截面惯性矩(材料力学)

合集下载

材料力学第六章 截面的几何性质惯性矩

材料力学第六章 截面的几何性质惯性矩

IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交

《材料力学惯性矩》课件

《材料力学惯性矩》课件

PART 04
惯性矩的应用
REPORTING
弯曲应力计算
总结词
在计算梁的弯曲应力时,惯性矩是一 个重要的参数。
详细描述
通过利用惯性矩的计算公式,可以确 定梁在承受垂直或水平力时的弯曲应 力分布。惯性矩的大小决定了弯曲变 形的程度,进而影响应力分布。
剪切应力计算
总结词
在分析剪切应力时,惯性矩起到关键作用。
建筑结构中的惯性矩问题
高层建筑在风力和地震作用下,需要具备足 够的惯性矩来抵抗侧向和扭转力。建筑设计 时需充分考虑不同方向的惯性矩,以确保结
构安全。
利用惯性矩优化结构设计
优化截面尺寸
根据工程需求,调整结构件的截面尺寸,以改变其惯性矩,从而提高结构的承载能力和 稳定性。
减重与加强
在满足强度要求的前提下,通过优化结构设计,减小不必要的材料使用,降低结构重量 。同时,对关键部位进行加强,提高其惯性矩,确保结构安全。
应力分析是研究物体在受力后内部应力的分布和大小
的过程。
方法
02 通过理论分析、实验测试和数值模拟等方法进行应力
分析。
重要性
03
确保结构在各种工况下的安全性和可靠性,防止因应
力集中、疲劳或过载等原因导致的断裂或失效。
应变分析
定义
应变分析是研究物体在外力作用下产生的变形和位移的过程。
方法
通过测量物体的尺寸变化、观察表面变形和利用有限元等方法进 行应变分析。
在稳定性分析中,惯性矩是评估结构稳定性 的重要参数。
详细描述
结构的稳定性与惯性矩的大小密切相关。通 过分析不同受力情况下惯性矩的变化,可以 预测结构的失稳趋势,并采取相应的措施提 高结构的稳定性。
PART 05

材料力学基本概念及计算公式

材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。

下面将介绍材料力学的基本概念及计算公式。

1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。

计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。

(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。

计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。

(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。

计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。

2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。

计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。

(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。

计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。

3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。

计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。

(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。

计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。

4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。

材料力学--计算机计算惯性矩和抗弯截面系数方法

材料力学--计算机计算惯性矩和抗弯截面系数方法

材料力学—计算机计算惯性矩和抗弯截面系数方法1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。

图12 创建面域面域创建的方式主要有两种:(1)reg命令。

输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。

会建立两个面域(外围边框和内部边框);(2)bo命令。

在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。

选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。

也会建立两个面域(外围边框和内部边框)。

图23 面域差集计算将建立的两个面域进行差集计算。

在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。

4 查询计算(1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”;(2)选择刚创建的面域并回车,弹出如图3所示的文本对话框;图3(3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。

截面惯性矩、惯性积、主力矩。

5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算(1)从主力矩与质心的X-Y方向可以得出:I x=188.5mm4, I y=188.5mm4(2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs 坐标原点移动到截面形心,如图4;图4(3)命令行输入massprop并回车,弹出如图5所示的文本对话框;图5(4)可得:截面对形心轴的惯性矩I x=188.5mm4、I y=188.5mm4,惯性积I xy=0(由图5可知,形心轴y 轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。

截面惯性矩的计算

截面惯性矩的计算
b
h 2
(B)(b)>(a)>(c) (D)(b)<(a)<(c)
b
y
y
h h
b
y
h
2h

h 2
x
h 2
x
h
2b
(a)
2b
(b)
2b
(c)
12
材 料 力 学 Ⅰ 电 子 教 案
解题思路:
h 2
b
y
b
y
h h
b
y
h
2h
x
h 2
x
h 2
x
h
2b
(a)
2b
(b)
2b
(c)
(1)该截面相对于x轴的惯性矩可用组合法计算。 (2)计算图中小矩形相对于x轴的惯性矩需要用平行移轴公式。
C
a
S yC yc dA Ayc 0
A
aA
2
O
7
x
I x I xc a A
2
材 料 力 学 Ⅰ 电 子 教 案
y
yc
同理可得:
I x I xc a A
2
xc dA
b
yc
C
a
I y I yc b2 A
x
c
I xy I xcyc abA
x
O
以上三式就是惯性矩和惯性积的平行移轴公式。需要注 意的是式中的a,b为坐标,有正负,应用惯性积平行移轴公 式时要特别注意。
8
材 料 力 学 Ⅰ 电 子 教 案
例:计算图示矩形截面对于其对称轴(即形心轴)x,y的惯 性矩,惯性积。
y xc
h b
x

