信号与系统 系统函数的零极点分析

合集下载

信号与系统系统函数的零极点分析课件

信号与系统系统函数的零极点分析课件
极点影响系统噪声性能
极点的位置也会影响系统的噪声性能,极点靠近虚轴时,系统对噪声的抑制能力较强。
极点对系统稳定性的影响
实数极点影响系统稳定性
实数极点会使得系统函数在某点趋于无穷大,导致系统不稳 定。极点的位置决定了系统稳定的程度和响应速度。
复数极点影响系统稳定性
复数极点会影响系统的频率响应特性,进而影响系统的稳定 性。如果复数极点位于左半平面,则系统稳定;反之,位于 右半平面则不稳定。
零点与系统极点的关系
在复平面内,零点和极点可以影响系统的稳定性,极点的位置更为 关键。
稳定系统中的零点作用
在稳定的系统中,零点可以起到调节系统性能的作用,但不会改变 系统的稳定性。
零点对系统频率响应的影响
零点对低频响应的影响
某些零点的位置会影响系统的低频响应,可能导致低频增益降低 或相位滞后。
零点对高频响应的影响
傅里叶分析
将信号分解为不同频率的正弦波 和余弦波,研究信号的频谱特性 和系统的频率响应。
拉普拉斯变换
将时域函数转换为复平面上的函 数,通过分析系统的传递函数来 研究系统的稳定性、极点和零点 等特性。
Z变换
将离散时间序列转换为复平面上 的函数,通过分析系统的差分方 程来研究离散时间系统的特性。
系统函数与零极点
频率响应分析
零极点分布影响系统的频率响应特性,通过分析零极点 可以预测系统的频率合理设计系统的零极点,可以实现特定的系统性能 指标,如快速响应、低超调量等。
系统函数的零点分析
03
零点对系统性能的影响
零点位置影响系统性能
01
零点位置的不同会导致系统性能的差异,例如系统的幅频特性
极点的定义与性质
定义
极点是系统函数在复平面上具有无穷大 增益的点,即系统函数的分母为零的点。

《郑君里信号与系统》课件

《郑君里信号与系统》课件

离散时间信号的表示与性质
要点一
离散时间信号的表示
要点二
离散时间信号的性质
离散时间信号可以由离散的数值序列表示,这些数值在时 间上离散分布。常见的离散时间信号有单位阶跃信号、单 位冲激信号、正弦信号等。
离散时间信号具有周期性、稳定性、可重复性等性质。这 些性质对于信号处理和系统分析具有重要的意义。
离散时间系统的表示与性质
离散时间信号通过系统的响应表 示
当一个离散时间信号通过一个离散时间系统时,系统的 输出可以通过将输入信号与系统冲激响应相卷积得到。
离散时间信号通过系统的响应性 质
系统的输出响应具有与输入信号相同的周期性和稳定性 ,但可能发生幅度和相位的变化。此外,系统的输出响 应还受到系统稳定性和因果性的影响。
பைடு நூலகம்
PART 05
信号的变换域表示法
傅立叶变换的定义与性质
傅立叶变换的定义
将时间域信号转换为频率域信号的数学工具,通过将 信号分解为不同频率的正弦波和余弦波来描述信号的 频率特性。
傅立叶变换的性质
线性性、时移性、频移性、对称性、周期性和收敛性等 ,这些性质在信号处理中具有重要应用。
拉普拉斯变换的定义与性质
拉普拉斯变换的定义
极点影响系统的稳定性,决定了系统是否稳定以及系统的响应速度。
通过零极点分析系统稳定性
判断系统是否稳定
如果所有极点都位于复平面的左半部分,则系统是稳 定的。
计算系统的传递函数
通过求解系统函数的零极点,可以得到系统的传递函 数。
分析系统的动态特性
通过分析零极点的分布和位置,可以进一步分析系统 的动态特性和稳定性。
详细描述
信号可以根据其连续性与离散性分为连续时间信号和离散时间信号;根据确定 性可以分为确定信号和随机信号;根据周期性可以分为周期信号和非周期信号 ;根据能量与功率可以分为能量信号和功率信号。

