湘教版九年级上册数学期末测试卷(I)卷

合集下载

湘教版九年级数学上册期末考试卷【及参考答案】

湘教版九年级数学上册期末考试卷【及参考答案】

湘教版九年级数学上册期末考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .106.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.因式分解:3222x x y xy +=﹣__________. 3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG=. (1)求证:△ADF ∽△ACG ;(2)若12AD AC =,求AF FG 的值.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、B6、B7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、()2x x y -3、0或14、140°5、146、5三、解答题(本大题共6小题,共72分)1、2x =2、-53、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)1.5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13. 6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

湘教版九年级数学上册期末测试题1(含答案)

湘教版九年级数学上册期末测试题1(含答案)

湘教版九年级数学上册期末测试题1(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.已知反比例函数y =kx(k ≠0)的图象经过点M (-2,2),则k 的值是( A )A .-4B .-1C .1D .4 2.下列一元二次方程中,没有实数根的是( D ) A .x 2+2x -4=0 B .x 2-4x +4=0 C .x 2-2x -5=0 D .x 2+3x +4=03.某“中学生暑假环保组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计小区2 000户家庭一周内需要环保方便袋约( B )A .2 000只B .14 000只C .21 000只D .9 800只4.对于反比例函数y =1x,下列说法正确的是( C )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大5.在△ABC 中,∠C =90°,若cos A =35,则sin A 等于( C )A.43B.34C.45D.35 6.如图,△AOB ∽△COD ,∠A =∠C ,下列各式中正确的个数为( A ) ①AB BO =CD CO ②AB AO =CD OD ③OB CO =AO OD ④AO OC =BO DO A .1 B .2 C .3 D .4第6题图 第7题图 第11题图7.如图, 一河坝的横断面为四边形ABCD ,AD ∥BC ,AB =DC ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26 mB .28mC .30 mD .46 m8.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( D )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 9.关于x 的一元二次方程(a -1)x 2+3x -2=0有实数根,则a 的取值范围是( D )A .a >-18B .a ≥-18C .a >-18且a ≠1D .a ≥-18且a ≠110.某种衬衫平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售10件,在每件盈利不低于10元的情况下,如果每天要盈利1 080元,每件应降价多少元( C )A .2或14B .14C .2D .811.如图,在矩形ABCD 中,AB =2,BC =3,若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( B )A.3102B.3105C.105D.35512.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距旗杆底部D 的距离是4 m .如图所示,已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆的高度DE 等于( B )A .10 mB .12 mC .12.4 mD .12.32 m第12题图 第14题图 第16题图第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分)13.一元二次方程(x -4)2=4(x -4)的实数根是 x 1=4,x 2=8 .14.)如图,在△ABC 中,AB ≠AC ,D ,E 分别为边AB ,AC 上的点,AC =3AD ,AB =3AE ,F 为BC 边上一点,添加一个条件: ∠A =∠BDF ,得△FDB 与△ADE 相似.(只需写出一个)15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 48 .16.如图,在一笔直的沿湖道路上有A ,B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4 km.游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A ,B 的游船速度分别为v 1,v 2,若回到A ,B 所用时间相等,则v 1v 2=结果保留根号).17.如图,正方形ABCD 边长是2,BE =CE ,MN =1,线段MN 的两端在CD ,AD 上滑动,当DM = 55或255时,△ABE 与以D ,M ,N 为顶点的三角形相似.第17题图 第18题图18.如图,平行四边形OABC 的顶点B ,C 在第一象限,点A 的坐标为(3,0),点D 为边AB 的中点,反比例函数y =kx(x >0)的图象经过C ,D 两点,若∠COA =α,则k 的值等于4tan α .三、解答题(共66分) 19.(6分)计算:(1)2tan 60°·sin 30°+cos 230°-6cos 45°;解:原式=23× 12+⎝⎛⎭⎫322-6× 22=3+34-3=34;(2)2sin 60°-4cos 230°+sin 45°·tan 60°.解:原式=2× 32-4× ⎝⎛⎭⎫322+22× 3 =62-3+62 =6-3.20.(6分)解下列方程: (1)x 2-3x -7=0;解:a =1,b =-3,c =-7, 则x =-b±b 2-4ac 2a =3±372,∴x 1=3+372,x 2=3-372;(2)(x +3)2=x (5x -2)-7.解:原方程可化为x 2-2x -4=0, ∴(x -1)2=5, ∴x -1=± 5,∴x 1=1+5,x 2=1- 5.21.(8分)(贵港中考)如图,一次函数y =2x -4的图象与反比例函数y =kx的图象交于A ,B 两点,且点A 的横坐标为3.(1)求反比例函数的表达式; (2)求点B 的坐标.解:(1)∵点A 的横坐标为3,代入y =2x -4,得y =2× 3-4=2, ∴A(3,2).将A(3,2)代入y =kx,得k =6,∴反比例函数的表达式为y =6x;(2)由题意得⎩⎪⎨⎪⎧y =2x -4,y =6x ,∴x 2-2x -3=0.解得x =3或-1,∴B(-1,-6).22.(8分)(盐城中考)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图.请根据图中提供的信息,解答下列问题: (1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D ”的扇形圆心角的度数; (3)若该校共有800名学生,请估计“最想去景点B ”的学生人数.解:(1)由“最想去A 景点”的人数和其所占百分比可求总人数:8÷ 20%=40人. 答:被调查的学生总人数是40人.(2)总人数减去已知的人数可求“最想去景点D ”的人数40-(8+14+4+6)=8人. 补全条形统计图,如图所示.“最想去景点D ”的扇形圆心角:840× 100%× 360°=72°.答:“最想去景点D ”的扇形圆心角度数为72°.(3)“最想去景点B ”的人数:1440× 100%× 800=280人.答:“最想去景点B ”的人数为280人.23.(8分)(襄阳中考)受益于国家支持新能源汽车发展和“一带一路”倡议等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)设该企业利润的年平均增长率为x , 根据题意,得2(1+x)2=2.88.解这个方程,得x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 答:该企业利润的年平均增长率为20%. (2)2.88×(1+20%)=3.456>3.4.答:该企业2017年的利润能超过3.4亿元.24.(10分)(南宁中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示. (2)如图所示.∵△A 2C 2B 2与△ACB 是位似图形,△A 2C 2B 2∽△ACB. ∴∠A 2C 2B 2=∠ACB.过点A 作AD ⊥CB 延长线于点D ,得到Rt △ACD ,此时,AD =2,CD =6,由勾股定理可得AC =AD 2+CD 2=22+62=210,sin ∠ACB =AD AC =2210=1010,∴sin ∠A 2C 2B 2=1010.25.(10分)(潍坊中考)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度,该楼底层为车库,高2.5米,上面五层居住,每层高度相等,测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米,求居民楼的高度.(精确到0.1米,参考数据:3≈1.73)解:设每层高为x 米,由题意得MC′=MC -CC′=2.5-1.5=1. 则DC′=5x +1,EC ′=4x +1,在Rt △DC ′A ′中,∠DA ′C ′=60°,∴C ′A ′=DC′tan 60°=33(5x +1).在Rt △EC ′B 中,∠EB ′C ′=30°,∴C ′B ′=EC′tan 30°=3(4x +1).∵A ′B ′=C′B′-C′A′=AB.∴3(4x +1)-33(5x +1)=14.解得x ≈3.17.所以居民楼高为5× 3.17+2.5=18.4米.26.(10分)(茂名中考)如图,Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm.动点M 从点B 出发,在BA 边上以每秒3 cm 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以每秒2 cm 的速度向点B 运动,运动时间为t 秒⎝⎛⎭⎫0<t <103,连接MN . (1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.解:(1)由题意知,BM =3t cm ,CN =2t cm ,∴BN =(8-2t)cm ,BA =62+82=10 cm ,当△BMN ∽△BAC 时,BM BA =BNBC,∴3t 10=8-2t 8,解得t =2011; 当△BMN ∽△BCA 时,BM BC =BN BA ,∴3t 8=8-2t 10,解得t =3223,∴△BMN 与△ABC 相似时,t 的值为2011或3223.(2)作MG ⊥BC 于点G ,当AN ⊥CM 时,∠1=∠2,tan ∠2=CN AC =2t 6=t3,在Rt △BMG 中,BG =BM·cos B =3t·45=125t.MG =BM·sin B =3t·35=95t ,CG =8-125t ,在Rt △CMG 中,tan ∠1=MG CG =95t 8-125t ,95t 8-125t=t 3,解得t =1312.。

湘教版九年级上册数学期末考试试卷含答案详解

湘教版九年级上册数学期末考试试卷含答案详解

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.一元二次方程x2+5x=6的一次项系数、常数项分别是()A .1,5B .1,-6C .5,-6D .5,62.若反比例函数y=k x (k≠0)的图象经过点P (-1,1),则k 的值是()A .0B .-2C .2D .-13.一元二次方程x2+x+1=0的根的情况为()A .有两个相等的实数根B .没有实根C .只有一个实数D .有两个不相等的实数根4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为()A .9cm 2B .16cm 2C .56cm 2D .24cm 25.sin30°+tan45°-cos60°的值等于()A B .0C .1D .6.在直角三角形ABC 中,已知∠C=90°,∠A=60°,BC 等于()A .30B .10C .2D .7.如图,Rt △ABC ∽Rt △DEF ,∠A=35°,则∠E 的度数为()A .35°B .45°C .55°D .65°8.如图,为测量河两岸相对两电线杆A 、B 间的距离,在距A 点16m 的C 处()AC AB ⊥,测得ACB 52∠= ,则A 、B 之间的距离应为()A .16sin52°mB .16cos52°mC .16tan52°mD .16tan52m9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A .100只B .150只C .180只D .200只10.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为()A .B .C .D .二、填空题11.若()221ay a x -=+是反比例函数,则a 的取值为______.12.已知关于x 一元二次方程ax 2+bx +c =0有一个根为1,则a +b +c =_____.13.甲同学身高为.5m ,某时刻他影长为1m ,在同一时刻一中老塔影长为20m ,则塔高为____m .14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S 甲2=17,S 乙2=15.则成绩比较稳定的是_____(填“甲”、“乙”中的一个).15.已知sinα=35,则tanα=____.16.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是____米.17.已知锐角A 满足关系式2sin2A-7sinA+3=0,则sinA 的值为_____.18.已知关于x 的一元二次方程x 2+2x-a=0的两个实根为x1,x2,且121123x x +=,则a 的值为.三、解答题19.解下列方程(1)x (x-2)+x-2=0;(2)x2-4x-12=0.20.已知x=-1是一元二次方程x2-mx-2=0的一个根,求m 的值和方程的另一个根.21.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图).等级非常了解比较了解基本了解不太了解频数50m4020根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为人,表中m 的值为;(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?22.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.23.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732 1.732,60千米/小时≈16.7米/秒)24.在矩形ABCD中,E为CD的中点,H为BE上的一点,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若EHBH=3,∠CGF=90°,求ABBC的值.25.如图,已知在平面直角坐标系xOy中,直线y=12x+b经过点B(1,3),且与直线y=﹣2x交于点A,抛物线y=(x﹣m)2+n的顶点在直线y=﹣2x上运动.(1)求点A的坐标.(2)当抛物线经过点A时,求抛物线的解析式.(3)当﹣1<x<1时,始终满足(x﹣m)2+n<12x+b,结合图象,直接写出m的取值范围.参考答案1.C【详解】试题解析:x 2+5x=6,x 2+5x-6=0,一次项系数是5,常数项-6.故选C .考点:一元二次方程的一般形式.2.D .【解析】试题解析:∵反比例函数y=k x (k≠0)的图象经过点P (-1,1),∴1=1k ,解得k=-1.故选D .考点:反比例函数图象上点的坐标特征.3.B 【详解】试题解析:一元二次方程x 2+x+1="0"中,△=1-4×1×1<0,∴原方程无解.故选B .考点:根的判别式.4.A 【详解】∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm 2,∴较大多边形的面积为9cm 2,故选A .5.C .【解析】试题解析:原式=12+1-12=1.故选C.考点:特殊角的三角函数值.6.A【详解】试题解析:∵∠C=90°,∠A=60°,∴∠B=90°-60°=30°,∴由勾股定理得:==30.故选A.考点:1.勾股定理;2.含30度角的直角三角形.7.C.【解析】试题解析:∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°.∵∠F=90°,∴∠E=55°.故选C.考点:相似三角形的性质.8.C【详解】试题解析:因为AC=16米,∠C=52°,在直角△ABC中tan52°=ABAC,所以AB=16•tan52°米.故选C.考点:解直角三角形的应用.9.D.【解析】试题解析:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为4 40,∴池塘里青蛙的总数为20÷440=200.故选D.考点:用样本估计总体.10.C【详解】试题解析:如图,由勾股定理得AC=.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选C.考点:1.勾股定理;2.三角形的面积.11.1【分析】先根据反比例函数的定义列出关于a的不等式和方程,求出a的值即可.【详解】∵此函数是反比例函数,∴210 21a a +≠⎧⎨-=-⎩,解得a=1.故答案为1.【点睛】本题考查的是反比例函数的定义,即形如y=kx(k为常数,k≠0)的函数称为反比例函数.12.0.【详解】试题解析:根据题意,一元二次方程ax2+bx+c="0"有一个根为1,即x=1时,ax2+bx+c=0成立,即a+b+c=0,考点:一元二次方程的解.13.30.【解析】试题解析:∵同一时刻物高与影长成正比例∴1.5:1=塔高:20∴塔高为30m.考点:相似三角形的应用.14.乙.【解析】试题解析:∵S甲2=17,S乙2=15,15<17,∴成绩比较稳定的是乙.考点:方差.15.3 4.【解析】试题解析:如图:设∠A=α,∵sinα=3 5,∴35 BCAB=,设AB=5x,BC=3x,则,∴tanα=34 BCAC=.考点:同角三角函数的关系.16.250.【解析】试题解析:∠AOB=90°-60°=30°,∵∠ABO=90°,OA=500m ,∴AB=12OA=250m .考点:1.含30度角的直角三角形;2.方向角.17.12【解析】试题解析:2sin 2A-7sinA+2=0,把方程左边分解因式得:(sinA-3)=0,2sinA-1=0,sinA-3=0,解得:sinA=12或sinA=3(不合题意舍去)考点:1.解一元二次方程-因式分解法;2.锐角三角函数的定义.18.3.【详解】解:∵关于x 的一元二次方程x 2+2x-a=0的两个实根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a ,∴12121211223+-+===-x x x x x x a ∴a=3.19.(1)x 1=2,x 2=-1.(2)x 1=6,x 2=-2.【详解】试题分析:(1)提取公因式,转化为两个一元一次方程,解一元一次方程即可.(2)分解因式转化为两个一元一次方程,解一元一次方程即可.试题解析:(1)x (x-2)+x-2=0,提取公因式,得(x-2)(x+1)=0,解得x1=2,x2=-1.(2)x2-4x-12=0,分解因式得,(x-6)(x+2)=0,解得x1=6,x2=-2.考点:解一元二次方程-因式分解法.20.m的值为1,方程的另一根为x=2.【分析】由于x=-1是方程的一个根,直接把它代入方程即可求出m的值,然后解方程可以求出方程的另一根.【详解】解:∵x=-1是关于x的一元二次方程x2-mx-2=0的一个根,∴(-1)2-m×(-1)-2=0,∴m=1,将m=1代入方程得x2-x-2=0,(x-2)(x+1)=0解得:x=-1或x=2.故m的值为1,方程的另一根为x=2.【点睛】本题考查一元二次方程的解及解一元二次方程,掌握因式分解的解方程技巧是解题关键.21.(1)200,90;(2)90°,补全图形见解析(3)200人.【详解】试题分析:(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用2000人×调查的学生中“不太了解”的学生所占百分比.试题解析:(1)40÷20%=200人,200×45%=90人;(2)50200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所示:(3)2000×10%=200人.答:这些学生中“不太了解”梅山文化知识的人数约为200人.考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表.22.(1)20%.(2)小华选择方案一购买更优惠.【解析】试题分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2元列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.试题解析:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.考点:一元二次方程的应用.23.(1)112米(2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米)。

新湘教版九年级上数学期末试卷含答案[1]

新湘教版九年级上数学期末试卷含答案[1]

新湘教版九年级上数学期末试卷含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新湘教版九年级上数学期末试卷含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新湘教版九年级上数学期末试卷含答案(word版可编辑修改)的全部内容。

期末测试(时间:90分钟满分:120分)一、选择题(每小题3分,共24分)1.下列函数中:(1)y=-x 2;(2)y=—2x ;(3)y=x2—1;(4)y=21 x .是反比例函数的有( )A 。