截面惯性矩

截面惯性矩

静矩(面积X面内轴一次) 把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx= ydF。
截面极惯性矩(Ip=面积X垂直轴二次)。
Ip: the torsional moment of inertia
the polar moment of inertia 截面各微元面积与各微元至垂直于截面的某一指定轴线二次方乘积的积分Ip= P↑2dF。 a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。
惯性矩平移公式:
这里, Iz是对于 z-轴的面积惯性矩、 Ix是对于平面质心轴的面积惯性矩、 A是面积、 d是 z-轴与质心轴 的垂直距离。(单位:mm^4)
计算公式
矩形 三角形
圆形 圆环形
其中:b—宽;h—高
其中:b—底长;h—高
截面惯性矩和极惯性矩的关系 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。
截面系数
section factor
机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构件的抗弯强度和抗扭强度(见强 度),或者用以计算在给定的弯矩或扭矩条件下截面上的最大应力。
根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出 现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为 -0.032√(C+W)-0.21√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图 和附表)。一般截面系数的符号为W,单位为毫米3。依据公式可知,截面的抗弯和抗扭强度与相应的截面系数成 正比。

材料力学笔记(惯性矩)

材料力学笔记(惯性矩)

材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d —实心圆直径和空心圆内径,D —空心圆外径,R 0—薄壁圆平均半径。

t —薄壁圆壁厚。

惯性矩I 量纲为长度的四次方(mm 4),恒为正。

二、截面抗弯刚度EI z和抗弯截面模量Wz(a )上式代表距中性层为y 处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数, 所以正应变ε与y 成正比(上缩下伸),与z 无关。

式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。

(b )式(b )表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。

由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E 也是常数,所以横截面上任一点处的正应力与y 成正比(上压下拉) 。

显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。

图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。

令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。

于是得出(7.2-1)上式确定了曲率的大小。

式中EIz称为截面抗弯刚度(stiffness in bending)。

到此为止,式(a)中的y和ρ已经确定。

联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。

当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。

表7.2-I列出了简单截面的Iz 和Wz计算公式。

表中 =d/D,R为薄壁圆平均半径。

三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。

截面惯性矩(材料力学)

截面惯性矩(材料力学)

B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 x Fy 0
FN1 cos 45 FN 2 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
截面上的应力
A 1
45°
C
2
FN1
y
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
20 100 50=32 104mm3
§I-2 惯性矩、惯性积、极惯性矩
1、惯性矩:(惯性矩是一个物理量,通常被用作描述一个物 体抵抗扭动,扭转的能力 )
它是图形面积与它对轴的距离的平方之积表达式为
Ix y2dA
A
I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
F 压为负
Fx 0 FN F 0
FN F
4、轴力图:轴力沿杆件轴 线的变化
轴力和轴力图
例题3-1
A
F1 F1 F1
FN kN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
1 F2
2
F3
2
2
I Z1
Iy
IZ 2
Iy
IZ 2
cos 2a
I yz sin 2a
2.三个公式:设新坐标系由原坐标系逆转α角而得,且有
I y1
Iy
IZ 2
Iy
IZ 2
c os 2a