信号与系统系统函数的零极点分析

信号与系统系统函数的零极点分析
1 H ( s) , s
1 H (s) , sa
1、极点的影响
p1 0 在原点
p1 a
at at
h(t ) L1[ H (s)] u(t )
单 极 点
a0 a0
在左实轴上, h(t ) e 在右实轴上,h(t ) e
u (t ) ,指数衰减 u (t ), a 0
H 2 ( s)
s4 (s 1) 2 32
h1 (t ) L1[ H1 ( s)] et cos(3t )u(t )
h2 (t ) L1[ H 2 ( s)] e t cos(3t )u (t ) e t sin(3t )u (t ) et [cos(3t ) sin(3t )]u (t ) e t 2 sin(3t 45o )u (t )
在系统是稳定的前提下,系统频率响应和系统函数的关系为
H ( ) H ( s ) s j
用零极点形式表示为
H ( ) H ( s ) s j K
( j z ) ( j p
k 1 r 1 n r k
m
)
信号与系统
则系统的幅频特性为 H ( ) K

0

信号与系统ຫໍສະໝຸດ 五.零极点与系统频率响应的关系
j
H ( )
0
j

0
H ( )

0

0

信号与系统
五.零极点与系统频率响应的关系
j
H ( )
0

0

j
H ( )
0

0

信号与系统
【例 5-7-3】非常详细,自学。

信号、系统分析与控制 第9章 系统函数的零极点

信号、系统分析与控制 第9章 系统函数的零极点

2. 离散系统函数的零极点
M
离散系统函数的多项式形式为:
H (z)
B(z) A(z)
bj z j
j0
N
ai z i
b0 a0
b1z 1 ... bm z m a1z 1 ... an z n
(9.1.2)
将系统函数进行因式分解,可采用根的形式表示多项式,即 i0
M
H (z)
Y (z)
➢ 说明系统正弦稳态特性。
➢ 研究系统的稳定性。从系统函数的极点分布可以了解系统的固有频率,进而了解系统冲激响应的模式,也就 是说可以知道系统的冲激响应是指数型、衰减振荡型、等幅振荡型、还是几者的组合,从而可以了解系统的
响应特性及系统是否稳定。
1. 连续系统的零极点
系统函数一般以多项式形式出现,分子多项式和分母多项式都可以分解成线性因子的乘积,即连续系统函数:
➢ 可预测系统的时域特性。确定系统函数H(s)、H(z)。 ➢ 可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算系统函数的留数、极点和增益; ➢ 可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的串联。
➢ 描述系统的频响特性。从系统的零、极点分布可以求得系统的频率响应特性,从而可以分析系统的正弦稳态 响应特性。 使用h=freqz(num,den,w)函数可求系统的频率响应。
2. 使用多项式的roots()函数分别求出多项式和的根,获得系统函数的极点、零点。
3. 用用zero(sys)和pole(sys)函数直接计算零极点,sys表示系统传递函数。用法如下:
z = zero(sys):返回 LTI模型 sys的零点z 的列向量。
[z,gain] = zero(sys):同时返回增益gain。

由系统函数零、极点分布决定时域特性

由系统函数零、极点分布决定时域特性

m
(s zj )
j 1
K n (s pk ) k 1
z1 , z2 zn 系统函数的零点
p1 , p2 pn 系统函数的极点
在s平面上,画出H(s)的零极点图:
极点:用×表示,零点:用○表示
2.H(s)极点分布与原函数的对应关系
几种典型情况
j
jω0
α
瞬态响应是指激励信号接入以后,完全响应中瞬时出现 的有关成分,随着t增大,将消失。 稳态响应=完全响应-瞬态响应 左半平面的极点产生的函数项和瞬态响应对应。
例4-7-1
H(s)

