=+++x x DB OD x. ∴AB ∶BC=1∶2=2∶2.∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O 为公共圆心的两个同心圆,大圆的弦AB 交小圆于C 、D.图6(1)求证:AC=DB ;(2)如果AB=6 cm ,CD=4 cm ,求圆环的面积.【分析】求圆环的面积不用求出OA 、OC ,应用等量代换的方法.事实上,OA 、OC 的长也求不出来.(1)证明:作OE ⊥AB 于E ,∴EA=EB ,EC=ED.∴EA -EC=EB -ED ,即AC=BD. (2)解:连结OA 、OC.∵AB=6 cm ,CD=4 cm ,∴AE=21AB=3 cm.CE=21CD=2 cm. ∴S 环=π·OA 2-π·OC 2=π(OA 2-OC 2)=π[(AE 2+OE 2)-(CE 2+OE 2)]=π(AE 2-CE 2)=π(32-22)=5π( cm 2).【例7】如图7所示,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA 、OB.∵OA=OB ,∴∠A=∠B. 又∵AC=BD ,∴△AOC ≌△B OD.∴OC=OD.(1) (2) 证法二:如图(2),过点O 作OE ⊥AB 于E , ∴AE=BE.∵AC=BD ,∴CE=DE.∴OC=OD.【例8】如图8,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6 cm ,EB=2 cm ,∠CEA=30°,求CD 的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF ,构造直角三角形,问题就容易解决.【解】过O 作OF ⊥CD 于F ,连结CO. ∵AE=6 cm ,EB=2 cm ,∴AB=8 cm.∴OA=21AB=4(cm ),OE=AE -AO=2(cm ). 在Rt △OEF 中, ∵∠CEA=30°,∴OF=21OE=1(cm ). 在Rt △CFO 中,OF=1 cm ,OC=OA=4(cm),∴CF=22OF OC =15(cm). 又∵OF ⊥CD ,∴CD=2CF=215( cm).【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧A C=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等.【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O 的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OC A和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC ,∴CP=AB -PA -BC=1,AC=5. ∴OA 2-52=52-1.∴OA=7, 即⊙O 的半径为7 cm.【例16】⊙O 的直径为50 cm ,弦AB ∥CD ,且AB=40 cm ,CD=48 cm ,求弦AB 和CD 之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB 和CD 在圆心同侧时,如图(1),作OG ⊥AB 于G ,交CD 于E ,连结OB 、OD.∵AB ∥CD ,OG ⊥AB ,∴OE ⊥CD.∴EG 即为AB 、CD 之间的距离. ∵OE ⊥CD ,OG ⊥AB ,∴BG=21AB=21×40=20(cm ), DE=21CD=21×48=24(cm ).在Rt △DEO 中,OE=22DE OD -=222425-=7(cm ). 在Rt △BGO 中,OG=22BG OB -=222025-=15(cm ). ∴EG=OG -OE=15-7=8(cm ).(2)(2)当AB 、CD 在圆心两侧时,如图(2),同理可以求出OG=15 cm ,OE=7 c m ,∴GE=OG +OE=15+7=22(cm ).综上所述,弦AB 和CD 间的距离为22 cm 或7 cm.1. 过点O 作OE CD ⊥于E ∴=CE ED∴=∴≅∴=AD DB AOE BOE AO OB ∆∆2. 175mm3.略4. 85. 26. 427. 3.68. 1209. B10. D11. A 12. D13. 内部、外部14. 13cm cm 或15. BC=4cm。

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。

第三节 弧,弦,圆心角,弦心距之间的关系

第三节   弧,弦,圆心角,弦心距之间的关系

教师姓名学生姓名学管师学科数学年级上课时间月日:00--- :00 课题弧,弦,圆心角,弦心距之间的关系教学目标定理的内容及其证明教学重难点定理的内容在证明中都是应用教学过程【学习准备】动手画一圆1)把⊙O沿着某一直径折叠,两旁部分互相重合观察得出:圆是对称图形;2)若把⊙O沿着圆心O旋转180°时,两旁部分互相重合,这时可以发现圆又是一个对称图形。