1个 B.2个 C.3个 D.4个2.(厦门模拟)两个相似三角形的面积比为1∶4,那么它们的对应边的比为( ) A.1∶16 B 。

16∶1C 。

1∶2D 。

2∶13。

关于x 的一元二次方程x 2—6x+2k=0有两个不相等的实数根,则实数k 的取值范围是( ) A.k ≤29 B 。

k <29C 。

k ≥29D.k >294。

cos60°—sin30°+tan45°的值为( ) A 。

2B 。

—2C 。

1D.—15。

某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 2甲=0.002,s 2乙=0。

03,则( ) A.甲比乙的产量稳定B 。

乙比甲的产量稳定C.甲、乙的产量一样稳定D 。

无法确定哪一品种的产量更稳定6。

如图,在Rt △ABC 中,∠C=90°,∠A=30°,c=10,则下列不正确的是( ) A.∠B=60°B.a=5C 。

完整版湘教版九年级上册数学期末测试卷

完整版湘教版九年级上册数学期末测试卷

湘教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知方程x2+bx+c=0有两个相等的实数根,且当x=a与x=a+n时,x2+bx+c=m,则m、n的关系为(A.m= nB.m= nC.m= n 2D.m= n 22、已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1B.-1C.±1D.03、按100分制60分及格来算,满分是150分的及格分是()A.60分B.72分C.90分D.105分4、反比例函数y=的图象经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是( )A.(1,4)B.(-1,-4)C.(2,2)D.(-2,-2)5、下列方程中,没有实数根的是()A. B. C. D.6、小红利用一些花布的边角料,裁剪后装饰手工画.下面四个图案是她裁剪出的空心等边三角形、菱形、矩形、正方形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A. B. C. D.7、已知反比例函数的图象如图,则一元二次方程x2-(2k-1)x+k2-1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。

8、如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos ACB值为()A. B. C. D.9、如图,某停车场人口的栏杆,从水平位置AB绕点O旋转到A'B′的位置已知AO=4m,若栏杆的旋转角∠AOA′=50°时,栏杆A端升高的高度是()A. B.4sin50° C. D.4cos50°10、如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N.若CM=3,AN=4,则tan∠CAN的值为()A. B. C. D.11、如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是()A. B.2 C.4 D.12、如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是( )A. B. C. 且 D. 或13、如图,由六个边长为1的小正方形组成的网格图中,△ABC的各个顶点都在格点上,则sin∠BAC的值是()A. B. C. D.14、已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为().A.-1或2B.-1C.2D.015、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠0二、填空题(共10题,共计30分)16、一元二次方程x2=3x的解是:________ .17、已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值________.18、如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是________.19、在Rt△ABC中,∠C=90°,若AC=5,tanA=2,则BC=________.20、在平面直角坐标系中,反比例函数y=的图象与经过原点O的直线1交于点A,B(n,﹣2),过点A作AD⊥x轴,垂足为D,已知sin∠AOD=,则k 的值为________.21、如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F再AB上,点B,E在反比例函数y= 的图象上,OA=2,OC=6,则正方形ADEF的边长为________.22、方程2(x+2)+8=3x(x-1)的一般形式为________,二次项系数是________,一次项系数是________,常数项是________.23、如图,等边中,,点D﹐点E分别是边BC,CA上的动点,且,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为________.24、如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=________°.25、如图,将△ABC沿着CE翻折,使点A落在点D处,CD与AB交于点F,恰好有CE=CF,若DF=6,AF=14,则tan∠CEF=________.三、解答题(共5题,共计25分)26、计算:.27、如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tan MOF=时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.28、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)29、我们知道当人们的视线与物体的表面互相垂直且视线恰好落在物体中心位置时的视觉效果最佳,如图是小然站咋地面MN欣赏悬挂在墙壁PM上的油画AD (PM⊥MN)的示意图,设油画AD与墙壁的夹角∠PAD=α,此时小然的眼睛与油画底部A处于同一水平线上,视线恰好落在油画的中心位置E处,且与AD垂直.已知油画的高度AD为100cm.(1)直接写出视角∠ABD(用含α的式子表示)的度数;(2)当小然到墙壁PM的距离AB=250cm时,求油画顶部点D到墙壁PM的距离;(3)当油画底部A处位置不变,油画AD与墙壁的夹角逐渐减小时,小然为了保证欣赏油画的视觉效果最佳,他应该更靠近墙壁PM,还是不动或者远离墙壁PM?30、如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、D6、C7、C8、C10、A11、A12、D13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

湘教版九年级上册数学期末考试试卷附答案

湘教版九年级上册数学期末考试试卷附答案

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.将方程2368x x =-+化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A .3、6、8B .3、-6、-8C .3、-6、8D .3、6、-82.已知反比例函数k y x =的图象过点()2,3-则该反比例函数的图象位于()A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.关于x 的一元二次方程3x 2﹣6x+m=0有两个不相等的实数根,则m 的取值范围是A .m <3B .m≤3C .m >3D .m≥34.若()()()1233,,2,,1,A y B y C y --三点都在函数1y x=-的图象上,则123y y y ,,的大小关系是()A .123y y y <<B .123y y y >>C .132 y y y <<D .无法确定5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是()A .438(1+x )2=389B .389(1+x )2=438C .(1+2x )2=438D .438(1+2x )2=3896.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A .50%B .55%C .60%D .65%7.如图,若P 为△A BC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC的有()A .∠ACP=∠B B .∠APC=∠ACBC .AC AP AB AC =D .PC AC BC AB =8.如图,正方形网格中, ABC 如图放置,其中点A 、B 、C 均在格点上,则()A .tanB=32B .cosB=23C .sinB=13D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是()A .4B .14C .13D .310.如图,△ABC 中,D 、E 两点分别在BC 、AD 上,且AD 为∠BAC 的角平分线.若∠ABE=∠C ,AE:ED=2:1,则△BDE 与△ABC 的面积比为何?()A .1:6B .1:9C .2:13D .2:15二、填空题11.随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为13x =甲,13x =乙,2 3.6s =甲,2 4.2s =乙,则小麦长势比较整齐的是______.12.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.13.如图,在△ABC 中,∠A =30°,∠B =45°,AC =AB 的长为_______.14.如图所示,AB ⊥BD ,CD ⊥BD ,连接AC 交BD 于O .若AB =3,BO =4,BD =12,则OC 的长是________.15.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A 处前进4米到达B 处时,测得影子BC 长为1米,已知小明身高1.6米,他若继续往前走4米到达D 处,此时影子DE 长为______米.三、解答题16.解一元二次方程:(1)241210x -=(2)4)25()(x x --=17.计算:(1)2cos306045︒-︒+︒(2)()101202023tan 303π-⎛⎫---+︒⎪⎝⎭18.钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问海监船继续航行多少海里与钓鱼岛A 的距离最近?19.如图,等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上点,且满足AB 2=DB·CE.(1)求证:△ADB ∽△EAC ;(2)若∠BAC=40°,求∠DAE 的度数.20.某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?21.已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于?(3)PQB △的面积能否等于27cm 请说明理由.22.如图,一次函数y =kx +b 的图像与反比例函数y =m x的图像相交于A (1,2),B (n ,-1)两点.(1)求一次函数和反比例函数的表达式.(2)直线AB 交x 轴于点C ,点P 是x 轴上的点,若△ABP 的面积是6,求点P 的坐标.23.如图,已知二次函数222(1)2(0)y x m x m m m =-+++>的图像与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接AC BC 、.(1)线段AB =______;(2)若AC 平分OCB ∠,求m 的值;(3)该函数图像的对称轴上是否存在点P ,使得PAC △为等边三角形?若存在,求出m 的值;若不存在,说明理由.24.如图1在矩形ABCD 中,点E 是CD 边上的动点(点E 不与点C ,D 重合),连接AE ,过点A 作AF AE ⊥交CB 延长线于点F ,连接EF ,点G 为EF 的中点,且点G 在线段AB 的左侧,连接BG .(1)求证:ADE ∽ABF ;(2)若20AB =,10AD =,设DE x =,点G 到直线BC 的距离为y .①求y 与x 的函数关系式;②当85EC BG =时,求x 的值;(3)如图2,若AB BC =,设四边形ABCD 的面积为S ,四边形BCEG 的面积为1S ,当114S S =时,求DC :DE 的值.参考答案1.D【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:23+680x x -=.从而确定二次项系数为3,一次项系数为6,常数项为-8,故选择:D .【考点】本题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.2.C【分析】先根据点的坐标求出k 值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数k y x=(k≠0)的图象经过点P (2,-3),∴k=2×(-3)=-6<0,∴该反比例函数经过第二、四象限.故选:C .【点睛】本题考查了反比例函数的性质.反比例函数k y x=(k≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.3.A【分析】一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【详解】解:根据题意得△=(﹣6)2﹣4×3×m >0,解得m <3.故选A .4.A【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】解:∵点A (3,y 1),B (-2,y 2),C (-1,y 3)在反比例函数1y x=-的图象上,∴y 1=13-,y 2=12,y 3=1,又∵13-<12<1,∴y 1<y 2<y 3.故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键.5.B【分析】先用含x 的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【详解】解:设每半年发放的资助金额的平均增长率为x ,则去年下半年发放给每个经济困难学生389(1+x )元,今年上半年发放给每个经济困难学生()23891x +元,由题意,得:()23891438x +=,故选:B .【点睛】本题考查求平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.6.C【详解】先求出m 的值,再用一周课外阅读时间不少于4小时的人数除以抽取的学生数即可:∵m=40﹣5﹣11﹣4=20,∴该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:20+440×100%=60%.故选C .7.D【解析】试题分析:本题中隐含着一个条件,即∠A=∠A,选项A和B可以利用有两个角相等的两个三角形相似得到判定;C选项可以利用两组对应边分别成比例,且夹角相等来判定两个三角形相似;D选项无法进行判定.考点:三角形相似的判定.8.C【分析】在Rt△ABC中,AC=2,BC=3,由勾股定理得:AB=利用锐角三角函数定义求出tanB,cosB,SinB即可选出答案.【详解】解:如图在Rt△ABC中,AC=2,BC=3,由勾股定理得:∴tanB=AC2= BC3,∴cosB=BCAB∴SinB=ACAB13.故选:C.【点睛】本题考查网格中锐角三角函数问题,掌握三角函数的定义,熟记锐角三角函数的定义是解题关键.9.A【分析】证明△BEF∽△DAF,得出EF=12AF,EF=13AE,由矩形的对称性得:AE=DE,得出13EF DE=,设EF=x,则DE=3x,由勾股定理求出DF=再由三角函数定义即可得出答案.【详解】∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE=12BC=12AD ,∴△BEF ∽△DAF ,∴12EF BE AF AD ==,∴EF=12AF ,∴EF=13AE ,∵点E 是边BC 的中点,∴由矩形的对称性得:AE=DE ,∴EF=13DE ,设EF=x ,则DE=3x ,∴x ,∴tan ∠BDE=EF DF =.故选A .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.10.D【分析】根据已知条件先求得S △ABE :S △BED =2:1,再根据三角形相似求得S △ACD =94S △ABE =92S △BED ,根据S △ABC =S △ABE +S △ACD +S △BED 即可求得答案.【详解】解:∵AE :ED =2:1,∴S △ABE :S △BED =2:1,AE :AD =2:3,∵∠ABE =∠C ,∠BAE =∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =94S △ABE ,∵S △ABE =2S △BED ,∴S △ACD =94S △ABE =92S △BED ,∵S △ABC =S △ABE +S △ACD +S △BED =2S △BED +92S △BED +S △BED =152S △BED ,∴S △BDE :S △ABC =2:15,故选D .【点睛】本题考查了相似三角形的判定和性质,利用不同底等高的三角形面积的之间的关系进行等量代换是解决本题的关键.11.甲【分析】根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵13x =甲,13x =乙,由方差的意义2 3.6s =甲,2 4.2s =乙,∵3.6 4.2<,∴2s <甲2s 乙,∴甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是熟练掌握方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.-2【分析】根据根与系数的关系即可求解.∵x 1+x 2=-2,x 1.x 2=k-1,22212121212()3x x x x x x x x +-=+-⋅=4-3(k-1)=13,K=-2.故答案为:-2.【点睛】此题主要考查一元二次方程根与系数的关系,解题的关键是熟知根与系数的关系及应用.13.3+3【详解】过C 作CD ⊥AB 于D ,∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD .∵∠A =30°,23AC =,∴3CD =,∴3BD CD ==.由勾股定理得:223AD AC CD =-=,∴33AB AD BD =+=+.故答案是:3+314.10由CD⊥BD,AB⊥BD,与∠DOC=∠BOA,可证△DOC∽△BOA,由性质OC CD OD==OA AB OB,在Rt△AOB中,由勾股定理AO=5,可求OC=6【详解】解:∵CD⊥BD,AB⊥BD,∴∠D=∠B=90º∵∠DOC=∠BOA∴△DOC∽△BOA∴OC CD OD== OA AB OB∵AB=3,BO=4,BD=12,∴OD=BD-BO=12-4=8在Rt△AOB中由勾股定理∴OC8= 54∴OC=10故答案为:10【点睛】本题考查勾股定理与相似三角形的判定与性质,掌握勾股定理与相似三角形的判定与性质是解题关键15.2【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE长.【详解】如图,由FB ∥AP 可得,△CBF ∽△CAP ,∴CB BF CA AP=,即1 1.614AP +,解得AP=8,由GD ∥AP 可得,△EDG ∽△EAP ,∴ED GD EA PA ,即 1.6448ED ED ++=,解得ED=2,故答案为2.【点睛】此题考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.16.(1)121111,22x x ==-;(2)1236,36x x ==【分析】(1)利用直接开平方法求解即可;(2)利用公式法求解即可.【详解】解:(1)∵241210x -=,∴24121x =,∴21214x =,∴12111122x x ==-;(2)∵4)25()(x x --=,∴2630x x -+=,∴2-466=3622b b ac x a ±-±==±∴1233x x ==.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17.(1)2;(2)0【分析】(1)先把函数值代入,在进行二次根式的乘方,再乘法,最后计算加减即可;(2)先把函数值代入同时计算零次幂负指数去绝对值,再进行二次根式的乘除法,最后合并同类项即可.【详解】解:(1)2cos306045︒︒+︒,2122⎛+ ⎝⎭,=222-+,=2;(2)()101202023tan 303π-⎛⎫---+︒ ⎪⎝⎭,=13233-+⨯,=132-+,=0.【点睛】本题考查特殊三角函数值化简求值问题,掌握特殊的三角函数值及零次幂,负指数,绝对值化简,二次根式混合运算法则是解题关键.18.50海里【分析】过点A 作AD ⊥BC 于D ,根据题意得∠ABC=30°,∠ACD=60°,∠BAC =30°,可证CA=CB ,由CB=50×2=100(海里),可求CA=100(海里),在直角△ADC 中,CD=AC0cos60=100×12=50(海里)即可.【详解】解:过点A作AD⊥BC于D,根据题意得∠ABC=90°-60°=30°,∴∠ACD=90°-30°=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC cos60 =100×12=50(海里).答:船继续航行50海里与钓鱼岛A的距离最近.【点睛】本题考查特殊角三角函数在解直角三角形中的应用,等腰三角形的判定与性质,掌握三角函数的定义,关键是作出正确的图形.19.(1)见解析;(2)(2)∠DAE=110︒【解析】试题分析:(1)根据AB=AC,求得∠ABD=∠ACE,再利用AB2=DB•CE,即可得出对应边成比例,然后即可证明.(2)由△ADB∽△EAC,得出∠BAD=∠E,∠D=∠CAE,则∠DAE=∠BAD+∠BAC+∠CAE=∠D+∠BAD+∠BAC,很容易得出答案.试题解析:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴AB DB CE AB=,∵AB=AC,∴AB DB CE AC=∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.20.(1)见解析;(2)180名【分析】()1由条形图与扇形图知良好的人数与百分比可求抽取的学生数:1640%40(÷=人);可求抽取的学生中合格的人数10,可求合格所占百分比:25%,优秀人数百分比:124030%÷=,即可补全条形图与扇形图;()2求出成绩未达到良好的男生所占比例为:30%,用部分估计总体60030%180(⨯=名)即可.【详解】解:()1由条形图与扇形图知良好的人数16人,百分比为40%则抽取的学生数:1640%40(÷=人);抽取的学生中合格的人数:401216210---=,合格所占百分比:104025%÷=,优秀人数所占百分比:124030%÷=,如图所示:;()2成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180(⨯=名),九年级有600名男生成绩未达到良好有180名.【点睛】本题考查条形统计图、扇形统计图、解题的关键是明确题意,利用数形结合的思想解答问题.21.(1)1秒;(2)3秒;(3)不能,理由见解析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm ,由142BP BQ ⋅=,得()15242x x -⨯=,整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于210cm由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∴3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm ,即72BQ BP ⨯=,()2572t t -⨯=,整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∴PQB △的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(1)y =x +1,2y x =;(2)(-5,0)或(3,0)【分析】(1)根据反比例函数的图象过点A (1,2),可以求得反比例函数的解析式,然后即可得到点B 的坐标,再根据一次函数y =kx +b 的图象过点A 和点B ,然后即可得到一次函数的解析式;(2)根据一次函数的解析式可以得到一次函数与x 轴的交点,然后根据△ABP 的面积是6,即可求得点P 的坐标.【详解】解:(1)∵反比例函数m y x =的图象过点A (1,2),B (n ,-1),∴21m =,解得m =2,即反比例函数的解析式为2y x =,∴21n-=,解得n =-2,∴点B (-2,-1),∵一次函数y =kx +b 的图象过点A (1,2),B (-2,-1),∴221k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=⎩,即一次函数的解析式为y =x +1;(2)设点P 的坐标为(p ,0),∵一次函数y =x +1,∴当y =0时,x =-1,∵△ABP 的面积是6,点A (1,2),B (-2,-1),∴()()12162p --⨯--⎡⎤⎣⎦=,解得p =-5或p =3,即点P 的坐标为(-5,0)或(3,0).【点睛】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)2;(2(3【分析】(1)设1(A x ,0),2(B x ,0),12()x x <,根据题意可得1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,解出1x ,2x ,进而得出212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,根据角平分线的性质可得AD OA m ==,推测出sin OC AD OBC BC AB∠==,进而解得2(2)BC m =+,在Rt BOC 中利用勾股定理可得,m =(3)连接PB ,P 为对称轴上的点,所以PA PB =,又PAC ∆为等边三角形推出PA PC =,进而可得点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,推出1302OBC APC ∠=∠=︒,进而可得tan OC OBC OB ∠==m .【详解】解:(1)设1(A x ,0),2(B x ,0),12()x x <,1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,即1x ,2x 为方程()[(2)]0(0)x m x m m --+=>的根,所以1x m =,2x m 2=+所以212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,若AC 平分OCB ∠,则有AD OA m ==,因为sin OC ADOBC BC AB ∠==,即222m m mBC +=,所以2(2)BC m =+,在Rt BOC 中,因为222OC OB BC +=,所以2222(2)(2)[2(2)]m m m m +++=+,即2222(2)(2)4(2)m m m m +++=+,0m >,所以2(2)0m +≠,所以214m +=,解得m =(3)存在点P 满足题意,连接PB ,则有PA PB =,因为PAC ∆为等边三角形,所以PA PC =,所以PA PB PC ==,所以点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,所以11603022OBC APC ∠=∠=⨯︒=︒,所以tan 3OCOBC OB ∠==,因为0m >,所以20m +≠,所以3m =.【点睛】本题考查二次函数的图象和性质,角平分线,等边三角形的判定,解题的关键是掌握相关知识的,利用数形结合的思想来解答,属于中档题.24.(1)证明见解析;(2)①110(020)2y x x =-+<<;②10011;(3【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)①作GH ⊥BF 于H .利用三角形的中位线定理,推出EC=2y ,再根据DE+EC=20,即可解决问题;②由85EC BG =,可以假设EC=8k ,BG=5k ,利用相似三角形的性质构建方程求出k 即可解决问题;(3)连接BE ,先证△ADE ≌△ABF ,设DE=a ,CD=BC=b ,则==BF DE a ,根据112EBG ECB BFE EBC S S S S S =+=+△△△△及14S S =,构建一元二次方程,即可解决问题.【详解】证明:(1)AE AF ⊥ ,90EAF ∴∠=︒,四边形ABCD 是矩形,90BAD ABC ABF D ∴∠=∠=∠=∠=︒,EAF BAD ∴∠=∠,FAB DAE ∴∠=∠,90ABF D ∠=∠=︒ ,ADE ∴V ∽ABF ;(2)①如图1中,作GH BF ⊥于H ,90GHF C ∠=∠=︒ ,//GH EC ∴,FG GE = ,FH HC ∴=,22EC GH y ∴==,20DE EC CD AB +=== ,220x y ∴+=,110(020)2y x x ∴=-+<<.②∵85ECBG =,∴假设8EC k =,5BG k =,∵2EC GH =,∴4GH k =,∴3BH k ==,∴310FH CH k ==+,∴610FB k =+∵1102y x =-+,∴208x k =-,∵ADE ∽ABF ,AD ABDE BF ∴=,即102020-8610k k =+,解得:1511k =,∴10011x =;(3)如图2中,连接BE ,∵ABCD 为矩形且AB=BC ,∴四边形ABCD 为正方形,∴AB=AD ,∠ABF=∠ADE=90°,又∵AF ⊥AE ,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD ,∴△ADE ≌△ABF ,设DE a =,CD BC b ==,∴==BF DE a ,∴112EBG ECB BFE EBCS S S S S =+=+△△△△()()221111142244a b a b a b a ab=-+-=--∵2S b =,14S S =,∴2222b b a ab =--,即220b ab a --=,∴210b b a a ⎛⎫⎛⎫--= ⎪ ⎝⎭⎝⎭,∴12b a +=或12b a -=(舍去),∴DC DE 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,正方形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.。