s(s 1 j1)( s 1 (s 1)2(s j2)( s
j1) j 2)
极点:p1 p2 1, p3 j2, p4 j2 零点:z1 0, z2 1 j1, z3 1 j1, z4
即零状态响应为: rzs (t) 0.5 e2t 2et 1.5 (t 0)
稳态响应/暂态响应,自由响应/强迫响应
Rs 1.5 1 2 1 2.5 1
s s1 s2
极点位于虚轴 极点位于s左半平面
r(t) 1.5 2et 2.5e2t (t 0)
•定义系统行列式(特征方程)的根为系统的固有频率 (或称“自然频率”、“自由频率”)。 H(s)的极点都是系统的固有频率; H(s)零、极点相消时,某些固有频率将丢失。 •自由响应的极点只由系统本身的特性所决定,与激励
函数的形式无关,然而系数 Ai , Ak与Hs, Es都有关。
暂态响应和稳态响应
i 1
R(s)
v Ak k1 s pk
n

i 1

信号与线性系统分析-第7章

信号与线性系统分析-第7章
jω j2 -1 0 -j2
2
σ
根据初值定理,有
Ks h(0 ) lim sH ( s ) lim 2 K s s s 2 s 5
2s H ( s) 2 s 2s 5
第 3页
二、系统函数H(· )与系统的因果性
因果系统是指:系统的零状态响应yzs(.)不会出现于f(.)
第 13 页
§7.2
一、稳定系统的定义
系统的稳定性
一个系统,若对任意的有界输入,其零状态响应 也是有界的,则称该系统是有界输入有界输出(Bound Input Bound Output------ BIBO)稳定的系统,简称为稳 定系统。 即:若系统对所有的激励 |f(.)|≤Mf ,其零状态响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。
③ H(s)在虚轴上的高阶极点或右半平面上的极点,其 所对应的响应函数都是递增的。 即当t→∞时,响应均趋于∞。系统稳定?
第 8页
复习:s域与z域的关系
z=esT
s
1 ln z 式中T为取样周期 T
如果将s表示为直角坐标形式 s = +j ,将z表示为 极坐标形式 z = ej = eT , = T 由上式可看出: s平面的左半平面(<0)--->z平面的单 位圆内部(z=<1) s平面的右半平面(>0)--->z平面的单位圆外部(z=>1)
第 6页
系统稳定性问题?
系统的稳定性如何?
系统稳定:若系统对所有的激励 |f(.)|≤Mf ,其零状态 响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。 (2)在虚轴上 (a)单极点p=0或p12=±jβ, 则响应为Kε(t)或Kcos(βt+θ)ε(t)→稳态分量 (b) r重极点,相应A(s)中有sr或(s2+β2)r,其响应函数为

§4-6 系统函数与系统的频响特性

§4-6 系统函数与系统的频响特性

H (s)
k s1
(s 1)(s 2 )
H ( j)
k j1
( j 1)( j 2 )
系统函数的零极图如下:
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
⑴ 当Ω=0,零点矢量的模等于0,相角
等于π/2,幅频响应|H( jΩ)|=0;极点 矢量的相角均等于零, φ(Ω)= (π/2)。 1
如上两例RC电路,试根据其零极图,粗略的画出其频响曲线。
先看以电容电压为输出的情况。其零极 图如下:
R
ui (t)
C
uo (t)
⑴ 当Ω=0,极点矢量指向原点,其模长 为α,相角等于0;于是 |H( jΩ)|=α/α=1,φ(Ω)=0。
⑵ 当Ω↑,极点矢量模↑,相角↑; |H( jΩ)|↓,φ(Ω)=-arctg(Ω/α)↓。
《信号与系统》
大连海事大学信息科学技术学院
§4-6 系统函数的零极点分布与系统的频率响应
一、H(s)与H(jΩ)
由前所讲,拉氏变换是傅氏变换由实频域Ω至复频域s的推广, 傅氏变换是拉氏变换在s平面虚轴上的特例。即
j
H ( j) H (s) |s j
二、H(s)的零极点分布与H(jΩ)
由于H(s)一般是有理分式,即它可表示为
s
C (s p1)(s p2)
上式中 1 ( 1 )2 4
p1,2 RC
RC 2
LC
1 ( 1 )2 1 2RC 2RC LC
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
令 1
2RC
1 LC