3)若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这是圆的不变性。

【解读教材】1、认识圆心角、弦心距、弧的度数1)圆心角的定义:。

2)弦心距的定义:。

3)弧的度数:①把顶点在圆心的周角等分成份时,每一份的圆心角是1°的角。

②因为在同圆中相等的圆心角所对的相等,所以整个圆也被等分成360份,这时,把每一份这样得到的叫做1°的弧。

③圆心角的度数和它们对的弧的相等。

2、圆心角、弧、弦、弦心距之间关系定理自制两个圆形纸片(要求半径相等),并且在两个圆中,画出两个相等的圆心角,探究:在⊙O中,当圆心角∠AOB=∠A′OB′时,它们所对的弧AB和A'B',弦AB和''BA,弦心距OM和''MO是否也相等呢?定理总结:在中,相等的圆心角所对的相等,所对的相等,所对弦的也相等。

ABM OA 'M 'B '3、命题的证明: 如图,已知:∠AOB=∠A ′OB ′,求证:弧AB 和A ′B ′,弦AB 和A ′B ′,弦心距OM 和OM ′相等。

问题:定理中去掉“在同圆或等圆中”这个前提,是否还有所对的弧、弦、弦心距相等这样的结论。

举出反例: 。

归纳推论:在 中,如果两个 、两条 、两条 或两条弦的 中有一组量相等,那么它们所对应的其余各组量都分别相等。

(简记:“知一推三”)【例题精析】 例题一:判断:1)圆心角相等,则圆心角所对的弧也相等; ( ) 2)在同圆或等圆中,弦的弦心距相等; ( ) 3)弦的弦心距相等,则弦相等; ( ) 4)相等的圆心角所对的弧相等。

(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档

(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档

CD 的弦心距 OF=_______cm,弦 CD 的长为________cm。
7、 已知⊙O 的半径为 5cm,过⊙O 内一已知点 P 的最短的弦长为 8cm,则 OP=_______。
8‘已知 A、B、C 为⊙O 上三点,若 AB 、 BC 、 CA 度数之比为 1:2:3,则
∠AOB=_______,∠BOC=________,∠COA=________。
(I)连过弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。
例: 如图,CD为⊙O的弦, AC BD ,OA、OB交CD于F、E。
求证:OE=OF
证法一:连结 OC、OD
OC OD, C D
AC BD , COA BOD(等弧所对的圆心角相等) COF DOE OE OF
∠BOC 的度数。
3、如图 3,C 是⊙O 直径 AB 上一点,过点 C 作弦 DE,使 CD=CO,使 AD 的度数 40°,
AOB 100 , OBC 55 , OEC =
度.
2、如图 4,已知 AB 是⊙ O 的直径,C、D 是⊙ O 上的两点, D 130 ,则 BAC 的度数是
.
3、如图 5,AB 是半圆 O 的直径,E 是 BC 的中点,OE 交弦 BC 于点 D,已知 BC=8cm,DE=2cm,则
AD 的长为
A. 40 B. 50 C. 70 D. 80
8、如图 3,AB 为⊙O 的直径,C、D 是⊙O 上的两点, BAC 20 , AD CD ,则
∠DAC 的度数是( )
A. 70° D
B. 45° C
C. 35°
D. 30°
A
O
B
如图 3 二、填空题

5 弦、弦心距、弧等概念——教案

5  弦、弦心距、弧等概念——教案
例1如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.
例2如图,在圆内接△ABC中,AB=AC,D是BC边上一点.
(1)求证:AB2=AD·AE;
(2)当D为BC延长线上一点时,第(1)小题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.
例4:如图,已知:△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB= ,则⊙O的直径等于。
例5某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
二、选择题
6、如图1,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______.
7、如图2,AB为⊙O的弦,∠OAB=75O,则此弦所对的优弧是圆周的______。
图1图2
8、图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=.
9、如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON=.
注意:不能忽略“在同圆或等圆中”这个前提条件,否则不成立;
结合图形深刻理解定理中“所对应”这一词的含义。
例1、如图,O是∠CAE平分线上的一点,以点O为圆心的圆和∠CAE的两边分别交于点B、C和D、E,连结BD、CE.
求证:(1)BC=DE (2)AC=AE (3)DB∥CE
例2如图(3),⊙O是△ABC的外接圆,∠AOB=∠AOC=120°,