湘教版九年级数学上册期末测试卷(及参考答案)

湘教版九年级数学上册期末测试卷(及参考答案)

湘教版九年级数学上册期末测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13 C .18 D .92.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k > C .0k > D .0k <3.如果23a b -=,那么代数式22()2a b ab a a b +-⋅-的值为( )A .3B .23C .33D .434.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是()A .50°B .60°C .80°D .100°8.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________.2.分解因式:2ab a-=_______.3.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于__________.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 名学生,两幅统计图中的m = ,n = .(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A ”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、B7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)12、a (b +1)(b ﹣1).3、20284、140°5、x <1或x >36、﹣2.三、解答题(本大题共6小题,共72分)1、x=3.2、11m m +-,原式=.3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)略.5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23. 6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

(适用考试)(必刷题)湘教版九年级上册数学期末测试卷及含答案

(适用考试)(必刷题)湘教版九年级上册数学期末测试卷及含答案

湘教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. =B. =C. =D. =2、如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y =(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.3、如图,菱形的顶点分别在反比例函数和的图象上,若,则()A. B.3 C. D.4、已知x1, x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.135、如图,且则=()A.2︰ 1B.1︰3C.1︰8D.1︰96、已知点在反比例函数(a为常数)的图象上,则为的大小关系是()A. B. C. D.7、如图,已知点A、B分别在反比例函数y= (x>0),y=﹣(x>0)的图象上,且OA⊥OB,则的值为()A. B.2 C. D.48、已知2是关于x的方程3x2﹣2a=0的一个解,则a的值是()A.3B.4C.5D.69、一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-410、图中两个四边形是位似图形,它们的位似中心是()A.点MB.点NC.点OD.点P11、若=2,则=()A. B. C. D.212、点,点,在反比例函数的图象上,且,则()A. B. C. D.不能确定13、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=的大致图象是( )A. B. C. D.14、已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2B.0<y2<y1C. y1<y2<0D. y2<y<0115、在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°二、填空题(共10题,共计30分)16、如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________。

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。

湘教版九年级数学上册期末测试卷【及参考答案】

湘教版九年级数学上册期末测试卷【及参考答案】

湘教版九年级数学上册期末测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________. 2.因式分解:39a a -=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、A6、B7、A8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a+3)(a-3)3、-124、40°.5、46、2.5×10-6三、解答题(本大题共6小题,共72分)1、原方程无解.2、(1)证明见解析;(2)-2.3、(1)略(2)64、(1)略;(2)AC的长为5.5、(1)50、30%.(2)补图见解析;(3)35.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

湘教版九年级数学上册期末测试卷(有答案)

湘教版九年级数学上册期末测试卷(有答案)

期末检测题考试时间:120分钟 满分:120分第I 卷(选择题共36分)、选择题(本大题共12小题,每小题3分,共36分)1.如图,在 Rt △ ABC 中,/ C = 90°,/ A = 30°, c = 10,则下列不正确的是 (D ) .tanB=©32. (港南一中模拟)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为 A. B. C. D.3. 2 2$甲=0.002 , S z = 0.03,则( A ) A.B. C.D. 4.A. B. C. D. 5. 甲比乙的产量稳定 乙比甲的产量稳定 甲、乙的产量一样稳定 无法确定哪一品种的产量更稳定 用配方法解下列方程,配方正确的是 (27 281 2y -7y — 4= 0可化为 2 y + = gx 2— 2x — 9= 0 可化为(x — 1)2= 8 2 2x + 8x — 9= 0 可化为(x + 4) = 1622x — 4x = 0 可化为(x — 2) = 4 —1已知反比例函数 y =〒,下列结论不正确的是 图象经过点(一1, 1) 图象在第二、四象限 当 x >1 时,—1<y <0 当x <0时,y 随着x 的增大而减小 在四边形 ABCD 中, AD// BC,对角线 AC 与BD 相交于点O,如果S A ACD : S L ABC = 1: 2,那么 S AAOD : S A BOC 是( B ) A. 1 : 3 B . 1 : 4 C . 1 : 5 D . 1 :6 6. (20172安徽)一种药品原价每盒 25元,经过两次降价后每盒16元,设两次降价的5A. 16(1 + 2x ) = 25 B . 25(1 — 2x ) = 162 2C. 16(1 + x ) = 25 D . 25(1 — x ) = 16 7.(北海四中模拟)如图,一艘海轮位于灯塔 P 的北偏东55°方向,距离灯塔 2海里的点A 处•如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是(C )A. 2海里 B . 2sin 55。

湘教版九年级上册数学期末考试试卷有答案(1)

湘教版九年级上册数学期末考试试卷有答案(1)