第5章 系统函数与零、极点分析改

第5章 系统函数与零、极点分析改
电子与信息工程学院
解 研究表明,该系统的微分方程为 即 从而得系统函数
由上式可得该系统的模拟框图,如图 (b)所示。
电子与信息工程学院
k b
电子与信息工程学院
§5.2 系统函数的零、极点
5.2.1零、极点的概念
零点: H(s)分子多项式N(s)=0的根,z1,z2, zm 极点: H(s)分母多项式D(s)=0的根,p1,p2, pn
H (s) I2 (s) 转移电流比 I1(s)
H (s) U2 (s) 转移阻抗 I1(s)
H (s) I2 (s) 转移导纳 U1(s)
双口传递函数 (转移函数)
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
锁相环是一个相位负反馈控制系统,应用很广。当 输入相位与输出相位的瞬时相位差恒定时,称为系 统锁定。
电子与信息工程学院
例 锁相环及其阶跃响应:
三阶琐相环系统
电子与信息工程学院
该系统函数
显然
a1a2 > a0a3
故系统稳定,且阶跃响应
电子与信息工程学院
复习
一、系统函数的一般概念
即有如下关系:
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
H(s)是一个实系数有理分式,它决定了系统 的特征根(固有频率);
H(s)为系统冲激响应的拉氏变换。
电子与信息工程学院

信号与系统 第六章

信号与系统 第六章
2
ω ω (1 ω ) = +j 2 2 2 (1 ω ) + ω (1 ω 2 ) 2 + ω 2
2
V 1
ω =0
H ( jω )
1 2
U
= U (ω ) + jV (ω )
ωห้องสมุดไป่ตู้
3.极点,零点图(Pole-Zero Plot ) 极点, 极点 系统函数可以表示成有理函数的形式, 系统函数可以表示成有理函数的形式,即
M e , M r 为有限值
∵ r (t ) = e (t ) h (t )
∴ r (t ) = e(t ) h(t ) =
+∞

+∞

e(t τ )h(τ )dτ
+∞ ∞
≤ ∫ e(t τ ) h(τ ) dτ ≤ ∫ h(τ ) dτ M e = M r ∞
∴ 要求
结论: 结论:
除个别孤立的冲激函数外,单位冲激响应都应是有限的 有限的, ∫ 除个别孤立的冲激函数外,单位冲激响应都应是有限的,即
bm s m + bm1s m1 + + b1s + b0 H (S ) = an s n + an1s n1 + a1s + a0 极点——使 H (s ) 为无穷大的 使 极点 零点——使 零点——使 H (s ) 为 0 的 (1)
s 值,即分母多项式等于 的根; 即分母多项式等于0的根 的根;
表示系统函数的方法常用三种方法:频率特性曲线, 表示系统函数的方法常用三种方法:频率特性曲线, 复轨迹和极点零点分布图. 复轨迹和极点零点分布图. 1.频率特性(即系统的频率响应特性) 频率特性(即系统的频率响应特性) 频率特性