材料力学惯性矩公式

材料力学惯性矩公式

材料力学惯性矩公式在材料力学中,惯性矩是一个重要的物理量,它描述了物体对于转动的惯性特性。

在工程和科学领域中,我们经常需要计算和应用惯性矩,因此了解惯性矩的计算公式是非常重要的。

惯性矩的计算公式与物体的形状和质量分布有关。

对于不同形状的物体,我们需要使用不同的公式来计算其惯性矩。

下面,我将介绍一些常见形状的物体的惯性矩计算公式。

首先,我们来看一下关于直线轴的惯性矩计算公式。

对于质量分布均匀的直线轴,其惯性矩的计算公式为I=1/12ML^2,其中M为物体的质量,L为物体的长度。

这个公式适用于绕通过物体质心且与物体轴线平行的转动轴。

接下来,我们来看一下关于圆环的惯性矩计算公式。

对于半径为R、质量分布均匀的圆环,其惯性矩的计算公式为I=1/2MR^2,其中M为圆环的质量。

这个公式适用于绕通过圆环中心且与圆环轴线垂直的转动轴。

除了直线轴和圆环,对于其他形状的物体,我们也可以根据其几何形状和质量分布来推导出相应的惯性矩计算公式。

在工程实践中,我们经常会遇到需要计算复杂形状物体的惯性矩,这时候我们可以利用积分来进行计算。

除了单个物体的惯性矩计算,当多个物体组合在一起时,我们也需要考虑它们的复合惯性矩。

对于多个物体组合体的复合惯性矩计算,我们可以利用平行轴定理和垂直轴定理来简化计算过程。

在应用惯性矩计算公式时,我们需要注意保持单位的一致性,以及正确地考虑物体的质量分布情况。

在实际工程中,我们还需要考虑到材料的弹性模量、截面形状等因素,以便更准确地描述物体的转动特性。

总之,惯性矩是描述物体对于转动的惯性特性的重要物理量,其计算公式与物体的形状和质量分布有关。

在工程和科学领域中,我们经常需要计算和应用惯性矩,因此了解惯性矩的计算公式是非常重要的。

希望本文介绍的惯性矩计算公式能够对您有所帮助。

常见截面的惯性矩和抗弯截面系数

常见截面的惯性矩和抗弯截面系数

常见截面惯性矩和抗弯截面系数自动计算 简介本文档主要介绍:工程常见截面的截面惯性矩、抗弯截面系数,主要包括矩形、矩形管、圆形、圆管、椭圆、椭圆管、六边形、花键的截面惯性矩、抗弯截面系数公式及公式自动求值方法。

理论依据根据材料力学,抗弯截面系数W X 与截面惯性矩I X 的关系公式如下: 的距离离中性为,其中轴X最远点截面上W max maxy y I X X 。

下面一一列出前述各形状截面的公式和wxMaxima 计算机自动求值算式。

矩形矩形截面如下图所示。

平行于X 轴的矩形边长为b ,平行于Y 轴的矩形边长为h ,矩形截面相对于X 轴的截面惯性矩公式为:123bh I X = 其相对于X 轴的抗弯截面系数公式为:6212W 23max bh h bh y I X X === 下面为wxMaxima 计算机自动求值算式,将下面的内容复制进wxMaxima 软件的空白区域,将数值修改为与工程实际情况相符合的数值,然后点击菜单栏的“单元”→“对单元进行求值”,即可得到想要的结果:/*矩形的截面惯性矩和抗弯截面系数计算*//*设置软件输出结果为数值*/if numer#false then numer:true else numer:true;b:38;h:130;Ix:1/12*b*h^3;Wx:1/6*b*h^2;/*作用在截面上的弯矩*/M:109874;/*弯矩在截面上产生的应力*/σ:M/Wx;矩形管矩形管截面如下图所示。

平行于X 轴的内部矩形边长为b ,平行于Y 轴的内部矩形边长为h ,平行于X 轴的外部矩形边长为B ,平行于Y 轴的外地部矩形边长为H ,矩形管截面相对于X 轴的截面惯性矩公式为:1212-123333bh BH bh BH I X -== 其相对于X 轴的抗弯截面系数公式为:hbh BH h bh BH y I X X 6212W 3333max -=-== /*矩形管的截面惯性矩和抗弯截面系数计算*//*设置软件输出结果为数值*/if numer#false then numer:true else numer:true;b:38;h:130;Ix:(B*H^3-b*h^3)/12;Wx:(B*H^3-b*h^3)/6/H;/*作用在截面上的弯矩*/M:109874;/*弯矩在截面上产生的应力*/σ:M/Wx;圆形圆形截面如下图所示。