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.已知反比例函数y=kx的图像经过点(﹣3,1)则k的值为()A.﹣3 B.1 C.3 D.﹣12.如图,点A在函数y=4x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为()A.B.C.D.3.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N4.学校九年级举办了一次数学测试,为了评价甲乙两班学生的测试成绩,经计算他们的方差分别是:S2甲=10.2,S2乙=8.8,则下列说法正确的是()A.甲班比乙班的成绩更稳定B.乙班比甲班的成绩更稳定C.甲班跟乙班的成绩同样稳定D.无法确定哪班成绩稳定5.下列比例式中,不能..由mn ab=得到的比例式是A.a nm b=B.a mn b=C.m na b=D.m ba n=6.若关于x的一元二次方程(k﹣1)x2﹣2kx+k﹣3=0有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠1C.k≥34D.k≥34且k≠17.如图,△ABC中,AB=AC=13,BC=10,则sin B=()A .512B .1013C .513D .12138.关于函数y =x 2﹣4x +4的图像与x 轴的交点个数,下列说法正确的是( ) A .两个相同的交点B .两个不同的交点C .没有交点D .无法判断9.给出一种运算:对于函数n y x =,规定1n y nx -'=.例如:若函数4y x =,则有34y x '=.已知函数3y x =,则方程36y '=的解是A .x 1=x 2=0B .x 1x 2=﹣C .x 1=2,x 2=﹣2D .x 1=4,x 2=﹣4 10.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有A .4B .3C .2D .1二、填空题11.抛物线y =﹣(x +1)2+3的顶点坐标是_____.12.若关于x 的一元二次方程x 2﹣3x +c =0有一个根是2,则另一根是_____.13.如图,已知∠ADE =∠C ,且AD =3,AF =8,AC =6,则AE =_____.14.两个相似三角形的相似比为2:3,则它们的面积之比为_____.15.已知点A (﹣2,y 1),B (3,y 2),C (5,y 3)是反比例函数y =﹣1x图像上的三个点,请你把y 1,y 2,y 3按从小到大的顺序排列为_____.16.二次函数的图像向下平移3个单位长度后,再向右平移3个单位长度,得到y =x 2+1的图像,则原函数表达式为_____.17.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为468m 2,那么小道进出口的宽度应为 ___m .18.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC =2,且AC 边在直线a 上,将△ABC绕A 顺时针旋转到位置①可得到点P 1,此时AP 1=①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=…按此规律继续旋转,直至得到点P 2020为止,则AP 2020=_____.三、解答题19.(3.14﹣π)0﹣3tan30°2|﹣11()2.20.解一元二次方程:(1)x 2﹣6x =1;(2)4(x +2)2=(x ﹣2)2.21.已知反比例函数y =k x(k ≠0)的图像与一次函数y =ax +b 的图像在第一象限相交于A (1,3),B (3,1)两点.(1)求反比例函数与一次函数的表达式;(2)若点P(m,0)(m>0),过点P作平行于y轴的直线在第一象限内交一次函数y=ax+b的图象于M点,交反比例函数y=kx于N点,若PM>PN,请你结合图像,直接写出m的取值范围.22.我县某校为了让学生的课余生活丰富多彩,开展了以下课外活动:A学习兴趣小组、B健身体育活动、C美术绘画、D音乐、E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)“健身体育活动”所在扇形的圆心角的度数为;(4)若该校共有4000名学生,请估计该校喜欢A,B,C三类活动的学生共有多少人?23.如图,建设“五化东安”,打造“绿色发展样板城市”.在数学课外实践活动中,小薇在紫水河北岸的自行车绿化道AC上,在A处测得对岸的吴公塔D位于南偏东60°方向,往东走300米到达B处,测得对岸的吴公塔D位于南偏东30°方向.(1)求吴公塔D到紫水河北岸AC的距离约为多少米?(精确到1)(2)小薇继续向东走到轮船码头C处,测得对岸的吴公塔D位于西南方向.已知小薇的平均速度为每小时5千米,小薇从B处到轮船码头大约几分钟?(精确到1分钟)24.2020年初新冠疫情袭击全国,永州市教育局出台《永州市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,我县率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生15000人次,第三批公益课受益学生21600人次.(1)如果第二批、第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少人次?x2+bx+c与x轴交于点(﹣2,0),且关于直线x=1对称.25.如图,已知抛物线y=12(1)求抛物线的解析式;x﹣1相交于P,Q两点,平行于y轴的直线x=m交PQ (2)设此抛物线与直线l:y=﹣12于M点,交抛物线于N点.①当点M在点N上方的时候,求MN的表达式(用含m的代数式表示);②在①的条件下当△PQN的面积最大的时候,求m的值及面积的最大值.26.在△ABC中,AB=3,AC=4,BC=5,D是△ABC内部或BC边上的一个动点(与B,C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图,连接GH,AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=1.2,直接写出k的值.参考答案1.A【分析】把(﹣3,1)代入,求解析式即可.【详解】解:把(﹣3,1)代入y=kx得,13k =-, 解得,k=-3故选:A .【点睛】本题考查了待定系数法求反比例函数比例系数k ,解题关键是熟练运用待定系数法求比例系数.2.D【解析】【分析】由点A 在反比例函数的图象上,设出点A 的坐标,结合勾股定理可以表现出OA 2=AB 2+OB 2,再根据反比例函数图象上点的坐标特征可得出AB •OB 的值,根据配方法求出(AB +OB )2,由此即可得出AB +OB 的值,结合三角形的周长公式即可得出结论.【详解】解:∵点A 在函数y =4x(x >0)的图象上, ∴设点A 的坐标为(n ,4n)(n >0). 在Rt △ABO 中,∠ABO =90°,OA =4,∴OA 2=AB 2+OB 2,又∵AB •OB =4n•n =4, ∴(AB +OB )2=AB 2+OB 2+2AB •OB =42+2×4=24,∴AB +OB =AB +OB =-.∴C △ABO =AB +OB +OA =4.故答案为4.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB +OB 的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.3.A【分析】连接其中的两对对应点,它们所在直线的交点即为位似中心.【详解】解:如图所示,连接两对对应点之后,它们的连线都经过点P,因此位似中心是点P;故选:A.【点睛】本题考查了位似图形、位似中心的概念,要求学生理解相关概念并能通过连线正确判断出位似中心,本题较基础,考查了学生对基础概念的理解与掌握.4.B【分析】根据方差越小越稳定可以判断.【详解】解:∵S2甲=10.2,S2乙=8.8,∴S2>S2乙,甲∴乙班比甲班的成绩更稳定;故选:B.【点睛】本题考查了方差的意义,解题关键是理解方差是描述数据的波动情况的,方差越小越稳定.5.C【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A 、由a n mb =得,ab mn =,故本选项不符合题意; B 、由a m nb =得,ab mn =,故本选项不符合题意; C 、由m n a b =得,bm an =,故本选项符合题意; D 、由m b a n=得,ab mn =,故本选项不符合题意; 故选:C .【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.6.D【分析】根据二次项系数不为0和△≥0列不等式组即可.【详解】解:根据关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,列不等式组得,210(2)4(1)(3)0k k k k -≠⎧⎨----≥⎩, 解得,k ≥34且k ≠1, 故选:D .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为0.7.D【分析】过点A 作AD ⊥BC ,垂足为D ,求出AD 长,再根据三角函数的意义计算即可.【详解】解:过点A 作AD ⊥BC ,垂足为D ,∵AB =AC =13,BC =10,∴BD=CD=5,12=,sin B=1213 ADAB=,故选:D.【点睛】本题考查了等腰三角形的性质和三角函数,解题关键是作高构建直角三角形,利用三角函数的意义进行计算.8.A【分析】根据二次函数的图像与x轴的交点问题可直接进行求解.【详解】解:由函数y=x2﹣4x+4可得:()22444140b ac-=--⨯⨯=,∴该二次函数的图像与x轴的交点个数为一个,即两个相同的交点;故选A.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数图像与x轴的交点问题是解题的关键.9.B【详解】由函数y=3x得n=3,则y′=32x,∴32x=36,2x=12,x=±x 1x 2=﹣故选:B.10.B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a=-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a =-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a -=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.11.()1,3-【分析】由题意可直接进行求解.【详解】解:由抛物线()213y x =-++可得顶点坐标为()1,3-; 故答案为()1,3-.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.1.【分析】利用一元二次方程根与系数关系可直接求得另一根.【详解】解:设关于x 的一元二次方程x 2﹣3x +c =0的另一根为a ,根据根与系数关系可得,a+2=3,解得,a=1;故答案为:1.【点睛】 本题考查了一元二次方程根与系数关系,解题关键是熟知一元二次方程两根之和等于b a-. 13.4【分析】由题意易得△ADE∽△ACF,进而根据相似三角形的性质可求解.【详解】解:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACF,∴AD AE AC AF=,∵AD=3,AF=8,AC=6,∴368AE =,∴AE=4;故答案为4.【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题关键.14.4∶9【分析】根据相似三角形的性质可直接进行求解.【详解】解:由两个相似三角形的面积比等于相似比的平方可得:两个相似三角形的相似比为2:3,则它们的面积之比为4∶9;故答案为4∶9.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.15.y2<y3<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B和点C的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A在第二象限,点B、C在第四象限,∴y1最大,∵3<5,y随x的增大而增大,∴y2<y3,∴y2<y3<y1.故答案:y2<y3<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.16.y=(x+3)2+4.【分析】将得到的抛物线再平移回原抛物线,根据平移方向与距离可求.【详解】解:∵二次函数的图像向下平移3个单位长度后,再向右平移3个单位长度,得到y=x2+1的图像,∴将y=x2+1的图像向上平移3个单位长度后,再向左平移3个单位长度,得到原抛物线图象,∴原抛物线的解析式为:y=(x+3)2+4,故答案为:y=(x+3)2+4.【点睛】本题考查了二次函数图象平移的变化规律,解题关键是熟记抛物线平移变化规律:左加右减自变量,上加下减常数项.17.2【分析】设小道进出口的宽度应为xm,则剩余部分可合成长为(30﹣2x)m,宽为(20﹣x)m的矩形,根据矩形的面积计算公式,结合种植花草的面积为468m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道进出口的宽度应为xm,则剩余部分可合成长为(30﹣2x)m,宽为(20﹣x)m的矩形,依题意得:(30﹣2x)(20﹣x)=468,整理得:x2﹣35x+300=0,解得:x1=2,x2=35.当x=2时,30﹣2x=26,符合题意;当x=35时,30﹣2x=﹣40<0,不合题意,舍去.故答案为:2.【点睛】本题主要考查了一元二次方程的实际应用,解题的关键在于找到等量关系列出方程.18.【分析】观察图形的变化可得,122AP=;2222AP=+;3422AP=+;4442AP=+;5642AP=+;68422(422)AP=+=+;.发现规律即可求解.【详解】解:观察图形的变化可知:AP1=AP2=2+AP3=4+AP4=AP5=AP6=2(;….发现规律:AP3n=n(;AP3n+1=n(AP3n+2=n(.∴AP2020=AP673×3+1=673(故答案为:【点睛】本题考查了规律型﹣图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.【分析】先计算0指数、三角函数值、负指数和绝对值,再加减.【详解】解:(3.14﹣π)0﹣3tan30°2|﹣11()2-.,【点睛】本题考查了包含三角函数、0指数和负指数的实数计算,解题关键是熟记特殊角三角函数值,明确0指数、负指数的意义.20.(1)123,3x x =(2)1226,3x x =-=-【分析】(1)根据配方法进行求解一元二次方程即可;(2)根据直接开平方法进行求解即可.【详解】解:(1)261x x -=26910x x -+= ()2310x -=3x -=∴123,3x x =(2)()()22422x x +-= ()()222x x +±-=∴()222x x +=-或()222x x +=-,解得:1226,3x x =-=-. 【点睛】 本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 21.(1)一次函数解析式为4y x =-+,反比例函数解析式为3y x=;(2)13m <<【分析】(1)把点A 、B 分别代入一次函数和反比例函数解析式进行求解即可;(2)由题意易得k ax b x +>,然后由图象可直接进行求解. 【详解】解:(1)把点A (1,3),B (3,1)代入一次函数解析式得: 331a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩, ∴一次函数解析式为4y x =-+,把点点A (1,3)代入反比例函数解析式得:3k =,∴反比例函数解析式为3y x=;(2)如图所示:由题意得:点M 、N 和点P 的横坐标相同,代入解析式有:点()4M m,m -+,点3,N m m ⎛⎫ ⎪⎝⎭, ∴34,PM m PN m=-+=, ∵PM PN >, ∴34m m-+>, ∴由图象可得m 的范围为13m <<.【点睛】本题主要考查一次函数与反比例函数的综合,熟练掌握反比例函数的性质是解题的关键.22.(1)200;(2)见详解;(3)108︒;(4)1300人.【分析】(1)用选A的人数除以选A的人所占的百分比即可得到答案;(2)根据调查的总人数分别求出选B和选D的人数即可;(3)根据选“健身体育活动”的人所占的比例即可求出圆心角的度数;(4)根据调查的喜欢A,B,C三类活动人的比例可估计该校喜欢这三类活动的人数.【详解】解:(1)4020%=200÷(名)因此共调查了200名学生;(2)20025%=50⨯(名)选D的有50名学生,20040503020=60----(名)选B的有60名学生,统计图如下(3)60360=108200︒⨯︒,“健身体育活动”所在扇形的圆心角的度数为108︒;(4)4060302000=1300200++⨯(人),喜欢A,B,C三类活动的学生共有1300人.【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从统计图中找到必要的信息是解题的关键.23.(1)260,(2)5;【分析】(1)如图,过点D作DH⊥AC于点H.设DH=x米,通过解直角三角形列方程,得到DH 的长度.(2)求出BC长,再求时间即可.【详解】解:过点D作DH⊥AC于点H.由题意可知,∠HBD=60°,∠DAC=30°,AB=300,设DH=x米,在直角△BHD中,tan60°=DH BH,BH=tan30°=DH AH,,解得,x=∴DH=.答:求吴公塔D到紫水河北岸AC的距离约为260米.(2)由(1)可知,BH=150米,小薇继续向东走到轮船码头C处,测得对岸的吴公塔D位于西南方向,可知DH=HC=260米,BC=150+260=410(米),410米=0.41千米,小薇从B 处到轮船码头的时间为0.410.0825=(小时), 0.082×60=4.92≈5(分钟), 小薇从B 处到轮船码头的时间为5分钟.【点睛】本题考查解直角三角形的应用,解题关键是构造直角三角形,熟练运用解直角三角形的知识进行计算.24.(1)这个增长率为20%;(2)按照这个增长率,预计第四批公益课受益学生将达到25920人次.【分析】(1)设增长率为x ,然后根据题意可列出方程进行求解;(2)由(1)可直接进行列式求解.【详解】解:(1)设增长率为x ,由题意得:()2150********x +=, 解得:120.2, 2.2x x ==-(不符合题意,舍去)答:这个增长率为20%(2)由(1)可得增长率为20%,∴第四批受益学生人数为()2160012025920⨯+=%(人);答:按照这个增长率,预计第四批公益课受益学生将达到25920人次.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键. 25.(1)y =12x 2-x -4,(2)-12m 2+12m +3,(3)当m=12时,面积最大,最大值为12516. 【分析】(1)根据对称轴可求b ,把(﹣2,0),代入可求c ;(2)①表示出M 、N 点坐标,纵坐标相减即可;②根据铅锤法表示三角形面积,求二次函数顶点坐标即可.【详解】解:(1)抛物线的对称轴为x =1可得,1122b -=⨯,解得,b=-1,把b=-1,(﹣2,0),代入得,0=2+2+c ,解得,c=-4,抛物线解析式为:y =12x 2-x -4 (2)由题意可知,M (m, ﹣12m ﹣1),N (m ,12m 2-m -4),MN=﹣12m ﹣1-(12m 2-m -4)=-12m 2+12m +3,(3)抛物线与直线l :y =﹣12x ﹣1相交于P ,Q 两点可得,2112142y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得,1120x y =-⎧⎨=⎩,22352x y =⎧⎪⎨=-⎪⎩, ∴P (-2,0)Q (3,52-) S △PQN =12(-12m 2+12m +3) ×[3-(-2)]=25515442m m -++, 写成顶点式为:S △PQN =251125()4216m --+, 当m=12时,面积最大,最大值为12516. 【点睛】 本题考查了二次函数的综合,解题关键是熟练的运用待定系数法求解析式,准确理解题意,用铅锤法表示三角形面积,利用二次函数顶点坐标求最值.26.(1)90°,(2)正方形,证明见解析,(3)32. 【分析】(1)先判断△ABC 是直角三角形,即可;(2)①延长ED 交BC 于M ,延长FD 交BC 于N ,先证AB ∥DE ,DF ∥AC ,得到平行四边形,再判断出是正方形;②先判断面积最大时点D 的位置,利用高的比等于相似比求k 值.【详解】解:(1)∵AB2+AC2=25,BC2=25,∴AB2+AC2=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,证明:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②由①可知,四边形AGDH一定是矩形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时延长GD交BC于N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,延长P A,交BC于点Q,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D到EF的距离为PQ的长,在△ABC中,12AB×AC=12BC×AQ∴AQ=2.4,PQ=1.2+2.4=3.6∵△DEF∽△ABC,∴k=32 PQAQ.【点睛】此题是相似三角形的综合题,主要考查了相似三角形的性质和判定,平行四边形,矩形,正方形的判定和性质,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线.。

湘教版九年级数学上册期末考试卷及答案【完整版】

湘教版九年级数学上册期末考试卷及答案【完整版】

湘教版九年级数学上册期末考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =44.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539+B .2539+C .18253+D .25318+二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式:ab 2﹣4ab+4a=________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、D6、D7、C8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a52、a(b﹣2)2.3、x1≥-且x0≠4、805、12.6、﹣2.三、解答题(本大题共6小题,共72分)1、3x=2、(1)34m≥-;(2)m的值为3.3、略.4、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)50;(2)240;(3)1 2 .6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

湘教版九年级上学期数学期末考试试卷及参考答案

湘教版九年级上学期数学期末考试试卷及参考答案

15. 如图。在 的正方形方格图形中,小方形的顶点称为格点.
的顶点都在格点上,则
的正弦值是__
______.
16. 已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为________.
17. 如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正 好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为________m.
18. 如图,在矩形
中,

过点 ,则
的值为________.
,将矩形
沿 折叠,点 落在 处,若 的延长线恰好
三、计算题
19. 解方程: (1) x2-2x-8=0; (2) (x-2)(x-5)=-2.
四、作图题
20. 如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、 C(4,5).
(1) 楼高多少米? (2) 若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据: ≈1.73, ≈1.41, ≈ 2.24) 26. 如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动 点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,连接PQ分别从点A、C同时 出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
湘教版九年级上学期数学期末考试试卷
一、单选题
1. 下列函数是反比例函数的是( )
A.
B . y= C . y=x²+2x D . y=4x+8