信号与系统分析总结与简述题

信号与系统分析总结与简述题

信号与系统分析简述题一、简述《信号与系统》的主要研究内容。

《信号与系统》主要是以线性时不变系统作为研究对象,当信号作用与线性时不变系统时,从输入输出描述法和状态变量法来研究系统响应。

当求得系统响应后,根据系统的激励与响应之间的关系求得系统函数,进而根据系统的固有属性来研究系统的内在属性,例如:因果性、稳定性和滤波特性等。

二、输入输出描述法和状态变量分析法的区别。

输入输出描述法:将系统看作一个黑匣子,根据系统的输入和基本属性来求解系统的输出响应,只描述系统单输入和单输出的关系,而不讨论系统内部的结构。

状态变量分析法:通过列些系统的状态方程和输出方程,进而求解得出系统函数和各响应。

不仅揭示了系统的内部特性,还可以用来描述非线性、时变系统和多输入多输出系统。

三、简述常用的输入输出描述法及其优缺点。

常用的输入输出描述法主要包括时域分析和变换域分析。

时域分析法:主要通过系统的微分方程(差分方程)、激励和起始状态,利用经典法、双零法和卷积法等来求解系统响应。

该方法均在时域中进行计算,物理概念清晰,但是计算量大。

变换域分析法:对于连续系统来说主要包括傅里叶变换和拉普拉斯变换;对于离散系统来说,则采用z变换。

变换域求解的计算量小,但是物理意义不清晰,因此常常会进行逆变换,将结果变换成时域的形式。

四、如何判断系统的因果性、稳定性、滤波特性等。

当用系统作用表示时,可通过定义法即响应不得超前激励,有界输入有界输出来判断因果稳定;当用h(t)表示时,则通过u(t)和绝对可积来判断因果稳定;当用系统函数来表示时,对于连续系统,通过系统函数的极点只能分布在s平面的左半开平面来判断,对于离散系统,通过系统函数的极点只能位于单位圆内来判断。

滤波特性则是通过系统函数的零极点分布粗略画出幅频特性曲线,根据幅频特性曲线的走势来判断。

五、连续时间信号、离散时间信号、模拟信号和数字信号有什么区别。

连续时间信号是指时间自变量在其定义的范围内,除若干不连续点以外均是连续的。

信号与系统_第六章 系统函数与零极点分析

信号与系统_第六章 系统函数与零极点分析
并不失一般性! 令m=n并不失一般性! 并不失一般性
F ( s) Y ( s ) = H ( s) F ( s) = N ( s ) D( s) F ( s) 设一个中间变量 X ( s) = 则: D( s)
Y ( s) = N ( s) X ( s)
E-mail:lynwindsent@
U ( s) H ( s) = = Zin ( s) I ( s)
输入阻抗或策动点阻抗
返 回
E-mail:lynwindsent@
Tel:22896276
广东医学院生物医学工程教研室
信号与线性系统
(2)
+ U1(s) -
I1(s) 系 统
I2(s) + U2(s)
U2 ( s) H ( s) = U1 ( s) I2 ( s) H ( s) = I1 ( s) H ( s) =
广东医学院生物医学工程教研室
信号与线性系统
回忆一下在频域中,系统函数的定义: 回忆一下在频域中,系统函数的定义: 称为系统的频率特性, 关系为: 关系为 H( jω) 称为系统的频率特性,与h(t)关系为:
H( jω) = ∫ h(t )e jωt dt


1 jωt h( jω) = ∫ H( jω)e dt 2π ∞
返 回 E-mail:lynwindsent@ Tel:22896276
广东医学院生物医学工程教研室
信号与线性系统
6.2系统函数的零, 6.2系统函数的零,极点 系统函数的零
N ( s) 一,系统函数可以表示为 H ( s) = D( s) 分母多项式的根称为函数的极点, 分母多项式的根称为函数的极点,分子多项式的根称
(a s (b s

4-4系统函数零极点∽频响特性,拉氏变换VS傅里叶变换

4-4系统函数零极点∽频响特性,拉氏变换VS傅里叶变换

m
( j p )
i i 1
j 1 n

频率特性取决于零、极点 z j , pi的分布
j z j N j e j j 令 ji j pi M i e
矢量:模、辐角
j
Mi
pi
i
Nj
j
zj
O

N1e j1 N 2e j 2 N me j m H ( j ) K M 1e j1 M 2e j2 M n e jn N1 N 2 N m j[(1 2 m ) (1 2 n )] K e M 1M 2 M n H ( j ) e
R