27.2 圆心角、弧、弦、弦心距之间的关系

27.2 圆心角、弧、弦、弦心距之间的关系

第27章圆与正多边形第一节圆的基本性质§27.2圆心角、弧、弦、弦心距之间的关系教学目标(1)理解圆心角、弧、弦、弦心距等概念,知道圆是一个旋转对称图形,理解圆的旋转不变性.(2)经历利用圆的旋转不变性探索同圆中圆心角、弧、弦、弦心距之间关系的过程,掌握同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,能运用这一定理及其推论解决有关数学问题.教学重点引进圆心角、弧、弦、弦心距等概念,导出同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,并能进行简单的运用,解决有关数学问题.知识点梳理1.圆上任意两点之间的部分叫做圆弧,简称弧;联结圆上任意两点的线段叫做弦,过圆心的弦就是直径.以圆心为顶点的角叫做圆心角.(没有特别说明时,本章中的圆心角通常是指大于00且小于0180的角)2.圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.3.圆心到弦的距离叫做弦心距.4.在平面上,一个圆绕着它的圆心旋转任何一个角度(大于00且小于0360),都能与原来图形重合.所以,圆是以圆心为旋转对称中心的旋转对称图形,旋转角可为大于00且小于0360的任何一个角.5.能够重合的两条弧称为等弧.半径长相等的两个圆一定能够重合,我们把半径长相等的两个圆称为等圆.(等圆可看作同一个圆移动到不同的位置时的图形)6.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.7.推论在同圆或等圆中,如果两个圆心角、两条劣弧或优弧、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.8.圆被等分成360份,得到的每一份弧叫做01的弧.圆心角的度数和它们对的弧的度数相等.经典题型解析(一)圆的基本概念例1.车轮要做成圆形,实际上就是根据圆的特征( )A.同弧所对的圆心角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形随堂练习:下列说法中,正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径例2.下列说法中,错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随堂练习:下列语句中,正确的有( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴例3.如图,在O中,如果AB CD、是直径,那么图中相等的弧有哪些?为什么?随堂练习:如图,已知在O中,AB CD、.⊥,垂足分别是点E F、分别是弦,OE AB⊥,OF CD请添加一个条件,使得OE OF=.(二)定理与推论例4.已知:如图,O的弦AB与CD相交于点P,OM AB、,⊥,ON DC⊥,垂足分别是点M N 且AD BC=.求证:OM ON=.随堂练习:如图,AB CECD AB.、是O的直径,CD是圆O的弦,//求证:EB AC BD==.例5.已知:如图,AB CD、.、是O的直径,弦//AE CD,联结CE BC求证:BC CE=.随堂练习:已知:如图,AD BC=分别表示弦AB和CD的弦心、是O的弦,AD BC=,OM ON距.求证:OM ON=.例6.已知:如图,AB CD=.、是O的弦,且AB CD求证:ACB DBC∆≅∆.随堂练习:已知:如图,AB是O的直径,AC和AD是分别位于AB两侧的两条相等的弦.求证:AB平分CAD∠.例7.如图,O是ABC∆的形状,并说明∠=∠,探索ABC∠,AOB BOC∆的外接圆,AO平分BAC理由. 等边三角形例8.已知:如图,AB是O的直径,M N⊥.⊥,DN AB、的中点,CM AB、分别是AO BO求证:AC BD=.例9.已知:如图,在O中,弦AB的长是半径OA的3倍,C为AB的中点,AB OC、相交于P.求证:四边形OACB为菱形.例10.已知:如图,AD的度数是090,B C、将AD三等分,弦AD与半径OB OC、.、相交于E F 求证:AE BC FD==.巩固提升一、填空题1.下列说法正确的是_________(填序号)①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.2.圆是中心对称图形,它的对称中心有_________个.3.如图,AB CD =,OE AB ⊥,OF CD ⊥,025OEF ∠=,则EOF ∠=__________.(第3题) (第4题) (第5题)4.如图,在ABC ∆中,070A ∠=,圆O 截ABC ∆的三边所得的弦长都相等,则BOC ∠=_________.5.如图,半圆O 中,直径2AB =,作弦//DC AB ,设AD x =,四边形ABCD 的周长为y ,则y 与x 的函数关系式为_________,自变量x 的取值范围是_________.6.已知等边ABC ∆的三个顶点在半径为r 的圆上,则ABC ∆的周长为_________.7.已知点(1,0)(4,0)A B 、,P 是经过A B 、两点的一个动圆,当P 与y 轴相交,且在y 轴上两交点的距离为3时,则圆心P 的坐标是_________.二、选择题8.下列命题中正确的是( )A .三点确定一个圆B .在同圆中,同弧所对的圆周角相等C .平分弦的直线垂直于弦D .相等的圆心角所对的弧相等9.下列命题,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成的两条弧中,至少有一条是优弧。