湘教版九年级上册数学期末考试试题附答案

湘教版九年级上册数学期末考试试题附答案

湘教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.一元二次方程2531x x x -=+化为一般形式()200++=≠ax bx c a 后,a ,b ,c 的值分别是( )A .5a =,4b =-,1c =-B .5a =,4b =,1c =C .4a =,5b =-,1c =D .5a =-,4b =,1c =- 2.下列计算正确的是( )A 1BCD 5-3.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠-4.如图,直线a ,b ,c 被直线1l ,2l 所截,交点分别为点A ,C ,E 和点B ,D ,F .已知////a b c ,且3AC =,4CE =,则BDBF的值是( )A .34B .43C .37D .475.如图,ABC 中,点D ,E 分别在AB ,AC 上,//DE BC ,若1AD =,2BD =,则ADE 与ABC 的面积之比为( )A .1:2B .1:3C .1:4D .1:96.在Rt ABC 中,90C ∠=︒,12AC =,5BC =,那么下列各式中正确的是( ) A .5tan 12A =B .5tan 13A =C .5sin 12A =D .5cos 12A =7.坐标平面内下列个点中,在坐标轴上的是( )A .(3,3)B .(﹣3,0)C .(﹣1,2)D .(﹣2,﹣3)8.如图大坝的横断面,斜坡AB 的坡比i =1:2,背水坡CD 的坡比i =1:1,若坡面CD 的长度为AB 的长度为( )A .B .C .D .249.在一个不透明袋子中装有7个只有颜色不同的球,其中3个红球和4个蓝球,从袋子中任意摸出1个球,是红球的概率为( ) A .47B .37C .13D .1410.一元二次方程2x 2+6x +3= 0 经过配方后可变形为( ) A .233(+)24x = B .2(+3)6x = C .2(3)12x -=D .2315()24x -=二、填空题11.已知2x =2y =x 2+y 2﹣2xy 的值为_____. 12.已知α、β是方程2202010x x +-=的两个根,则αβαβ++=________.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是________.14.如图,在△ABC 中,D ,E ,F 分别是边AB ,BC ,CA 的中点,四边形BEFD 周长为14,则AB +BC 的长为_____.15.已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标______. 16.在Rt ABC 中,90C ∠=︒,若cos 45B =,则tan B =________.三、解答题17.计算:18.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.19.计算:2sin60cos45sin30tan60︒+︒-︒⋅︒.20.从2021年起,江苏省高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.如图,在△ABC中,点D、E、F分别在AB、BC、AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC;(2)若12AFFC=,且S△DBE=2,求△ABC的面积.23.如图,平行四边形ABCD 中,BCD ∠的平分线交AD 于E ,ABC ∠的平分线交ED 于点F .(1)求证:AE DF =;(2)若120A ∠=︒,BF =3EF =,求BC 的长.24.如图,直线1y mx =与双曲线2ky x=(0k ≠)相交于A 、B 两点,点A 的坐标为()1,2.(1)求直线1y 和双曲线2y 的表达式; (2)当12y y >时,请求出x 的取值范围;(3)如图,若在第一象限的双曲线上有一点C ,OA OC =,连接AC ,求AOC △的面积.25.如图1,在边长为3的等边△ABC 中,过点A 作AC 的垂线交CB 延长线于点D .点P ,Q 分别在线段BD ,AC 上,且BP AQ =.设BP x =. (1)求BD 的长;(2)过点Q 作QH ⊥BC ,垂足为H ,当以P ,Q ,H 为顶点的三角形与△CDA 相似时,求x 的值;(3)如图2,PQ 交AB 于点E ,过点E 作EF //BD 交AD 于点F .设EF m =,求m 与x 之间的函数关系式.参考答案1.A 【分析】直接利用移项、合并同类项,即可得出a ,b ,c 的值. 【详解】一元二次方程2531x x x -=+化为一般形式20ax bx c ++=后, 25410x x --=,则5a =,4b =-,1c =-. 故选:A . 【点睛】本题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键. 2.B 【分析】根据二次根式的乘法法则对B 进行判断;根据二次根式的加减法对A 、C 进行判断;根据二次根式的性质对D 进行判断. 【详解】;解:A.B.C.D. 5,故选项错误; 故选:B . 【点睛】本题考查了二次根式的计算,熟悉相关性质是解题的关键. 3.D 【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可. 【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥,解得1m ≠-且2m ≥-. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 4.C 【分析】利用平行线分线段成比例定理列出比例式,计算即可. 【详解】 解:∵a ∥b ∥c , ∴34AC BD CE DF ==,∴33347BD BF ==+. 故选:C . 【点睛】本题考查了平行线分线段成比例定理的应用,灵活运用定理、找准对应关系是解题的关键. 5.D 【分析】由//DE BC ,易得~ADE ABC ∆∆,利用相似三角形的性质,2ADE ABCSAD SAB即可.【详解】 //DE BC ,ADE B ∴∠=∠,AED C ∠=∠,~ADE ABC ∴∆∆,2ADE ABC S AD S AB ⎛⎫= ⎪⎝⎭△△∴, 1,2AD BD ,123AB AD BD , 21139ADE ABCS S. 故选择:D . 【点睛】本题考查相似三角形的面积比问题,关键是掌握相似三角形的判定方法,会用方法证明两个三角形相似,掌握相似三角形的性质,会利用性质解决对应线段比、周长比,面积比等问题. 6.A 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义计算,判断即可. 【详解】 解:如图示:在Rt ABC 中,90C ∠=︒, 12AC =,5BC =,由勾股定理得:13AB = 则512BC tanA AC ==,513BC s n ABi A ,1213AC A c BosA , ∴A 选项计算正确; 故选:A . 【点睛】本题考查了勾股定理,锐角三角函数的定义,熟悉相关性质是解题的关键. 7.B 【分析】根据各象限内和坐标轴上的点的坐标特点得到点(3,3)在第一象限;点(-3,0)在x 轴上;点(-1,2)在第二象限;点(-2,-3)在第三象限. 【详解】A 、点(3,3)在第一象限,所以A 选项错误;B 、点(-3,0)在x 轴上,所以B 选正确;C 、点(-1,2)在第二象限,所以C 选项错误;D 、点(-2,-3)在第三象限,所以D 选项错误. 故选B . 【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对一一对应,记住各象限内和坐标轴上的点的坐标特点. 8.C 【分析】过B 作BE ⊥AD 于E ,过C 作CF ⊥AD 于F ,则四边形BEFC 是矩形,得BE =CF ,由坡比得BE=CF=DF=6(米),AE=2BE=12(米),再由勾股定理解答即可.【详解】过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF.∵背水坡CD的坡比i=1:1,CD=∴CF=DF CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=BEAE,∴AE=2BE=12(米),∴AB=,故选:C.【点睛】本题考查了解直角三角形的应用−坡度坡角问题、等腰直角三角形的性质以及勾股定理等知识;熟练掌握坡比的定义,正确作出辅助线构造直角三角形是解题的关键.9.B【分析】直接根据概率公式求解即可.【详解】∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率是37.故选:B.【点睛】本题考查了概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.10.A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.【详解】解:∵2x 2+6x =−3, ∴x 2+3x =−32,则x 2+3x +94=−32+94,即(x +32)2=34,故选:A . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得. 11.12. 【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可. 【详解】解:2x =-,2y =23xy,则22222()(23)12x y xy x y ,故答案为:12. 【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键. 12.-2021 【分析】根据根与系数的关系得出2020αβ+=-,1αβ=-,再代入计算即可. 【详解】∵α,β是方程2202010x x +-=的两个根, ∴2020αβ+=-,1αβ=-, ∴202012021αβαβ++=--=-. 故答案为:2021-. 【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根与系数的关系:若方程两根为12x x 、,则12b x x a +=-,12c x x a=. 13.1:4【分析】根据是相似三角形周长的比等于三角形边长的比解答即可.【详解】因为原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4.故答案为1:4.【点睛】本题考查了相似三角形的性质,关键是根据相似三角形周长的比等于三角形边长的比解答.14.14【分析】根据三角形的中位线可得DF =12BC ,EF =12AB ,判定四边形BEFD 为平行四边形,利用平行四边形的性质可求解.【详解】∵D ,E ,F 分别是边AB ,BC ,CA 的中点,∴DF ∥BC ,EF ∥AB ,DF =12BC ,EF =12AB , ∴四边形BEFD 为平行四边形,∵四边形BEFD 周长为14,∴DF +EF =7,∴AB +BC =14.故答案为:14.【点睛】本题主要考查了三角形的中位线,平行四边形的判定与性质,判定四边形BEFD 为平行四边形是解题的关键.15.(-3,6).【分析】根据坐标的表示方法由点A 到x 轴的距离为6,到y 轴的距离为3,且它在第二象限内即可得到点A 的坐标为(-3,6).【详解】解:∵点A 到x 轴的距离为6,到y 轴的距离为3,且它在第二象限内,∴点A 的坐标为(-3,6).故答案为(-3,6).【点睛】本题考查点的坐标:在直角坐标系中,过一点分别作x 轴和y 轴的垂线,用垂足在x 轴上的坐标表示这个点的横坐标,垂足在y 轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.16.34. 【分析】根据余弦值,求出三角形的各边,再根据锐角的正切等于对边比邻边列式即可.【详解】解:如图示:∵在Rt ABC 中,90C ∠=︒,cos 4B =, ∴4cos 5BC B AB ==, 设4BC x =,则5AB x =, ∴2222543ACAB BC x x x , ∴33tan 44AC BC x B x , 故答案是:34. 【点睛】此题考查了勾股定理解直角三角形喝锐角三角函数的定义,熟悉相关性质是解题的关键. 17.24.【分析】直接利用二次根式的乘除运算法则计算即可得出答案.【详解】原式=8×3=24.【点睛】本题主要考查了二次根式的乘除运算,正确掌握运算法则是解题的关键.18.1m =,此时方程的根为121x x ==【分析】 直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根,∴b 2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m 为正整数,∴m=1,∴此时二次方程为:x 2-2x+1=0,则(x-1)2=0,解得:x 1=x 2=1.【点睛】此题主要考查了根的判别式,正确得出m 的值是解题关键.19.12.【分析】将特殊三角函数值代入求解.【详解】解:2sin60cos 45sin30tan60︒+︒-︒⋅︒212-⎝⎭12=. 【点睛】本题考查的知识点是特殊三角函数值,解题关键是熟记特殊三角函数值.20.(1)13;(2)图表见解析,16【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.【详解】(1)13; (2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P (选化学、生物)21126==. 答:小明同学选化学、生物的概率是16. 【点睛】本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率.21.(1)该轮船航行的速度为/小时);(2)轮船能够正好行至码头MN 靠岸.理由见解析.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC 为直角三角形.根据勾股定理解答.(2)作线段BR AN ⊥于R ,作线段CS AN ⊥于S ,延长BC 交l 于T ,比较AT 与AM 、AN 的大小即可得出结论.【详解】(1)∵130∠=︒ ,260∠=︒,∴ABC 为直角三角形.∵40AB km =,AC =,∴)BC km == .∵1小时20分钟=80分钟,1小时=60分钟,60=/小时).(2)能.理由:作线段BR AN ⊥于R ,作线段CS AN ⊥于S ,延长BC 交l 于T .∵260∠=︒,∴4906030∠=︒-︒=︒.∵)AC km =,∴)43CS km ==.∴()12AS km =︒==.又∵130∠=︒,∴3903060∠=︒-︒=︒.∵40AB km =,∴)40sin 60BR km =⋅︒=.∴140cos 6040202AR km =⨯︒=⨯=().∵BR AN ⊥,CS AN ⊥,∴CS ∥BR ,∴STC RTB ∽△△,所以ST CS RT BR=,2012ST ST ++ 解得:()8ST km =.所以()12820AT km =+=.又因为19.5AM km =,MN 长为1km ,∴20.5AN km =,∵19.520.5AT <<故轮船能够正好行至码头MN 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,勾股定理,含30°角的直角三角形三边之间的关系,相似三角形的判定与性质,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.22.(1)见解析;(2)S △ABC =18.【分析】(1)先说明∠BED =∠C 和∠B =∠CEF ,即可完成证明;(2)先说明四边形ADEF 为平行四边形得到AF =DE ,再根据12AF FC =得到13AF AC =,再证△BDE ∽△BAC ,最后根据相似三角形的性质解答即可.【详解】(1)证明:∵DE ∥AC ,∴∠BED =∠C ,∵EF ∥AB ,∴∠B =∠CEF ,∴△BDE ∽△EFC ;(2)解:∵DE ∥AC ,EF ∥AB ,∴四边形ADEF 为平行四边形,∴AF =DE , ∵12AF FC =,∴13AF AC =, ∴13DE AC =, ∵DE ∥AC ,∴△BDE ∽△BAC , ∴BDE BAC S S ∆∆=(DE AC)2=19, ∴S △ABC =9S △BDE =9×2=18.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的面积之比为相似比的平方成为解答本题的关键.23.(1)见解析;(2)13.【分析】(1)根据平行四边形性质和角平分线性质可得∠ABF =∠AFB ,∠DEC =∠DCE .即可得到AB =AF ,DE =DC .即可求证结论.(2)过点A 作AH ⊥BF ,垂足为H ,利用∠BAF =120°,BF =AB 的长度,结合(1)即可求出 BC 长度.【详解】解:(1)∵四边形ABCD 是平行四边形.∴AD ∥BC .AB =DC .AD =BC .∴∠AFB =∠FBC ,∠DEC =∠ECB .∵CE 是∠BCD 的平分线,BF 是∠ABC 的平分线.∴∠ABF =∠FBC ,∠DCE =∠ECB .∴∠ABF =∠AFB ,∠DEC =∠DCE .∴AB =AF ,DE =DC .∴AF =DE .∴AF ﹣EF =DE ﹣EF .∴AE =DF .(2)过点A 作AH ⊥BF ,垂足为H ,如图:∵∠BAF =120°,BF =∴∠BAH =60°,BH =12BF =∴sin BH AB BAH =∠8.∴AF =DE =AB =8.∵EF =3.∴AE =AF ﹣EF =5.∴AD =AE +ED =13.∴BC =AD =13.【点睛】本题考查了平行四边形的性质,角平分线的性质,等腰三角形的判定和性质知识,关键在于得到∠ABF =∠AFB ,∠DEC =∠DCE ,从而利用等腰三角形形的性质求解.24.(1)直线的表达式为y 1=2x ,双曲线的表达式为22y x =;(2)−1<x <0或x >1;(3)32. 【分析】(1)首先由于A 是直线和双曲线交点,将A 的坐标代入两个解析式中,求出各个解析式中的参数,由此直接写出直线和双曲线解析式;(2)可以联立直线和双曲线的解析式,求解出另一交点B 的坐标,也可以根据函数图象的性质,得到A 和B 是关于原点对称,写出B 的坐标,根据图象直接写出当y 1>y 2时x 的取值范围;(3)先由A 点坐标,过A 作x 轴垂线,垂足为E ,利用勾股定理求出OA 的长,由OA =OC ,得到OC 的长,设C (m ,n ),利用勾股定理,可以列出m 2+n 2=5,又C 点在双曲线上,可以得到mn =2,联立两个解析式,求出m 和n 的值,得到C 点坐标,利用S △AOE =S △COF =1,如图2,可以将△AOC 的面积转化成四边形AEFC 的面积来求.【详解】解:(1)∵直线y 1=mx 与双曲线2k y x=(k ≠0)相交于A 、B 两点,点A 的坐标为(1,2), 将A 代入到直线解析式中得m =2,将A 代入到双曲线解析式中得2=1k,∴k =2,∴直线的表达式为y 1=2x , 双曲线的表达式为22y x =;(2)联立22y x y x⎧=⎪⎨⎪=⎩,解得1112x y =⎧⎨=⎩,2212x y =-⎧⎨=-⎩,∴B 的坐标为(−1,−2),由图1可得,当y 1>y 2时,−1<x <0或x >1;(3)如图2,过A 作AE ⊥x 轴于E ,过C 作CF ⊥x 轴于F ,∵A (1,2),∴OE =1,AE =2,∴OA 2=OE 2+AE 2=5,∵OA =OC ,∴OC 2=OF 2+AF 2=5,设C (m ,n ),∴m 2+n 2=5,又mn =2,联立得2225mn m n =⎧⎨+=⎩, 消元得m 4−5m 2+4=0,∴m 2=1或4,∵C 在第一象限,∴m =2或1,∵A 与C 不重合,∴C 的坐标为(2,1),∴S △AOE =S △COF =1,∵S △AOE +S 四边形AEFC =S △AOC +S △COF ,∴S △AOC =S 四边形AEFC =12 (AE +CF )•EF =12 (2+1)×1=32, 即△AOC 的面积为32.【点睛】本题是一道反比例函数和一次函数综合题,比较两个函数值大小时,可以先求出交点坐标,由图象写出y 1>y 2时,x 的取值范围,注意看图时,一定要分y 轴右侧和左侧来看,即分x >0和x <0来看图,面积问题,一定要注意k 的几何意义,比如本题的S △AOE =S △COF =1,才能实现面积转化.25.(1)3;(2)0或1;(3)1322m x =+. 【分析】(1)根据直角三角形中30角所对的直角边等于斜边的一半即可求得CD ,进而求得BD ; (2)根据已知条件,分别求得,PH QH ,因为QH DC ⊥,90DAC ∠=︒,则判断60QPH ∠=︒和60PQH ∠=两种情况,分别列比例式求得x 的值即可;(3)过点Q 作QN ∥AB 交BC 于点N ,可得△CQN 为等边三角形,由BE ∥QN 可知△PBE ∽△PNQ ,进而求得BE 关于x 的关系式,又因为AE AB BE EF =-=,从而求得m 与x 之间的函数关系式.【详解】解:(1)在Rt △ACD 中,60C ∠=30D ∴∠=︒∴26CD AC ==∴3BD CD BC =-=.(2)在Rt △CQH 中,3CQ x =-,60ACD ∠=∴3sin60)2QH CQ x =⋅=-11(3)22CH CQ x ==-∴3313(3)222PH PC HC x x x =-=+--=+当△PQH ∽△CDA 时,有60QPH ∠=∴QH33)3()22x x -+解得0x =当△QPH ∽△CDA 时,有60PQH ∠=∴PH33)()22x x -=+解得1x =∴0x =或1.(3)过点Q 作QN ∥AB 交BC 于点N ,可得△CQN 为等边三角形3NQ NC QC x ===-,BN x =,2PN x =∵BE ∥QN∴△PBE ∽△PNQ ∴BE PB QN PN=, ∴31(3)222PB x BE QN x x PN x =⋅=⨯-=- ∵EF ∥BD∴30AFE D ∠=∠=∴30AFE FAE ∠=∠=∴EF AE = ∴31133()2222m AB BE x x =-=--=+. 【点睛】本题考查了等边三角形的性质,锐角三角函数,相似三角形的性质与判定,掌握以上知识点是解题的关键.。