L

1 解: 令 Z1 sL, Z 2 ,则 Z1Z 2 R 2 sC 从 v2 端向左应用戴维南定理,
2Z1Z 2 Z Z1 V1 ( s) 2 内阻为 ,等效电源为 Z 2 Z1 Z1 Z 2
V2 ( s ) Z 2 Z1 ( Z 2 Z1 ) R R H (s) V1 ( s ) Z 2 Z1 R 2 Z 2 Z1 ( Z 2 Z1 ) R 2Z 2 Z1 Z 2 Z1 Z 2 Z1 Z 2 Z1 2 Z 2 Z1 R Z 2 Z1 R Z1 L R Z 2 Z1 R Z1 s L s
j ( )
j
Mi
pi
i
Nj
j
zj
N1 N 2 N m H ( j ) K M 1M 2 M n 其中 ( ) ( ) ( ) 1 2 m 1 2 n
0

[例2] 研究图示的 RC 高通滤波网络的频响特性
1 1 z1 0, p1 , p2 R1C1 R2C2

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统——系统函数

信号与系统——系统函数

36
对于非最小相移函数
(s s2 )(s s ) H b ( s) (s s1 )(s s ) * (s s2 )(s s ) (s s2 )(s s2 ) * (s s1 )(s s ) (s s2 )(s s2 )
* 2 * 1 * 2 * 1
st s j
e
jT
因果离散系统,若极点均在单位圆内,则在单位 圆上(|z|=1)也收敛
bm e
j 1

jT
z j

H (e jT )
e
n i 1
jT
pi
j

bm B1B2 ...Bme j 1 2 ...m A1 A2 ...An e j 1 2 ... n
1 极点:p1 , R1C1 1 p2 R2C 2 零点: z1 0 2/7/2019
-π/2
33
最小相移函数
零、极点均位于s平面左半开平面
* (s s2 )(s s2 ) H a ( s) * (s s1 )(s s1 )
极点位于s平面左半开平面,零点位于s平 面右半开平面
2/7/2019
11
几种典型情况
jω0
j
α
O
α

jω0
2/7/2019
12
2.离散系统:
Z平面:
单位圆内:p=-1/3,h(k)= (-1/3)k (k)
单位圆上:p=1,h(k)= (1)k(k),有限值. 单位圆外:p=2,h(k)= (2)k (k) →∞
Im[z] Z平面
→0
增幅
θ0 z 1 单位圆内
单位圆外

实验六 系统零极点对系统频

实验六 系统零极点对系统频

实验报告要求


1、 列写出两个系统的传函数 2、列写出两个系统的极点,并绘制其零、 极图 3、坐标纸绘制出两个系统的频响特性曲 线,并比较其频响特性的区别,总结系 统极点对系统频响的影响。
实验五
系统零极点对系频响的影响测试
实验目的


1、了解系统函数零、极点分布对系统的 影响 2、学会改变系统极点的位置而改变系统 的频响
实验仪器

信号与系统实验箱 50MHZ虚拟示波器 计算机
实验原理

系统的频率特性取决于零、极点的分布, 即取决于Zj、Pi的位置,从系统的观点来 看,要抓住系统特性的一般规律,必须 从零、极点的分布的观点入手研究,下 面我们研究系统极点对系统频响的影响。
IN1为输入信号,通过改变IN2的接法,从而改 变极点的位置
实验内容
1、 INPUT2的接地,搭建电路图。 使信号源输出一正弦信号,频率为 500Hz 左右, p—p 值为 5V 左右。在 保持信号幅度不变的情况下,改变 输入信号的频率(以 100Hz 为一个 步进,当输出幅度为原来信号的 0.707 时,此时的频率即为特征频 点),根据点频法测出系统的频响 特性曲线。 2、将INPUT1接OUTPUT ,重复 上叙实验过程

清华大学信号与系统课件第五章S域分析、极点与零点

清华大学信号与系统课件第五章S域分析、极点与零点

2019/11/15
课件
22
本节作业
• 5-1,5-3,5-8,5-10, • 5-6*,5-9*,5-11* , • 5-13,
2019/11/15
课件
23
§5.2- 暂态响应与稳态响应
• 系统H(s)的极点一般是复数,讨论它们 实部和虚部对研究系统的稳定性很重要
• 不稳定系统 Repi0增幅
j
0

p1
h(t)
0
et t
H(s) 1
S
h(t) et
2019/11/15
课件
7
(2) 几种典型的极点分布——
(d)一阶共轭极点在虚轴上
j
p1 j1
h(t)
0