3.2圆的对称性(2)圆心角,弧,弦,弦心距之间的关系

3.2圆的对称性(2)圆心角,弧,弦,弦心距之间的关系
A A
D D

B
O
B

O

O′
┏ A′ D′ B′ 由条件: 由条件: AOB=∠ ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ ⌒ ⌒ ②AB=A′B′ ③AB=A′B′ ④ OD=O′D′
猜一猜
拓展与深化
在同圆或等圆中,如果轮换下面五组条件: 同圆或等圆中 如果轮换下面五组条件: 两个圆心角, 两条弧, 两条弦, ①两个圆心角,②两条弧,③两条弦,④两条弦心 你能得出什么结论? 距,你能得出什么结论?与同伴交流你的想法 和理由. 和理由.
B′
M′
A′
O M A
B
O
B(B′)
M′
M A ( A ′)
想一想
圆心角
圆心角, 圆心角, 弧,弦,弦心距之间的关系定理
如图,如果在两个等圆⊙ 如图,如果在两个等圆⊙O和⊙O′中,分别作相等 O′中 的圆心角和∠AOB和 A′O′B′,固定圆心 固定圆心, 的圆心角和∠AOB和∠A′O′B′,固定圆心,将其中 的一个旋转一个角度,使得OA和O′A′重合 重合. 的一个旋转一个角度,使得OA和O′A′重合.
九年级数学(下)第三章 《圆》
3.2圆对称性 3.2圆对称性(2) 圆对称性(2) 圆心角, 圆心角,弧,弦,弦心距之间的关系
想一想
圆的对称性及特性 圆的对称性及特性
圆是轴对称图形, 圆是轴对称图形,圆的对称轴是任意一条经过 圆心的直线,它有无数条对称轴. 圆心的直线,它有无数条对称轴. 圆也是中心对称图形,它的对称中心就是圆心. 圆也是中心对称图形,它的对称中心就是圆心. 用旋转的方法可以得到: 用旋转的方法可以得到:
O

弧弦圆心角之间的关系

弧弦圆心角之间的关系

弧弦圆心角之间的关系
圆心角、弧、弦之间的关系如下:
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

连接圆上任意两点的线段叫做弦(chord),在同一个圆内最长的弦是直径。

顶点在圆心上的角叫做圆心角。

圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。

相关计算公式:(R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长)
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R 为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版【本讲教育信息】一. 教学内容:垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

()()()()1234⇔⇔⇔6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】COA BMD23例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。

九年级数学圆心角、弧、弦、弦心距的关系人教四年制知识精讲

九年级数学圆心角、弧、弦、弦心距的关系人教四年制知识精讲

九年级数学圆心角、弧、弦、弦心距的关系人教四年制【本讲教育信息】一. 教学内容:圆心角、弧、弦、弦心距的关系二. 重点、难点:1. 等弧对等角、对等弦、对等弦心距。