湘教版九年级上册数学期末考试试卷含答案解析

湘教版九年级上册数学期末考试试卷含答案解析

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.已知反比例函数ky x=的图象经过点(1,2),则k 的值为()A .0.5B .1C .2D .42.已知a b =23,则a b b-的值是()A .23B .35C .﹣13D .133.方程x 2﹣2x+1=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根4.已知点A (3,y 1),B (5,y 2)在函数y =5x的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定5.下列各式中,不成立的是()A .cos60°=2sin30°B .sin15°=cos75°C .tan30°•tan60°=1D .sin 230°+cos 230°=16.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A .中位数是5B .平均数是5C .众数是6D .方差是67.在同一平面直角坐标系中,函数y =kx与y =kx +1(k 为常数,k ≠0)的大致图象是()A .B .C .D .8.如图,在ABC ∆中,点,D E 分别在边AB ,AC 上,下列条件中不能判断AED ABC ∆∆∽的是()A .AED ABC ∠=∠B .ADE ACB ∠=∠C .AD EDAC BC=D .AD AEAC AB=9.如图,点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE ∥BC ,已知AE =3,AC =6,AD =2,则BD 的长为()A .4B .6C .7D .810.在Rt ABC 中,90A ∠=︒,若45B ∠=︒,则sin C 的值为()A .12B .2C D .1二、填空题11.如图,在△ABC 中,点D 是AB 的中点,DE ∥BC 交AC 于点E ,若BC =2,则DE 的长是_____.12.点P 在反比例函数y =﹣4x图象上,过点P 作PA ⊥x 轴于点A ,则△POA 的面积是_____.13.如图,某商店营业大厅自动扶梯AB 的坡度为i =1:2.5,过B 点作BC ⊥AC .垂足为点C .若大厅水平距离AC 的长为7.5m ,则两层之间的高度BC 为_____米.14.已知关于x的方程x2+3x+q=0的一个根为﹣3,则它的另一个根为_____,q=_____.15.两个相似三角形的最短边长分别为5cm和3cm,它们的周长之差为12cm,那么较大三角形的周长为_____cm.16.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.17.如图所示是小明家房子的侧面图,屋面两侧的斜坡AB=AC=6米,屋顶∠BAC=150°,计划把图中△ABC(阴影部分)涂上墙漆,若墙漆的造价每平方米为100元,则这部分墙漆的造价共需_____元.18.我们规定:等腰三角形的底角与顶角度数的比值叫做等腰三角形的“特征值”.如图,△ABC是以A为顶点的“特征值”为12的等腰三角形,在△ABC外有一点D,若∠ADB=∠ABC,AD=4,BD=3,则∠ABC=_____度,CD的长是_____.三、解答题19.计算:|﹣2|+(π+2019)0﹣2tan45°.20.2018年全国青少年禁毒知识竞赛开始以来,永州市青少年学生跃参如,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解我市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图(1)本次抽查的人数是;(2)扇形统计图中不及格学生所占的圆心角的度数为度;(3)补全条形统计图;(4)若某校有2000名学生,请你估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?21.为了预防“流感“,某学校对教室采用熏法进行消毒,已知药物燃烧时.室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例;药物燃尽后,y 与x成反比例(如图所示)已知药物点燃后6分钟燃尽,此时室内每立方米空气中含药量为15毫克.(1)分别求出这两个函数的表达式:(2)研究表明,当空气中每立方米的含药量低于3毫克时对人体没有危害,那么此次消毒后经过多长时间学生才可以安全进入教室?22.某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.23.如图,某数学兴趣小组为测量教学楼CD的高,先在A处用高1.5米的测角仪测得教学楼顶端D的仰角∠DEG为30°,再向前走20米到达B处,又测得教学楼顶端D的仰角∠DFG 为60°,A、B、C三点在同一水平线上,求教学楼CD的高(结果保留根号).24.已知关于x的方程x2﹣4x+3﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数值时,求方程的解;(3)在(2)的条件下,若方程x2﹣4x+3﹣a=0的两个根是等腰△ABC的两条边长,求等腰△ABC的周长.25.如图,在等腰△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式及自变量x的取值范围,并求出当BD为何值时AE取得最小值?(3)在AC 上是否存在点E ,使△ADE 是等腰三角形?若存在,求AE 的长;若不存在,请说明理由.26.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴、y 轴上,D 是对角线的交点,若反比例函数y =xk的图象经过点D ,且与矩形OABC 的两边AB ,BC 分别交于点E ,F .(1)若D 的坐标为(4,2)①则OA 的长是,AB 的长是;②请判断EF 是否与AC 平行,井说明理由;③在x 轴上是否存在一点P .使PD +PE 的值最小,若存在,请求出点P 的坐标及此时PD +PE 的长;若不存在.请说明理由.(2)若点D 的坐标为(m ,n ),且m >0,n >0,求EFAC的值.参考答案1.C 【解析】将(1,2)代入解析式中即可.【详解】解:将点(1,2)代入解析式得,21k =,k =2.故选:C .【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.2.C 【分析】将a b b-变形为ab ﹣1,再代入求值即可.【详解】解:∵a b =23,∴a b b -=a b ﹣1=23﹣1=﹣13,故选:C .【点睛】此题考查的是比例的性质,掌握性质是解决此题的关键.3.B 【解析】【分析】先计算出△的值,然后根据△的意义进行判断方程根的情况.【详解】∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B .本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4.B【分析】把A(3,y1),B(5,y2)代入函数解析式中,即可求出y1和y2,从而比较y1,y2的大小关系.【详解】解:把A(3,y1),B(5,y2)代入y=5x中得y1=53,y2=55=1,∵51 3∴y1>y2.故选:B.【点睛】此题考查的是比较反比例函数值的大小,将横坐标代入求出纵坐标是解决此题的关键. 5.A【分析】根据一个角的正弦值等于它的余角的余弦值、一个角的正切值和它的余角的正切值互为倒数和一个角的正弦值与余弦值的平方和等于1逐一判断即可.【详解】解:A、cos60°=sin(90°-60°)=sin30°,错误;B、sin15°=cos(90°-15°)=cos75°,正确;C、tan30°•tan60°=1,正确;D、sin230°+cos230°=1,正确;故选:A.【点睛】此题考查的是锐角三角函数的性质,掌握一个角的正弦值等于它的余角的余弦值、一个角的正切值和它的余角的正切值互为倒数和一个角的正弦值与余弦值的平方和等于1,是解决此题的关键6.C根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A 、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B 、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C 、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D 、方差是:S 2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C .【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.7.D 【分析】根据k 的取值分类讨论即可.【详解】解:当k >0时,函数y =xk的图象在第一、三象限,函数y =kx +1在第一、二、三象限,故选项C 错误,选项D 正确,当k <0时,函数y =xk的图象在第二、四象限,函数y =kx +1在第一、二、四象限,故选项A 、B 错误,故选:D .【点睛】此题考查的是反比例函数和一次函数的图像及性质,掌握系数k 与反比例函数和一次函数的图像的关系是解决此题的关键.8.C 【分析】根据相似三角形的判定定理对各选项进行逐一判断即可.【详解】解:A、∠ABC=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠ACB,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD EDAC BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选C.【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.B【分析】只需要证明△AED∽△ACB即可求解.【详解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴236 AD AEAB AC AB===∴4AB=∴BD=AD+AB=2+4=6.故选B.【点睛】本题主要考查了平行线的性质,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.10.B【分析】根据直角三角形的性质求出∠C,根据45°的正弦值解答.【详解】解:∵∠A=90°,∠B=45°,∴∠C=90°-45°=45°,∴sin C=sin45°=2,【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.11.1【分析】根据已知条件和平行线分线段成比例定理可得:AB=2AD,12DE ADBC AB==,从而求出DE的长.【详解】解:∵DE∥BC,AD=DB,∴AB=2AD,12 DE AD BC AB==∴DE=12BC=1,故答案为1.【点睛】此题考查的是平行线分线段成比例定理,根据平行列出比例式是解决此题的关键.12.2【分析】设点P的坐标为(x,y),根据反比例函数的解析式可得:xy=﹣4,然后根据三角形的面积公式即可求出△POA的面积.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=﹣4x的图象上,∴xy=﹣4,∴S△POA =12|xy|=2,故答案为:2.【点睛】此题考查的是反比例函数系数的几何意义,掌握三角形的面积与反比例函数上点的坐标的关系是解决此题的关键.13.3根据AB的坡度即为BC:AC,从而求出BC的长.【详解】解:∵AB的坡度为i=1:2.5,BC⊥AC,大厅水平距离AC的长为7.5m,∴BC:AC=1:2.5,则BC=7.5÷2.5=3(m).故答案为3.【点睛】此题考查的是坡度,熟知坡度的公式:坡面的垂直高度和水平距离的比,是解决此题的关键. 14.00【分析】将﹣3代入方程中即可求出q的值,然后根据韦达定理可知:x1+x2=﹣3,从而求出方程的另一个根.【详解】解:根据题意,得9﹣9+q=0,解得,q=0;由韦达定理,知x1+x2=﹣3;则﹣3+x2=﹣3,解得,x2=0.故答案是:0,0.【点睛】此题考查的是一元二次方程的解和韦达定理,掌握一元二次方程的解的定义和利用韦达定理求另一个根是解决此题的关键.15.30【分析】根据已知条件即可求出两个三角形的相似比为5:3,然后根据相似三角形的性质,可设大三角形的周长为5x,则小三角形的周长为3x,根据周长之差为12cm,列方程并解方程即可.【详解】解:∵两个相似三角形的最短边分别是5cm和3cm,∴两个三角形的相似比为5:3,设大三角形的周长为5x,则小三角形的周长为3x,由题意得,5x﹣3x=12,解得,x=6,则5x=30,故答案为30.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键. 16.3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC 的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE=43=ADCD,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17.900【分析】过点B 作BD 垂直于CA 延长线于点D ,根据已知条件可求:∠BAD =30°,然后解直角三角形即可求出BD ,从而求出△ABC 的面积,即可求出这部分墙漆的造价.【详解】解:如图,过点B 作BD 垂直于CA 延长线于点D ,∵∠BAC =150°,∴∠BAD =30°.∴BD =AB •sin30°=12AB =3米.∴S 阴影=12AC •BD =1632⨯⨯=9(平方米)则造价为:9×100=900(元)故答案是:900.【点睛】此题考查的是解直角三角形和三角形的面积,掌握构造直角三角形的方法是解决此题的关键.18.45【分析】设等腰三角形的底角为x ,根据“特征值”的定义即可得:顶角为2x ,再根据三角形的内角和定理即可求出x =45°,即∠ABC =45°,∠BAC =90°,然后过C 点作CH ⊥DA 垂足为H ,交DB 延长线于E ,先证出△ADB ∽△BEC ,从而得出AD DB AB BE EC BC==,根据等腰直角三角形的性质和已知条件即可求出BE =CE =,从而求出EH 的长,即可求出CH ,然后根据勾股定理即可求出CD 的长.【详解】解:设等腰三角形的底角为x ,∵△ABC 是以A 为顶点的“特征值”为12的等腰三角形,根据定义可知顶角为2x .∴x +x +2x =180°,∴x =45°,即∠ABC =45°,∠BAC =90°,过C 点作CH ⊥DA 垂足为H ,交DB 延长线于E ,如图:∵∠ADB +∠DAB =∠ABC +∠CBE ,∠ADB =∠ABC =45°,∴∠ADB =∠E =45°,∠DAB =∠EBC ,∴△ADB ∽△BEC ,∴AD DB AB BE EC BC==,∵△ABC 是等腰直角三角形,∴AB BC =,∵AD =4,BD =3,∴BE =,CE =∴DE =∵△DHE 是等腰直角三角形,∴DH =EH =4+∴CH =EH -CE =42-,在Rt △DCH 中,CD故答案为:45【点睛】此题考查的是新定义类问题、三角形的内角和定理、相似三角形的判定及性质、等腰直角三角形的性质和勾股定理,掌握新定义类问题的定义、三角形的内角和列方程和相似三角形的判定及性质是解决此题的关键.19.1【分析】根据绝对值的性质、任何非0数的0次幂都等于1和45°的正切值代入计算即可.【详解】解:原式=2+1﹣2=1.【点睛】此题考查的是实数的运算,掌握绝对值的性质、任何非0数的0次幂都等于1和45°的正切值是解决此题的关键.20.(1)120人;(2)18;(3)见解析;(4)1000.【分析】(1)根据优秀人数和优秀率即可求出本次抽查的人数;(2)求出不及格率乘360°即可求出不及格学生所占的圆心角的度数;(3)根据总人数和其他人数计算出良好的人数,然后补全条形统计图即可;(4)求出优秀率和良好率的和乘2000即可.【详解】解:(1)本次抽查的人数为24÷20%=120(人),故答案为:120人;(2)扇形统计图中不及格学生所占的圆心角的度数为360°×6120=18°,故答案为:18;(3)良好的人数为120﹣(24+54+6)=36(人),补全图形如下:(4)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有2000×2436120+=1000(人).【点睛】此题考查的是扇形统计图和条形统计图,结合扇形统计图和条形统计图计算数据是解决此题的关键.21.(1)正比例函数的解析式为y =52x ,反比例函数的解析式为:y =90x ;(2)此次消毒后经过30分钟学生才可以安全进入教室.【分析】(1)设正比例函数解析式为:y ax =,反比例函数的解析式为:b y x=,再将(6,15)分别代入解析式即可;(2)将y =3代入反比例函数解析式即可求出经过多长时间学生才可以安全进入教室.【详解】解:(1)设正比例函数解析式为:y ax =,反比例函数的解析式为:b y x=∵正比例函数的图象经过点(6,15),∴156a=解得:52a =∴正比例函数的解析式为y =52x ,∵反比例函数的图象经过点(6,15),∴156b=解得:90b =∴反比例函数的解析式为:y =90x;(2)把y=3代入y=90x中得x=30,∴此次消毒后经过30分钟学生才可以安全进入教室.【点睛】此题考查的是求正比例函数和反比例函数解析式及应用,掌握用待定系数法求正比例函数和反比例函数解析式和实际意义与函数的关系是解决此题的关键.22.(1)每年生产成本的下降率为10%;(2)预测2019该公司的生产成本为72.9万元.【分析】(1)设每年生产成本的下降率为x,根据增长率问题的公式列一元二次方程并解方程即可;(2)根据(1)中下降率列式计算即可.【详解】解:(1)设每年生产成本的下降率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:每年生产成本的下降率为10%.(2)81×(1﹣10%)=72.9(万元).答:预测2019该公司的生产成本为72.9万元.【点睛】此题考查的是一元二次方程的应用:增长率问题,掌握增长率问题的公式是解决此题的关键. 23.CD=(【分析】根据三角形外角的性质可得:∠DEF=∠FDE=30°,根据等角对等边即可得:EF=FD=20米,再根据锐角三角函数即可求出DG,根据矩形的性质即可求出CG,从而求出教学楼CD 的高.【详解】解:∵∠DFG=∠DEF+∠EDF,∠DFG=60°,∠DEF=30°,∴∠DEF=∠FDE=30°,∴EF=FD=20米,在Rt△DFG中,DG=DF•sin60°=,∵四边形AEGC是矩形,∴CG=AE=1.5米,∴CD=DG+CG=(【点睛】此题考查的是解直角三角形,掌握利用锐角三角函数解直角三角形是解决此题的关键. 24.(1)a>﹣1;(2)x1=3,x2=1;(3)7.【分析】(1)根据一元二次方程有两个不相等的实数根,可得△>0,列不等式并解不等式即可;(2)根据(1)中a的取值范围,求出a最小整数值,然后代入解方程即可;(3)根据(2)中方程的解和等腰三角形的腰分类讨论,然后根据三角形的三边关系进行取舍,最后求周长即可.【详解】解:(1)根据题意得△=(﹣4)2﹣4(3﹣a)>0,解得a>﹣1;(2)a的最小整数为0,此时方程为x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,所以x1=3,x2=1;(3)∵方程x2﹣4x+3﹣a=0的两个根是等腰△ABC的两条边长,∴等腰三角形的三边为3,3,1或1,1,3∵1+1<3∴1,1,3不能构成三角形∴等腰△ABC的腰长为3,底边长为1,∴等腰△ABC的周长=3+3+1=7.【点睛】此题考查的是一元二次方程根的情况、解一元二次方程和求等腰三角形的周长,掌握一元二次方程根的情况和△的关系、因式分解法解一元二次方程及三角形的三边关系是解决此题的关键.25.(1)见解析;(2)y=x2+1;0x<<x=2时,y有最小值,最小值为12;(3)在AC上存在点E,使△ADE是等腰三角形,AE的长为2或1 2.【分析】(1)由等腰直角三角形的性质可得:∠B=∠C=∠ADE=45°,再根据三角形外角的性质可得:∠ADC=∠B+∠BAD=∠ADE+∠CDE,从而得出∠BAD=∠CDE,最后根据有两组对应角相等的两个三角形相似即可证出△ABD∽△DCE;(2)由△ABD∽△DCE,可得:BDEC=ABCD,然后分别用x和y表示出CD、EC,代入到比例式中即可求出y关于x的函数关系式,再根据点D是BC边上的一个动点(不与B、C 重合),即可求出x的取值范围,最后根据二次函数求最值即可;(3)根据等腰三角形腰的情况分类讨论:当AD=DE时,可得:△ABD≌△DCE,从而可得BD=CE,根据此等式列方程即可求出AE;当AE=DE时,可得:△ADE为等腰直角三角形,即DE⊥AC,由相似的性质得AD⊥BC,根据三线合一可得D是BC中点,再根据直角三角形斜边上的中线等于斜边的一半可得AD=DC,从而得出:E也是AC的中点,即可求出AE;当AD=AE时,因为∠ADE=45°,可得∠DAE=90°,此时D与B重合,不符合题意.【详解】(1)证明:∵∠BAC=90°,AB=AC∴∠B=∠C=∠ADE=45°∵∠ADC=∠B+∠BAD=∠ADE+∠CDE∴∠BAD=∠CDE∴△ABD∽△DCE;(2)由(1)得△ABD∽△DCE,∴BDEC=ABCD∵∠BAC=90°,AB=AC=1,∴BC ,CD x ,EC =1﹣y ,∴1x y -y =x 2x +1=(x ﹣2)2+12,∵点D 是BC 边上的一个动点(不与B 、C 重合)∴0<BD <BC即0x <<当x =2时,y 有最小值,最小值为12;(3)当AD =DE 时,△ABD ≌△DCE ,∴BD =CE ,∴x =1﹣y x ﹣x 2=x ,∵x ≠0,∴等式左右两边同时除以x 得:x ﹣1,将x ﹣1代入y=x 2+1中,∴AE =y =2当AE =DE 时,∵∠ADE=45°∴△ADE 为等腰直角三角形∴DE ⊥AC ,∴AD ⊥BC∴D 是BC 中点,∴AD=DC∴E 也是AC 的中点,所以,AE =12;当AD =AE 时,∵∠ADE=45°∴∠DAE =90°,D 与B 重合,不符合题意;综上,在AC 上存在点E ,使△ADE 是等腰三角形,AE 的长为212.【点睛】此题考查的是相似三角形的判定及性质、二次函数求最值和等腰三角形的性质,掌握有两组对应角相等的两个三角形相似、利用二次函数求最值和根据等腰三角形腰的情况分类讨论是解决此题的关键.26.(1)①8;4;②EF ∥AC ,理由见解析;③当点P 的坐标为(203,0)时,PD+PE 的值最小,最小值为5.(2)EF AC =34.【分析】(1)①根据矩形的性质和点O 、D 的坐标即可求出点B 的坐标,从而求出OA 和AB 的长;②将点D 坐标代入反比例函数解析式中即可求出反比例函数的解析式,从而求出E 、F 两点坐标,然后根据有两组对应边成比例且对应夹角相等的两个三角形相似,证出:△ABC ∽△EBF ,从而得出∠BCA =∠BFE ,根据平行线的判定即可证出EF ∥AC ;③作点E 关于x 轴对称的点E′,连接DE′交x 轴于点P ,此时PD+PE 的值最小,根据平面直角坐标系中任意两点之间的距离公式即可求出此时的DE′,然后利用待定系数法求出直线DE′的解析式,从而求出此时P 点坐标;(2)设点D 的坐标为(m ,n ),与(1)①同理可得:点B 的坐标为(2m ,2n ),然后与(1)②中同理可证:△ABC ∽△EBF ,从而求出EF AC.【详解】解:(1)①∵四边形OABC 是矩形,∴D 为OB 的中点∵点O 的坐标为(0,0),点D 的坐标为(4,2),∴点B 的坐标为(8,4),∴OA =8,AB =4.故答案为:8;4.②EF ∥AC ,理由如下:∵反比例函数y =x k 的图象经过点D (4,2),∴k =4×2=8.∵点B 的坐标为(8,4),BC ∥x 轴,AB ∥y 轴,∴点F 的坐标为(2,4),点E 的坐标为(8,1),∴BF =6,BE =3,∴BFBC=34,BEBA=34,∴BFBC=BEBA.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,根据两点之间,线段最短,此时PD+PE的值最小,并且PD+PE=PD+P E′=DE′,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴根据平面直角坐标系中任意两点之间的距离公式得:DE′5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:42 81 a ba b+=⎧⎨+=-⎩,解得:345ab⎧=-⎪⎨⎪=⎩,∴直线DE′的解析式为y=﹣34x+5.当y=0时,﹣34x+5=0,解得:x=20 3,∴当点P的坐标为(203,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=kx的图象经过点D(m,n),∴k=mn,∴点F的坐标为(12m,2n),点E的坐标为(2m,12n),∴BF=32m,BE=32n,∴BFBC=34,BEBA=34,∴BFBC=BEBA.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴EFAC=BFBC=34.【点睛】此题考查的是矩形的性质、相似三角形的判定及性质、求一次函数及反比例函数解析式和两条线段和最小时的作图方法和求法,掌握矩形的对角线互相平分、有两组对应边成比例且对应夹角相等的两个三角形相似、两点之间线段最短、平面直角坐标系中任意两点之间的距离公式和待定系数法求函数解析式是解决此题的关键.。