0
t
p 2 j1
H(s) 1
h(t)sin 1t.u(t)
2019/11/15
S 2
2
0 p1 t
H (s) 1 S
2019/11/15
h(t)u(t)
课件
5
(2) 几种典型的极点分布—— (b)一阶极点在负实轴
j

0

p1
h(t)
e t
t
H(s) 1
S
h(t) et
2019/11/15
课件
6
(2) 几种典型的极点分布—— (c)一阶极点在正实轴
幅度该变
相位偏移
2019/11/15
课件
34
H(j0)H0ej0
H(j)H(j)ej(j)
若 0 换成 变量
系统频率
特性
幅频特性 相位特性
2019/11/15

系统函数的零极点分布决定时域特性

系统函数的零极点分布决定时域特性

目录1.引言 (2)2.虚拟仪器开发软件Labview入门 (3)2.1 Labview简介 (3)2.2 利用Labview编程完成习题设计 (3)3.利用LabVIEW实现系统函数的零极点分布决定时域特性的设计 (20)3.1系统函数的零极点分布决定时域特性的基本原理 (20)3.2系统函数的零极点分布决定时域特性的编程设计及实现 (22)3.3运行结果及分析 (23)4. 总结 (25)5.参考文献 (25)1.引言冲激响应h(t)与系统函数H(s) 从时域和变换域两方面表征了同一系统的本性。

在s 域分析中,借助系统函数在s平面零点与极点分布的研究,可以简明、直观地给出系统响应的许多规律。

系统的时域、频域特性集中地以其系统函数的零、极点分布表现出来。

主要优点:可以预言系统的时域特性;便于划分系统的各个分量(自由/强迫,瞬态/稳态);可以用来说明系统的正弦稳态特性。

2.虚拟仪器开发软件Labview入门2.1 Labview简介LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C 和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。

LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。

VI指虚拟仪器,是LabVIEW]的程序模块。

LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。

用户界面在LabVIEW中被称为前面板。

使用图标和连线,可以通过编程对前面板上的对象进行控制。

《信号与系统》课程讲义4-5

《信号与系统》课程讲义4-5

§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r 1 n
K
r 1 n
( j pk )
M ke jk
k 1
k 1
将 j zr j pk 都看作是两矢量之差,
将矢量图画在复平面内
11
信号与系统
五.零极点与系统频率响应的关系
零点: j zr Nre jr
Nr
zr
r

σ O
极点: j pk M k e jk
k pk
zr
Mk
Nr r
用零极点形式表示为 m
( j zr )
H () H (s) K s j
r1 n
( j pk )
k 1
9
信号与系统
5.7.3
m
系统零极点与系统频率响应的关系( j zr )
H () H (s) K s j
r1 n
( j pk )
m
k 1
j zr
则系统的幅频特性为
H () K
p1 a