2. 在同圆或等圆中,等角、等弦、等弦心距对等弧。

∴ 点A 、B 到DC 距离相等 ∴ AB ∥CD[例3] ABC ∆中,A ∠为直角,⊙O 与三边交于P 、Q 、R 、S 、K 、L ,若PQ=RS=KL ,求BOC ∠大小。

由勾股定理,2222)47(1)47(--=-x x 整理得02742=--x x 21=x ,412-=x (舍) ∴42==x AB[例6] 如图,C 、D 在以AB 为直径的半圆上,CE ⊥AB 于E ,DF ⊥AB 于F ,DH ⊥OC 于H ,若AE=2cm ,EO=3cm ,求HF 长。

解:作出⊙延长DH ∴ HF=NK 21∵ CM ∥DK ∴⋂⋂⋂==CN MK CD∴⋂⋂=NK CM ∴ CM=NK ∴HF CM CE ==21又 ∵ OC=OA=5cm OE=3cm ∴ CE=4cm ∴ HF=4cm【模拟试题】(答题时间:45分钟)4. 如图3,在半径为2cm 的⊙O 内有长为cm 32的弦AB ,则此弦所对的圆心角AOB ∠为( )A. ︒60B. ︒90C. ︒120D. ︒1507. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A. cm 3 B. cm 2 C. cm 1 D. cm 38. 已知⊙O 的弦AB 长为8cm ,⊙O的半径为5cm ,则弦心距为( ) A. 3cm B. 6cm C. 39cm D. 392cm9. 如图6,在两半径不同的同心圆中,︒=''∠=∠60B O A AOB ,则( ) ︒=60AOB ;正确的是( )A. ①②③④⑤B. ①②④⑤C. ①②D. ②④⑤二. 填空题:11. 在圆中︒80的弧所对的圆心角的度数是。

公开课24.1.3圆心角、弧、弦、弦心距之间的关系

公开课24.1.3圆心角、弧、弦、弦心距之间的关系

D
圆心角、弧、弦、弦心距之间的关系
在自己的圆内作两条长度相同的弦,量 一量它们所对的圆心角
D B C
O A
圆心角、弧、弦、弦心距之间的关系
两位同学作一条长度数相同的弦,看 一看它们所对的圆心角是否相同
B O A
O' B' A'
四、练习
如图,AB、CD是⊙O的两条弦. AOB COD AB = CD (1)如果AB=CD,那么___________ ,_________________ .

1 C
A
2 O D
五、例题
例1 如图,在⊙O中, AB = 求证∠AOB=∠BOC=∠AOC
AC
,∠ACB=60°,
A
证明:

AB =
AC
B
O
∴ AB=AC. 又∠ACB=60°, ∴ AB=BC=CA.
·
C
∴ ∠AOB=∠BOC=∠AOC.
你会做吗?
三, 如图,在⊙O中,AC=BD, 1 45 ,求∠2的度数。 解: ∵ AC=BD
B
AOE 180 3 35
75
︵ ︵ 1. 如图,在⊙ O 中, AB=AC,∠B=70°. 求 ∠C度数. ︵ ︵ ︵ 2.如图,AB是直径,BC=CD=DE, ∠BOC=40°,求∠AOE的度数
第 1题
第 2题
3,如图:在圆O中,已知AC=BD,
试说明:(1)OC=OD
(已知)
图 23.1.5
∴ AC-BC=BD-BC (等式的性质) ∴ AB=CD
∴ ∠1=∠2=45° (在同圆中,相等的弧所对的 圆心角相等)
六、练习
如图,AB是⊙O 的直径,BC = CD ∠COD=35°,求∠AOE 的度数. 解:

圆中知识结构图

圆中知识结构图

关于《圆》的知识结构整理一.主要定理及其作用:1.圆心角,弧,弦,弦心距之间的关系定理:在同圆或等圆中,如果①两个圆心角②两条弧,③两条弦④两条弦心距中,有一组量相等, 那么它们所对应的其余各组量都分别相等:(等弧一等角-一等弦……)用的最多的依据:①在同圆或等圆中,如果两个圆心角相等,那么它们所对的两条弧相等②等弧所对的圆心角相等:③在同圆或等圆中,如果两条弦相等,那么它们所对的两条弧相等④等弧所对的两条弦相等2.垂径定理:如果一条直线①过圆心;②垂直于弦:③平分弦:④平分劣弧:⑤平分优弧•只要具备其中两个条件,就可推岀其余三个结论. (直角三角形一等弧……)用的最多的依据:①垂直于弦的直径平分弦,并且平分弦所的两条弧②平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.③一条弦的垂直平分线I I经过圆心,并且平分这条弦所对的两条弧④平分弧的直径过圆心的直线垂直平分这条弧所对的弦.3.圆周角定理:(1)直径所对的圆周角是直角:(2) 90°的圆周角所对的弦是直径。

(3)—条弧所对的圆周角等于它所对的圆心角的一半:(4)同弧所对的圆周角相等:(5)等弧所对的圆周角相等:(6)在同圆或等圆中,相等的圆周角所对的弧相等:(等弧——等角——直角三角形)4.切线的性质定理:圆的切线垂直于经过切点的半径(直径)。

(垂直关系)5.切线的判定定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线O6.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

(等弦一-等弧一-等角)7.相切和相交两圆的性质定理:如果两圆相切,连心线必过切点。

如果两圆相交,连心线垂直平分公共弦二.主要辅助线及其作用:1.作弦心距:弦的中点.弧的中点。

2.过某一点作弦:构造相等的圆周角。

3.作直径:构造直角三角形和同弧所对的圆周角。

4.连结过切点的半径:“题中若有圆切线圆心切点连一连”。

弦,圆心角,弧,弦心距关系定理及内接四边形

弦,圆心角,弧,弦心距关系定理及内接四边形

四.圆心角、弧、弦、弦心距关系定理【考点速览】圆心角, 弧,弦,弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的孤相等,所对的弦相等,所对的弦的弦心距相等推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.(务必注意前提为:在同圆或等圆中)例1.如图所示,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边分别交于A、B和C、D,求证:AB=CD.ABE OOPO 1O 2O例2、已知:如图,EF 为⊙O 的直径,过EF 上一点P 作弦AB 、CD ,且∠APF=∠CPF 。