湘教版九年级数学上册期末试卷及答案

湘教版九年级数学上册期末试卷及答案

湘教版九年级数学上册期末试卷一、选择题(每题3分,共24分)1.方程x2-2x=0的根是()A.x1=x2=0 B.x1=x2=2C.x1=0,x2=2 D.x1=0,x2=-22.下列各点中,在函数y=12x图象上的是()A.(-2,6) B.(3,-4) C.(-2,-6) D.(-3,4) 3.为了比较甲、乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取100株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是0.32,1.5,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐4.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0的根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定(第4题)(第7题)(第8题)5.已知反比例函数y=6x的图象上有两点A(1,m),B(2,n),则m与n的大小关系是()A.m>n B.m<n C.m=n D.不能确定6.某地修建高速公路,要从B地向C地修一条隧道(B,C在同一水平面上).为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,竖直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( ) A .100 3 mB .50 2 mC .50 3 mD.100 33 m7.如图,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为( ) A .3B .4C .5D .68.如图,已知等腰三角形ABC 中,顶角∠A =36°,BD 平分∠ABC ,则AD AC 的值为( ) A.12B.5-12C .1D.5+12二、填空题(每题4分,共32分) 9.若x y =23,则y x +y=____________.10.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中5名学生的数学成绩达90分以上.据此估计该校七年级360名学生中期末考试数学成绩达90分以上的学生约有____________. 11.在△ABC 中,∠C =90°,若tan A =125,则sin A =________.12.某楼盘2017年房价为每平方米10 000元,经过两年连续降价后,2019年房价为每平方米8 100元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________________.13.利用标杆CD 测量建筑物的高度的示意图如图所示,若标杆CD 的高为1.5米,测得DE =2米,BD =18米,则建筑物的高AB 为________米.(第13题) (第14题) (第16题)14.如图,△ABO 的顶点A 在函数y =kx (x >0)的图象上,∠ABO =90°,过AO边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP的面积为3,则k 的值为________.15.已知关于x 的一元二次方程x 2-(2m +3)x +m 2=0有两个实数根,且满足x 1+x 2=m 2,则m 的值是____________.16.如图,在平面直角坐标系xOy 中,以O 为位似中心,将边长为8的等边三角形OAB 作n 次位似变换,经第一次变换后得到等边三角形OA 1B 1,其边长OA 1缩小为OA 的12,经第二次变换后得到等边三角形OA 2B 2,其边长OA 2缩小为OA 1的12,经第三次变换后得到等边三角形OA 3B 3,其边长OA 3缩小为OA 2的12,…,按此规律,经第n 次变换后,所得等边三角形OA n B n 的顶点A n 的坐标为(128 ,0),则n 的值是____________.三、解答题(17,18题每题6分,19,20题每题8分,21~24题每题9分,共64分)17.计算:(1)(-1)2 021-2-1+cos 60°+(π-3.14)0;(2)sin 45°·tan 45°+tan 60°·tan 30°-2sin 30°·cos 45°.18.用适当的方法解下列方程:(1)x 2-4x +3=0; (2)-x 2+8x +4=0.19.如图,A ,B 是双曲线y =kx 上的点,点A 的坐标是(1,4),B 是线段AC 的中点.(第19题)(1)求k的值;(2)求点B的坐标;(3)求△OAC的面积.20.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60<x≤70;B:70<x≤80;C:80<x≤90;D:90<x≤100,并绘制出如下不完整的统计图.(第20题)(1)求被抽取的学生中,成绩在C组的有多少人;(2)所抽取学生成绩的中位数落在________组内;(3)若该校有1 500名学生,估计全校这次竞赛成绩在A组的学生有多少人.21.为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼的水平距离BC为21米,求条幅AE的长约是多少米.(结果精确到0.1米,3≈1.732)(第21题)22.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.23.如图,直线y=ax+1与x轴,y轴分别交于A,B两点,与双曲线y=k x(x>0)交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).(1)求双曲线的表达式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.(第23题)24.将正方形ABCD的边AB绕点A逆时针旋转至AB′的位置,记旋转角为α.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图①,当α=60°时,△DEB′的形状为__________________,BB′CE的值为__________.(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图②的情形进行证明;如果不成立,请说明理由.②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.(第24题)答案一、1.C 2.C3.A 【点拨】方差反映一组数据的波动大小,方差越大,波动性越大,∵甲、乙的方差分别是0.32,1.5,即s 甲2<s 乙2,∴甲秧苗出苗更整齐. 4.C 【点拨】根据函数y =kx +b 的图象可得k <0,b <0,在一元二次方程x 2+x +k -1=0中,Δ=12-4×1×(k -1)=5-4k >0, 则一元二次方程x 2+x +k -1=0的根的存在情况是有两个不相等的实数根. 5.A 【点拨】∵k =6>0,∴在反比例函数y =6x中,在每个象限内y 随x 的增大而减小.∵反比例函数y =6x 的图象上有两点A (1,m ),B (2,n ),1<2,∴m >n .6.A 【点拨】根据题意得∠ABC =30°,AC ⊥BC ,AC =100 m ,在Rt △ABC 中,BC =ACtan ∠ABC=100 3 m.7.C 【点拨】在△ABC 中,∠C =90°,AC =8,BC =6,∴AB =AC 2+BC 2=10.∵DE ⊥AB ,∴∠AED =∠C .又∵∠A =∠A ,∴△ADE ∽△ABC ,∴DE BC =ADAB ,即36=AD 10,∴AD =3×106=5.8.B 【点拨】设AB =AC =m ,AD =x ,则CD =m -x ,∵∠A =36°,BD 平分∠ABC ,∴∠CBD =12∠ABC =12×12×(180°-36°)=36°.在△ACB 和△BCD 中,⎩⎨⎧∠C =∠C ,∠A =∠CBD =36°,∴△ACB ∽△BCD , ∴AC ∶BC =BC ∶DC , 易知BC =BD =DA =x , ∴m ∶x =x ∶(m -x ), ∴x 2+mx -m 2=0, 解得x =5-12m (已舍去负根),∴AD ∶AC =5-12.二、9.35 【点拨】∵x y =23,∴x +y y =x y +1=53,∴y x +y =35.10.60名 【点拨】由题意可得530×360=60(名). 11.1213 【点拨】∵tan A =a b =125,设a =12k ,则b =5k ,∴c =a 2+b 2=13k , ∴sin A =a c =1213. 12.10 000(1-x )2=8 100 13.15 【点拨】∵AB ∥CD ,∴△EDC ∽△EBA , ∴CD AB =ED EB ,即1.5AB =22+18, ∴AB =15米. 14.1815.3 【点拨】根据根与系数的关系得x 1+x 2=2m +3,∵x 1+x 2=m 2,∴m 2=2m +3,解得m =3或-1.又∵方程有两个实数根,∴[-(2m +3)]2-4m 2≥0,即m ≥-34,∴m =3. 16.11三、17.解:(1)原式=-1-12+12+1=0.(2)原式=22×1+3×33-2×12×22=22+1-22=1. 18.解:(1)分解因式得(x -1)(x -3)=0,可得x -1=0或x -3=0, 解得x 1=1,x 2=3.(2)∵a =-1,b =8,c =4, ∴Δ=64+16=80>0, ∴x =-8±4 5-2=4±2 5,则x1=4-2 5,x2=4+2 5.19.解:(1)把(1,4)代入y=kx得4=k1,解得k=4.(2)由B是AC的中点可得B点的纵坐标是A点纵坐标的一半,即y=2,把y=2代入y=4x得2=4x,解得x=2,故点B的坐标为(2,2).(3)由点A,B的坐标求得直线AB的表达式为y=-2x+6,令y=0,求得x =3,∴点C的坐标为(3,0),∴△OAC的面积为12×3×4=6.20.解:(1)∵被抽取的总人数为12÷20%=60(人),∴被抽取的学生中,成绩在C组的有60-6-12-18=24(人).(2)C(3)估计全校这次竞赛成绩在A组的学生有1 500×660=150(人).21.解:如图,过点D作DF⊥AB于点F.(第21题)在Rt△ADF中,DF=21米,∠ADF=45°,∴AF=DF×tan 45°=21米.在Rt△EDF中,DF=21米,∠EDF=30°,∴EF=DF×tan 30°=7 3米.∴AE=AF+EF=21+7 3≈33.1(米).答:条幅AE的长约为33.1米.22.解:因为围成的矩形一边长为x米,所以其邻边长为(16-x)米.(1)依题意得x(16-x)=60,即(x-6)(x-10)=0.解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米.(2)不能围成面积为70平方米的养鸡场.理由如下:当养鸡场面积为70平方米时,x(16-x)=70,即x2-16x+70=0.因为Δ=(-16)2-4×1×70=-24<0,所以该方程无解.即不能围成面积为70平方米的养鸡场.23.解:(1)把(-2,0)代入y=ax+1中,求得a=12,∴y=12x+1,∵PC=2,∴P点纵坐标为2,把y=2代入y=12x+1,得x=2,即P(2,2),把P点坐标代入y=kx得k=4,则双曲线表达式为y=4x(x>0).(2)如图,设Q(m,n),∵Q(m,n)在双曲线y=4x(x>0)上,∴n=4m,(第23题)易知B点坐标为(0,1),∴OB=1.当△QCH∽△BAO时,可得CHAO=QHBO,即m-22=n1,∴m-2=2n,即m-2=8m,解得m=4或m=-2(舍去).当m=4时,n=1.∴Q(4,1);当△QCH∽△ABO时,可得CHBO=QHAO,即m-21=n2,整理得2m-4=4m,解得m=1+3或m=1-3(舍去),当m=1+3时,n=2 3-2,∴Q(1+3,2 3-2).综上,Q(4,1)或Q(1+3,2 3-2).24.解:(1)等腰直角三角形; 2(2)①仍然成立.证明:连接BD.∵AB=AB′,∠BAB′=α,∴∠B′AD=α-90°,∠AB′B=90°-α2.∵AD=AB′,∴∠AB′D=135°-α2.∴∠EB′D=∠AB′D-∠AB′B=45°. ∵DE⊥BB′,∴∠EDB′=45°=∠EB′D.∴△DEB′是等腰直角三角形.∴DB′DE= 2.∵四边形ABCD为正方形,∴BDCD=2,∠BDC=45°.∴BDCD=DB′DE,∠EDB′=∠BDC,∴∠B′DB=∠EDC. ∴△B′DB∽△EDC.∴BB′CE=BDCD= 2.②BEB′E的值为3或1.湘教版九年级数学上册期末试卷一、选择题(每题3分,共30分)1.已知非零实数a ,b ,c ,d 满足a b =cd ,则下列关系中成立的是( )A.a d =c bB.a c =bd C .ac =bd D.a +1b =c +1d2.在Rt △ABC 中,∠C =90°,则下列式子肯定成立的是( )A .sin A =sinB B .cos A =cos BC .tan A =tan BD .sin A =cos B 3.若反比例函数的图象经过点(2,-2),(m ,1),则m 的值为( )A .1B .-1C .4D .-44.某种植基地2020年蔬菜产量为80吨,预计2022年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1-x )2=80C .80(1+2x )=100D .80(1+x 2)=1005.如图,在平面直角坐标系中,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ),则代数式1a -1b 的值为( ) A .-12 B.12 C .-14 D.146.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为点D ,CD =1,则AB 的长为( )A .2B .2 3 C.33+1 D.3+17.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量/千克14 21 27 17 18 20 19 23 19 22 据调查,市场上今年樱桃的批发价格为每千克30元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别为() A.200千克,6 000元B.1 900千克,57 000元C.2 000千克,60 000元D.1 850千克,55 500元8.已知反比例函数y=abx,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根和一个负根D.没有实数根9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan ∠BDE的值为()A.24 B.14 C.13 D.2310.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是()A.3 s或4.8 s B.3 s C.4.5 s D.4.5 s或4.8 s二、填空题(每题3分,共24分)11.方程(x-2)(x-3)=6的解为____________.12.在△ABC中,∠A,∠B都是锐角,若sin A=32,cos B=12,则∠C=________.13.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查,整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,则估计喜欢“踢毽子”的学生有________名.14.如图,在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为________,△ABC 的面积为________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为110 m ,那么该建筑物的高度BC 约为________m .(结果保留整数,3≈1.73)16.如图,在▱ABCD 中,过点B 的直线与AC ,AD 及CD 的延长线分别相交于E ,F ,G .若BE =6,EF =2,则FG 等于________.17.已知关于x 的方程x 2-(a +b )x +ab -1=0,x 1,x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.18.关于x 的反比例函数y =a +4x 的图象如图所示,A ,P 为该图象上的点,且关于原点成中心对称.在△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是______________.三、解答题(19,20题每题8分,22,23题每题10分,21,24题每题15分,共66分) 19.计算或解方程:(1)tan 260°+4sin 30°·cos 45°-(2 021-π)0; (2)2x 2-3x -9=0.20.如图,Rt△ABO的顶点A是双曲线y=kx与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B,且S△ABO=3 2.(1)求双曲线和直线的表达式;(2)求直线与双曲线的两个交点A,C的坐标及△AOC的面积.21.2022年2月4日~20日第24届冬季奥林匹克运动会将在北京市和张家口市联合举行.某校对九年级学生开展了“冬奥会知多少”的调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“不太了解”“基本了解”“比较了解”“非常了解”四个等级,对调查结果进行统计后,绘制了如下不完整的条形统计图,已知“基本了解”的人数占抽样调查人数的25%,根据统计图提供的信息,回答下列问题:(1)此次调查抽取了________名学生;(2)补全条形统计图;(3)若该校七年级有600名学生,请估计“比较了解”和“非常了解”的学生共有多少名?22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克.根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y/千克…34.8 32 29.6 28 …售价x/(元/千克) …22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利150元,那么该水果的售价为多少元/千克?23.一名徒步爱好者来衡阳旅行,他从宾馆C处出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆C处南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离.(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?24.如图①,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=12时,OP=________,S△ABP=________.(2)当△ABP是直角三角形时,求t的值.(3)如图②,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B. 求证:AQ·BP=3.答案一、1.B 2.D 3.D 4.A 5.C 【点拨】由题意得,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ), ∴ab =4,b =a -1,∴b -a =-1, ∴1a -1b =b -a ab =-14. 6.D 7.C 8.C9.A 【点拨】∵四边形ABCD 是矩形, ∴AD ∥BC ,AD =BC .∴△ADF ∽△EBF . ∴AD EB =AF EF =DF BF .∵点E 是BC 的中点,AD =BC , ∴ADEB =2. ∴AF EF =DFBF =2. 设EF =x ,则AF =2x . 易知△ABF ∽△BEF , ∴AF BF =BFEF .∴BF =2x . ∵DFBF =2, ∴DF =22x .在Rt △DEF 中,tan ∠BDE =EF DF =x 22x =24.故选A .10.A二、11.x 1=0,x 2=512.60° 【点拨】∵在△ABC 中,∠A ,∠B 都是锐角,sin A =32,cos B =12, ∴∠A =∠B =60°.∴∠C =180°-∠A -∠B =180°-60°-60°=60°.13.200 14.3;322 15.300 16.16 17.①②18.没有实数根 【点拨】∵反比例函数y =a +4x 的图象在第一、三象限内, ∴a +4>0,即a >-4.∵A ,P 两点关于原点成中心对称,PB ∥y 轴,AB ∥x 轴,△P AB 的面积大于12, ∴2(a +4)>12,即a +4>6, ∴a >2.∴(-1)2-4(a -1)×14=2-a <0.∴关于x 的方程(a -1)x 2-x +14=0没有实数根.三、19.解:(1)原式=(3)2+4×12×22-1=3+2-1=2+2. (2)方法一:因为a =2,b =-3,c =-9, 所以b 2-4ac =(-3)2-4×2×(-9)=81, 所以x =3±814,所以x 1=3,x 2=-32.方法二:原方程可化为(x -3)(2x +3)=0,所以x 1=3,x 2=-32. 20.解:(1)由题易知12|k |=32, ∴|k |=3,∴k =±3.∵双曲线位于第二、四象限,∴k =-3.∴双曲线的表达式为y =-3x ,直线的表达式为y =-x -2. (2)联立⎩⎪⎨⎪⎧y =-3x ,y =-x -2, 解得⎩⎨⎧x 1=-3,y 1=1,⎩⎨⎧x 2=1,y 2=-3.∴A 点的坐标为(1,-3),C 点的坐标为(-3,1).设直线AC 与y 轴交于点D ,则D 点的坐标为(0,-2),则S △AOC =S △AOD +S △COD =12×2×1+12×2×3=4.21.解:(1)40(2)如图所示:(3)估计“比较了解”和“非常了解”的学生共有600×⎝ ⎛⎭⎪⎫1540+1140=390(名). 22.解:(1)设y 与x 之间的函数表达式为y =kx +b .将⎩⎨⎧x =22.6,y =34.8和⎩⎨⎧x =24,y =32分别代入y =kx +b ,得⎩⎨⎧22.6k +b =34.8,24k +b =32,解得⎩⎨⎧k =-2,b =80,∴y 与x 之间的函数表达式为y =-2x +80.当x =23.5时,y =-2x +80=33.答:当天该水果的销售量为33千克.(2)根据题意得(x -20)(-2x +80)=150,解得x 1=35,x 2=25.∵20≤x ≤32,∴x =25.答:如果某天销售这种水果获利150元,那么该水果的售价为25元/千克.23.解:(1)如图,过点C 作南北方向线l ,作CD ⊥AB 于D 点,根据垂线段最短可知线段CD 的长是从石鼓书院走到雁峰公园的途中与宾馆的最短距离. 由题意知,∠1=30°,AB ∥l ,所以∠A =∠1=30°.在Rt△ACD中,AC=2 000米,所以CD=12AC=1 000米.答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆的最短距离为1 000米.(2)由(1)可知CD=1 000米.由题意知,∠2=45°,所以∠B=∠2=45°.在Rt△BCD中,BC=2CD=1 0002米.设这名徒步爱好者从雁峰公园返回宾馆用了x分钟,根据题意,得100x=1 0002.解得x=102.因为102<15,所以这名徒步爱好者在15分钟内能到达宾馆.24.(1)1;3 3 4(2)解:∵∠A<∠BOC=60°,∴∠A不可能是直角.如图①,当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB,即2t=2.∴t=1.如图②,当∠APB =90°时,作PD ⊥AB ,垂足为D , 则∠ADP =∠PDB =90°.∵OP =2t ,∠BOP =60°,∴OD =t ,PD =3t ,∴AD =2+t ,BD =1-t .∴BP 2=(1-t )2+3t 2,AP 2=(2+t )2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t )2+3t 2+(2+t )2+3t 2=9,即4t 2+t -2=0.解得t 1=-1+338,t 2=-1-338(舍去). 综上,当△ABP 为直角三角形时,t =1或t =-1+338. (3)证明:∵AP =AB ,∴∠APB =∠B .如图③,作OE ∥AP ,交BP 于点E ,∴∠OEB =∠APB =∠B .∵AQ ∥BP ,∴∠QAB +∠B =180°.∵∠3+∠OEB =180°,∴∠3=∠QAB .∵∠AOC =∠2+∠B =∠1+∠QOP , ∠B =∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP .∴AQ EO =AO EP ,即AQ ·EP =EO ·AO .∵OE ∥AP ,∴△OBE ∽△ABP .∴OE AP =BE BP =BO BA =13.∴OE =13AP =13AB =1,BP =3BE .∴BP =32EP .∴AQ ·BP =AQ ·32EP =32AO ·OE =32×2×1=3.。