a 0 在左实轴上,h(t) eat u(t) ,指数衰减

a 0 在右实轴上,h(t) eat u(t), a 0 指数增长

H
(s)
s2
ω ω2
,
p1,2 jω在虚轴上
h(t) sin ωtu(t) 等幅振荡
ω H (s)
(s α)2 ω2
p1 α jω
p2 α j 共轭根
当 α 0 ,极点在左半平面,衰减振荡 h(t) et sin ωtu(t)
4 当 α 0 ,极点在右半平面,增幅振荡 h(t) et sin ωtu(t)
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
1、极点的影响
1 H (s) s2 极点在原点
h(t) tu(t),t , h(t)
重 极
H
(s)
(s
1 a)2
极点在实轴上
点 h(t) t et u(t),α 0,t ,h(t) 0
H
(s)
2ωs (s2 ω2
)2
在虚轴上
h(t) t sin ωtu(t),t ,h(t) 增幅振荡
5
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
几种典型情况
j
jω0
α
6
O
jω0
信号与系统
系统函数的应用
求系统的零状态响应:
方法一: H (s) h(t) y(t) x(t) h(t))
X (s)
H (s)X (s)
L
H (s)
L-1
yZS (t)
1
信号与系统
§5.7系统函数的零极点分析
2
信号与系统
5.7.1 系统函数零极点定义
α
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
总体来说,系统函数 H(极s) 点 p 对 时j域响应特性关系如下
(1)极点的实部 决定了时域响应指数衰减或增长的快慢,
离虚轴越远,指数衰减或增长越快,所以称为衰减因子,
若 ,0响应为衰减形式,若 ,响 0应为增长形式,若 ,
响应振幅0 为常数。
极点用“×”表示,标出系统的
零极点的位置,称为系统的
零极点图
3
z1, z2 , , zm 是系统零点
p1, p2 , , pn 是系统极点 j
0
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
1、极点的影响
H(s) 1 , s
p1 0 在原点 h(t) L1[H (s)] u(t)
H(s) 1 , sa
(2)极点的虚部 决定了振荡的快慢, 离实轴越远,振
荡越快,称为振荡频率。若 ,响0应不振荡。
7
信号与系统
系统零极点与系统时域响应的关系
2、零点的影响
系统零点分布只影响系统时域响应的幅度和相位,对时域响应模式没有 影响。比如已知系统函数及相应响应
H1 (s)
(s
s 1 1)2
32
s4 H2 (s) (s 1)2 32
8
信号与5系.7统.3二系、系统统函零数极的极点点与、零系点与统系频统频率率响特性应的关的系关系
频率特性 频率特性指系统在正弦信号激励下稳态响应随信号频率的变化情况。 实际上就是系统的傅里叶变换
主要是指幅频特性和相频特性。
在系统是稳定的前提下,系统频率响应和系统函数的关系为
H () H (s) s j
h1(t) L1[H1(s)] et cos(3t)u(t)
h2 (t) L1[H2 (s)] et cos(3t)u(t) et sin(3t)u(t) et[cos(3t) sin(3t)]u(t) et 2 sin(3t 45o )u(t)
两系统函数仅是零点不同,它们对应的冲激响应仅是响应幅度和相位不同, 响应波形的模式均为衰减振荡模式
信号与系统
五.零极点与系统频率响应的关系
所以幅频特性为
m
Nr
H () K
r 1 n
Mk
k 1
相频特性为 m
( j zr )
H () H (s) K m s j n
r1 n
() r r ( j pk )
r 1
k 1 k 1
m
( j zr )
m
Nre jr
H () H (s) K s j
系统函数零点:使 H (s) 0的 s 值。
系统函数极点:使 H (s) 的 s 值。
对系统函数分子分母多项式进行因式分解得
H (s) K (s z1)(s z2 ) (s zm ) (s p1)(s p2 ) (s pn )
m
(s zj)
K
j 1 n
(s pk )
k 1
在复平面上,零点用“o”表示,

σ O
12
信号与系统
五.零极点与系统频率响应的关系
定性地画系统的幅频特性时 的规律:
(1)在原点 j 0是否有零点,若有,则 H (0) 0 否则 H()
从某一数值开始。
(2)当点 j 沿正虚轴向上移动时,如果点 j 离零点越来越近时,
则 H () 越来越小,反之,H () 越来越大。
(3)当点 j 沿正虚轴向上移动时,如果点 j 离极点越来越近时,
r 1 n
j pk
k 1
m
n
系统的相频特性为 () arg j zr arg j pk
r 1
k 1

j zr Nre jr
j pk M k e jk

m
( j zr )
m
N re jr
H () K
r 1 n
K
r 1 n
10
( j pk )
M k e jk
k 1
k 1
则 H () 越来越大,反之,H () 越来越小。
13
信号与系统
五.零极点与系统频率响应的关系
(4) 虚轴若有零点zr jr ,则当 j 通过零点zr jr 时,
H () 0
(5) 虚轴若有极点 pk jk ,则当 j 通过极点 pk jk 时,
相关文档
最新文档