求证:PA=PC 。

例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC.例4.如图,⊙O 的弦CB 、ED 的延长线交于点A ,且BC=DE .求证:AC=AE .·OAB CO ·CAEBD例5.如图所示,已知在⊙O 中,弦AB=CB ,∠ABC=︒120,OD ⊥AB 于D ,OE ⊥BC 于E . 求证:ODE ∆是等边三角形.综合练习一、选择题1.下列说法中正确的是( )A 、相等的圆心角所对的弧相等B 、相等的弧所对的圆心角相等C 、相等的弦所对的弦心距相等D 、弦心距相等,则弦相等2.如图,在⊙O 中,AB 的度数是︒50,∠OBC=︒40,那么∠OAC 等于( ) A 、︒15 B 、︒20 C 、︒25 D 、︒303.P 为⊙O 内一点,已知OP=1cm ,⊙O 的半径r=2cm ,则过P 点弦中,最短的弦长为( ) A 、1cm B 、3cm C 、32cm D 、4cm4.在⊙O 中,AB 与CD 为两平行弦,AB >CD ,AB 、CD 所对圆心角分别为︒︒60,120,若⊙O 的半径为6,则AB 、CD 两弦相距( )A 、3B 、6C 、13+D 、333± 5.如图所示,已知△ABC 是等边三角形,以BC 为直径的⊙O 分别交AB 、AC 于点D 、E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆心角、弧、弦、弦心距之间的关系—知识讲解(提高)
【学习目标】
1、了解圆心角、圆周角的概念;
2、理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;
3、掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两
组量对应相等,及其它们在解题中的应用.
【要点梳理】
要点一、弧、弦、圆心角的关系
1、圆心角定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.
2、定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3、推论:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
要点诠释:
(1)一个角要就是圆心角,必须具备顶点在圆心这一特征、
(2)注意定理中不能忽视“同圆或等圆”这一前提、
要点二、圆周角
1、圆周角定义:
像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2、圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3、圆周角定理的推论:
半圆(或直径)所对的圆周角就是直角,90°的圆周角所对的弦就是直径.
要点诠释:
(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都与圆相交、
(2)圆周角定理成立的前提条件就是在同圆或等圆中、
4、圆内接四边形:
(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.
(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).
5、弦、弧、圆心角、弦心距的关系:
在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间就是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)、
*如果它们中间有一组量不相等,那么其它各组量也分别不等、
【典型例题】
类型一、圆心角、弧、弦之间的关系及应用
1、已知:如图所示,⊙O中弦AB=CD.求证:AD=BC.
【思路点拨】
本题主要就是考查弧、弦、圆心角之间的关系,要证AD=BC,只需证»»AD BC
=或
证∠AOD=∠BOC即可. 【答案与解析】
证法一:如图①,∵AB=CD,∴»»AB CD
=.
∴»»»»
AB BD CD BD
-=-,即»»
AD BC
=,
∴AD=BC.
证法二:如图②,连OA、OB、OC、OD,
∵AB=CD,∴∠AOB=∠COD.
∴∠AOB-∠DOB=∠COD-∠DOB,
即∠AOD=∠BOC,∴AD=BC.
【总结升华】在同圆或等圆中,证两弦相等时常用的方法就是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧与等圆心角,必须借助已知的等弦进行推理.
举一反三:
【变式】如图所示,已知AB就是⊙O的直径,M、N分别就是AO、BO的中点,CM⊥AB,DN⊥AB.
求证:»»AC BD
=.
【答案】
证法一:如上图所示,连OC 、OD,则OC =OD,
∵ OA =OB,且12OM OA =,12
ON OB =, ∴ OM =ON,而CM ⊥AB,DN ⊥AB,
∴ Rt △COM ≌Rt △DON,
∴ ∠COM =∠DON,
∴ »
»AC BD =. 证法二:如下图,连AC 、BD 、OC 、OD.
∵ M 就是AO 的中点,且CM ⊥AB,
∴ AC =OC,
同理BD =OD,又OC =OD.
∴ AC =BD,
∴ »
»AC BD =. 类型二、圆周角定理及应用
2、如图,100AOB ∠=o ,点C 在O e 上,且点C 不与A 、B 重合,则ACB ∠的度数为( )
A.50o
B.80o 或50o
C.130o
D.50o 或130o
【思路点拨】分点C 在优弧AB 上与点C 在劣弧AB 上两种情况去求ACB ∠的度数、
【答案】D;
【解析】当点C 在优弧AB 上时,ACB ∠=50°;
当点C 在劣弧AB 上时,ACB ∠=130°,故选D 、
【总结升华】考查分类讨论思想、
举一反三:
【变式】如图,AB 就是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角就是 、
【答案】40°或140°、
3、如图,AB就是⊙O的直径,C、D、E都就是⊙O上的点,则∠1+∠2=___________、
【答案】90°、
【解析】如图,连接OE,则
【总结升华】把圆周角转化到圆心角、
举一反三:
【变式】如图,A、B、C、D就是⊙O
上的四点,且∠BCD=100°,求∠1(所对的圆心角)与∠BAD的大小.
【答案】
∵∠BCD与∠2分别就是所对的圆周角与圆心角
∴∠2=2∠BCD=200°
又∵∠2+∠1=360°,∴∠1=160°
∵∠BAD与∠1分别就是所对的圆周角与圆心角
∴.
4、已知,如图,⊙O上三点A、B、C,∠ACB=60°,AB=m,试求⊙O的直径长、
【答案与解析】
如图所示,作⊙O的直径AC′,连结C′B,
则∠AC′B=∠C=60°
又∵AC′就是⊙O的直径,
∴∠ABC′=90°
即⊙O的直径为、
【总结升华】作出⊙O的直径,将60°、直径与m都转到一个直角三角形中求解、
举一反三:
【高清ID号:356996 关联的位置名称(播放点名称):经典例题6-7】
【变式】如图,△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为( ).
A.22
B.4
C.23
D.5
【答案】A、。

相关文档
最新文档