湘教版九年级上册数学期末考试试卷含答案解析

湘教版九年级上册数学期末考试试卷含答案解析

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列方程中,没有实数根的是()A .x 2+2x-1=0B .x 2C .x 2x+1=0D .-x 2+x+2=02.如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE BC ,EF AB .若AD 2BD ,则CFBC的值为()A .13B .14C .15D .233.在Rt △ABC 中,∠ABC=90°、tanA=43,则sinA 的值为()A .45B .35C .34D .434.据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x ,根据题意,所列方程为()A .11.3(1﹣x%)2=8.2B .11.3(1﹣x )2=8.2C .8.2(1+x%)2=11.3D .8.2(1+x )2=11.35.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价后售价为148元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x ,根据题意可列方程为()A .200(1+x )2=148B .200(1-x )2=148C .200(1-2x )=148D .148(1+x )2=2006.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB 等于()A .90°B .80°C .70°D .60°7.在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于()A .45B .5C .15D .1458.若x 1,x 2是一元二次方程x 2+4x ﹣2016=0的两个根,则x 1+x 2﹣x 1x 2的值是()A .﹣2012B .﹣2020C .2012D .20209.已知函数y =4x 2−4x +m 的图像与x 轴的交点坐标为(x 1,0)(x 2,0)且(x 1+x 2)(4x 12−5x 1−x 2)=8,则该函数的最小值是()A .2B .-2C .10D .-1010.如图,反比例函数(0)ky k x=≠的图象上有一点A ,AB 平行于x 轴交y 轴于点B ,AC 平行于y 轴交x 轴于点C ,四边形ABOC 的面积为5,则反比例函数的表达式是()A .52y x=B .5y x=-C .5y x=D .34y x=二、填空题11.如图,若点A 的坐标为(,则sin 1∠=________.12.如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h 为_____.13.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.14.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________.15.若方程(m ﹣x )(x ﹣n )=3(m 、n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则将m ,n ,a ,b 按从小到大的顺序排列为________.16.如图,一次函数1y x 1=-与反比例函数22y x=的图象交于点()A 2,1、()B 1,2--,则使12y y >的x 的取值范围是______.三、解答题17.解方程:(1)x 2﹣3x ﹣1=0.(2)x 2+4x ﹣2=0.18.我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x 2﹣4x ﹣1=0②x (2x+1)=8x ﹣3③x 2+3x+1=0④x 2﹣9=4(x ﹣3)我选择第________个方程.19.如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=.20.如图所示.在△ABC中,EF∥BC,且AE:EB=m,求证:AF:FC=m.21.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax2+bx+c=0(a、b、c为常数,a≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?22.如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA 于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.24.已知反比例函数y=m8x-(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=m8x-的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.25.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为60平方米.两块绿地之间及周边留宽度相等的人行通道,请问人行道的宽度为多少米?26.如图,在平面直角坐标系中直线y=x ﹣2与y 轴相交于点A ,与反比例函数在第一象限内的图象相交于点B (m ,2).(1)求反比例函数的关系式;(2)将直线y=x ﹣2向上平移后与反比例函数图象在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式.参考答案1.C 【解析】试题解析:A.2210x x +-=24440b ac ∆=-=+> ,∴方程有两个不相等的实数根;B.220x ++=24880b ac ∆=-=-= ,∴方程有两个相等的实数根;C.24240b ac ∆=-=-< ,∴方程没有实数根;D.24180b ac ∆=-=+> ,∴方程有两个不相等的实数根;故选C.2.A 【解析】试题解析:∵AD =2BD ,∴BD :AB =1:3,//DE BC ,∴CE :AC =BD :AB =1:3,//EF AB ,∴CF :CB =CE :AC =1:3.故选A.3.A 【解析】如图设AB=3a ,BC=4a ,由勾股定理得AC=5a ,sinA=4455BC a AC a ==,故选A.4.D 【解析】试题分析:设这两年兰州市旅游收入的平均增长率为x ,根据两年期间从8.2亿元增加到11.3亿元,列方程即可.解:设这两年兰州市旅游收入的平均增长率为x ,由题意得,8.2(1+x )2=11.3.故选D.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是设出未知数,找出合适的等量关系列方程.5.B【解析】【分析】设平均每次降价的百分率为x,根据某商品原价为200元,连续两次降价后售价为148元,可列出方程.【详解】设平均每次降价的百分率为x,由题意,得200(1-x)2=148.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,降价两次,关键知道降价前和降价后的价格,列出方程求解.6.A【详解】解:如图,过点C作CG∥AE,因为AE∥BF,所以AE∥CG∥BF,所以∠ACG=∠CAE,∠BCG=∠CBF,因为∠CAE=50°,∠CBF=40°,∴∠ACB=∠ACG+∠BCG=50°+40°=90°故选A.【点睛】本题主要考查了方向角和平行线的性质,在有关方向角的问题中,注意向北的方向是互相平行的,由此结合平行线的性质即可得到图形中的角的关系,解题的关键是要过点C 作平行线.7.B 【详解】1sin 3BC A AB== ,1115533BC AB ∴==⨯=.故选B 8.C 【解析】试题分析:根据一元二次方程根与系数之间的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则x 1+x 2=﹣ba,x 1x 2=c a .由x 1,x 2是一元二次方程x 2+4x ﹣2016=0的两个根,可得x 1+x 2=﹣4,x 1x 2=﹣2016,即x 1+x 2﹣x 1x 2=﹣4﹣(﹣2016)=2012.故选C .考点:根与系数的关系9.D 【解析】试题解析:∵函数y=4x 2-4x+m 的图象与x 轴的交点坐标为(x 1,0),(x 2,0),∴x 1与x 2是4x 2-4x+m=0的两根,∴4x 12-4x 1+m=0,x 1+x 2=1,x 1•x 2=4,∴4x 12=4x 1-m ,∵(x 1+x 2)(4x 12-5x 1-x 2)=8,∴(x 1+x 2)(4x 1-m-5x 1-x 2)=8,即(x 1+x 2)(-m-x 1-x 2)=8,∴1•(-m-1)=8,解得m=-9,∴抛物线解析式为y=4x 2-4x-9,∵y=2(x-12)2-10,∴该函数的最小值为-10.故选D .考点:抛物线与x 轴的交点.10.C 【分析】根据反比例函数系数k 的几何意义知k =四边形ABOC 的面积.【详解】k =四边形ABOC 的面积=5∴k=5或-5又 函数图象位于第一象限∴k=5,则反比例函数解析式为5y x=故选C.【点睛】本题考查了反比例函数系数k 的几何意义,本题是中考的重点,同学们应高度重视.11.2【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA .sin ∠1=AB OA =,故答案为2.12.1.5米.【详解】如图,∵DE ∥BC ,∴△ADE ∽△ACB .∴DE AE CB AB =.∴40.84+3.5AB=,解得h=1.5(米).13.15.【详解】解:29180x x -+=,得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1514.②③【解析】【分析】根据正方形、矩形、等边三角形、等腰三角形的性质进行判断即可.【详解】①所有的等腰三角形都相似,错误;②所有的正三角形都相似,正确;③所有的正方形都相似,正确;④所有的矩形都相似,错误.故答案为②③.【点睛】本题考查了相似图形的知识,熟练掌握各特殊图形的性质是解题的关键,难度一般.15.m <a <b <n【解析】【分析】利用数形结合的思想,根据题意得到二次函数y=-(x-m )(x-n )与直线y=3的交点的横坐标分别为a 、b ,加上二次函数y=-(x-m )(x-n )与x 轴的两交点的坐标为(m ,0),(n ,0),抛物线开口向下,于是可得到m <a <b <n .【详解】因为方程(m-x )(x-n )=3(m 、n 为常数,且m <n )的两实数根分别为a 、b (a <b ),所以二次函数y=-(x-m )(x-n )与直线y=3的交点的横坐标分别为a 、b ,而二次函数y=-(x-m )(x-n )与x 轴的两交点的坐标为(m ,0),(n ,0),抛物线开口向下,所以m <a <b <n .故答案为m <a <b <n .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a,x 1x 2=c a .也考查了抛物线与直线的交点问题.16.x >2或﹣1<x <0【分析】当y 1>y 2时,一次函数的图象在反比例函数的图象上方;由图知:符合条件的函数图象有两段:①第一象限,x >2时,y 1>y 2;②第三象限,-1<x <0时,y 1>y 2.【详解】从图象上可以得出:在第一象限中,当x >2时,y 1>y 2成立;在第三象限中,当-1<x <0时,y 1>y 2成立.所以使y 1>y 2的x 的取值范围是x >2或-1<x <0.17.(1)x1=32,x 2=32;(2)x 1=﹣x 2=﹣2【分析】(1)使用公式法求解;(2)使用配方法求解.【详解】解:(1)∵a=1,b=﹣3,c=﹣1,∴b 2﹣4ac=9+4=13,∴∴方程的解为:x 1x 2(2)移项得:x 2+4x=2,配方得:x 2+4x+4=2+4,即(x+2)2=6,∴,∴x 1=﹣x 2=﹣2【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种方法是解答的关键.18.①2x =②121,32x x ==③32x -=④121,3x x ==【详解】解:我选第①个方程,解法如下:x 2-4x-1=0,这里a=1,b=-4,c=-1,∵△=16+4=20,∴x=42±则x 1x 2我选第②个方程,解法如下:x (2x+1)=8x-3,整理得:2x 2-7x+3=0,分解因式得:(2x-1)(x-3)=0,可得2x-1=0或x-3=0,解得:x 1=12,x 2=3;我选第③个方程,解法如下:x 2+3x+1=0,这里a=1,b=3,c=1,∵△=9-4=5,∴,则x 1=32-+,x 2=32--;我选第④个方程,解法如下:x 2-9=4(x-3),变形得,(x+3)(x-3)-4(x-3)=0,因式分解得,(x-3)(x+3-4)=0,∴x-3=0或x+3-4=0,∴x 1=3,x 2=1.19.①②⑤.【详解】试题分析:∵∠APB=∠APE ,∠MPC=∠MPN ,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB ,∵四边形ABCD 是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP ∽△BPA .故①正确,设PB=x ,则CP=4﹣x ,∵△CMP ∽△BPA ,∴PB AB CM PC=,∴CM=14x (4﹣x ),∴S 四边形AMCB =12[4+14x (4﹣x )]×4==21(2)102x --+,∴x=2时,四边形AMCB 面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y ,在RT △PCN 中,222(2)(4)2y y +=-+解得43y =,∴NE≠EP ,故③错误,作MG ⊥AB 于G ,∵,∴AG 最小时AM 最小,∵AG=AB ﹣BG=AB ﹣CM=4﹣14x (4﹣x )=21(1)34x -+,∴x=1时,AG 最小值=3,∴AM 的最小值,故④错误.∵△ABP ≌△ADN 时,∴∠PAB=∠DAN=22.5°,在AB 上取一点K 使得AK=PK ,设PB=z ,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z ,z ,∴,∴z=4,∴PB=4故⑤正确.故答案为①②⑤.考点:相似形综合题.20.证明见解析【分析】首先由EF∥BC可以得到AF:FC=AE:EB,而AE:EB=m,由此即可证明AF:FC=m.【详解】∵EF∥BC,∴AF:FC=AE:EB.∵AE:EB=m,AF:FC=m.【点睛】本题考查了平行线分线段成比例定理,比较简单,有的同学因为没有找准对应关系,从而导致错误.21.5x2-2x-15=0(答案不唯一)【分析】本题主要考查一元二次方程的定义,由(2)(3)可确定a c、的值,任意给出b的值即可得到所求方程.【详解】解:由(1)知这是一元二次方程,由(2)(3)可确定a c、,而b的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x2-2x-1 5 =022.调整后的滑梯AD比原滑梯AB增加2.5米【详解】试题分析:Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用AD AB-即可求得增加的长度.试题解析:Rt△ABD中,∵30ADB∠= ,AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,58 3.53AB AC sin m=÷≈,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.23.30mm【详解】解:作出示意图连接AB,同时连结OC并延长交AB于E,因为夹子是轴对称图形,故OE是对称轴∴OE⊥AB AE=BE∴Rt△OCD∽Rt△OAE∴OC CD OA AE=而26 OC===即24103910AE15 2415AE26⨯=∴== +∴AB=2AE=30(mm)答:AB两点间的距离为30mm.24.(1)m的值为2;(2)C(﹣4,0).【解析】试题分析:(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.试题解析:(1)∵图象过点A(-1,6),∴86 1m-=-,解得m=2.(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(-1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴CB BD CA AE=,∵AB=2BC ,∴13CB CA =,∴136BD =,∴BD=2.即点B 的纵坐标为2.当y=2时,x=-3,即B (-3,2),设直线AB 解析式为:y=kx+b ,把A 和B 代入得:6{32k b k b -+=-+=,解得28=⎧⎨=⎩k b ,∴直线AB 解析式为y=2x+8,令y=0,解得x=-4,∴C (-4,0).考点:反比例函数综合题.25.人行道的宽度为1米.【分析】设人行道的宽度为x 米,根据矩形绿地的面积之和为60米2,列出一元二次方程,再进行求解即可得出答案.【详解】设人行道的宽度为x 米,根据题意,得(183)(62)60x x --=,解得11x =,28x =(不合题意,舍去).∴人行道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.26.(1)8y x=;(2)y=x+7.【分析】(1)设反比例解析式为k y x =,将B 坐标代入直线y=x ﹣2中求出m 的值,确定出B 坐标,将B 坐标代入反比例解析式中求出k 的值,即可确定出反比例解析式.(2)过C 作CD 垂直于y 轴,过B 作BE 垂直于y 轴,设y=x ﹣2平移后解析式为y=x+b ,C 坐标为(a ,a+b ),由ABC ABE ACD BCDE S S S S ∆∆∆=+-梯形,根据已知三角形ABC 面积列出关系式,将C 坐标代入反比例解析式中列出关系式,两关系式联立求出b 的值,即可确定出平移后直线的解析式.【详解】解:(1)将B 坐标代入直线y=x ﹣2中得:m ﹣2=2,解得:m=4,∴B (4,2),即BE=4,OE=2.设反比例解析式为k y x=,将B (4,2)代入反比例解析式得:k=8,∴反比例解析式为8y x =.(2)设平移后直线解析式为y=x+b ,C (a ,a+b ),对于直线y=x ﹣2,令x=0求出y=﹣2,得到OA=2,过C 作CD ⊥y 轴,过B 作BE ⊥y 轴,将C 坐标代入反比例解析式得:a (a+b )=8①,∵ABC ABE ACD BCDE S S S S 18∆∆∆=+-=梯形,∴()()()()111a 4a b 2224a a b 218222⋅+⋅+-+⋅+⋅-⋅⨯++=②.联立,解得:b=7.∴平移后直线解析式为y=x+7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档