考研材料力学公式

考研材料力学公式

考研材料力学公式
考研材料力学公式较多,部分公式如下:
1. 横截面积AA矩形=bh。

2. A圆环=π 4 \fracπ44π(D2-d2)。

3. A薄壁圆环≈2πδ。

4. Sy=Azc为形心,可用Sy=Azc来计算静矩。

5. yc三角=h 3 \frac h33h为形心。

6. 惯性积Iyz= ∫AyzdA,可正可负,y、z轴相互垂直,若有一个是对称轴,则Iyz=0。

7. 惯性矩Iz= ∫Ay2dAIzC为形心主惯性矩,且Iz≥ Izc。

8. 极惯性矩Iρ= ∫Aρ2dAIρ= ∫A(y2+z2)dA = Iy+Iz。

9. 主惯性轴无主惯性轴为一对正交坐标轴,且截面对它们的惯性积为0。

10. 主惯性矩Iz截面图形对主惯性轴的惯性矩 iz= 由I = i2A所得,iz圆=d 4 \frac d44d。

11. 平行移轴公式Iz= Izc+ a2Aa为z轴到中性轴的距离,对惯性积也有
Iyz=Iyzc+abA 用于等截面圆轴。

12. 圆环截面惯性矩I z = 1 64 I_z=\frac{1}{64}Iz=641πD4(1-α4)。

如需更多考研材料力学公式,建议查阅考研教辅或咨询考研机构老师获取。

《材料力学惯性矩》课件

《材料力学惯性矩》课件

了解不同材料的弹性模量、泊松比和剪切 模量等力学性能参数,以便更好地理解和 应用材料力学的相关公式和定理。
掌握梁的弯曲和轴的扭转的基本 原理
通过学习梁的弯曲和轴的扭转的基本原理 ,掌握如何利用惯性矩解决工程实际问题 的方法和技巧。
实践应用
通过实践应用,将所学知识应用于解决实 际问题中,提高解决实际问题的能力和实 践经验。
计算方法
矩形截面
对于矩形截面,可直接计算其惯性矩。
圆环形截面
对于圆环形截面,其惯性矩等于圆环面积与圆周率π的乘积。
任意形状截面
对于任意形状截面,需要采用积分法计算其惯性矩。
分类与特性
分类
根据转动轴的位置,惯性矩可分为极惯性矩、静惯性矩和动惯性矩。
特性
惯性矩具有对称性,即当物体绕对称轴转动时,其惯性矩为零。此外,惯性矩 还具有叠加性,即多个物体组合时,其总惯性矩等于各个物体惯性矩之和。
航空航天器中的惯性矩应用
总结词
飞行稳定性、导航控制
详细描述
在航空航天器设计中,惯性矩对飞行稳定性和导航控制具有 重要影响。通过合理设计和控制航空航天器的惯性矩,可以 提高飞行器的飞行稳定性,保证导航控制的精度和可靠性, 确保飞行安全。
06 总结与展望
本章总结
惯性矩的概念
惯性矩是描述物体转动惯性的物理量,与物体的质量分布和旋转 轴的位置有关。
《材料力学惯性矩》PPT课件
目录
• 引言 • 材料力学基础 • 惯性矩概念 • 惯性矩的应用 • 案例分析 • 总结与展望
01 引言
课程简介
材料力学是研究材料在各种外力作用下产生的应 变、应力、强度、刚度和稳定性等行为的科学。
惯性矩是材料力学中的一个重要概念,它描述了 物体在受到外力矩作用时抵抗转动的能力。

常用截面惯性矩计算公式_百度文库

常用截面惯性矩计算公式_百度文库

新闻网页贴吧知道音乐图片视频地图百科文库
百度文库专业资料工程科技机械/仪表
限时!免财富值下载
常用截面惯性矩计算公式83689人阅读全部DOC PPT TXT PDF XLS
搜索文档帮助
二级(456)|||私信(0)|下载客户端|百度首页
leeming168个人中心
限时!免财富值下载到手机
2/31 财富值
你可能喜欢
剪力弯矩计算公式刘鸿文版材料力学课件...简支梁挠度计算公式材料力学习题集Excel使用技巧大...工字钢槽钢H型钢截面各类梁反力剪力弯矩挠度计算公式一览表11页5财富值
各类梁支反力剪力弯矩挠度计算公式一览表11页免费
梁反力剪力弯矩挠度计算公式11页免费
剪力弯矩计算公式11页2财富值
剪力弯矩计算公式11页免费
更多与“剪力弯矩计算公式”相关的文档>>
©2013 Baidu使用百度前必读 | 文库协议。

材料力学 截面性质

材料力学    截面性质

(Ai 和xi , yi分别为第i个简单图形的面积及其形心坐标)
5. 组合截面的形心坐标公式
n
将 S y Ai xi i1
n
S x Ai yi i1
代入 S y A x Sx A y
解得组合截面的形心坐标公式为:
n
Ai xi
x
i 1 n
Ai
i 1
n
Ai yi
y
i 1 n
Ai
i 1
(注:被“减去”部分图形的面积应代入负值)
例 试计算图示三角形截面对x轴的静矩。
y
dy
h
b(y)
y
O
b
x
解:取平行于x轴的狭长条,易求 b( y) b (h y)
因此 d A b (h y) d y
ห้องสมุดไป่ตู้
h
所以对x轴的静矩为
h hb
bh2
S x
y d A (h y)y d y
A
0h
6
2
4
I2 xc yc
x
I x1 A y12 d A
y
Ix1
cos2
y2 d A sin2
A
x2 d A
A
2sin cos A xy d A
I x cos2 I y sin2 2I xy sin cos
利用二倍角函数代入上式,得转轴公式 :
I x1
Ix
2
Iy
Ix
Iy 2
cos2
I xy sin 2
n
Ix
i1
I
xi
n
Iy
i1
I
yi
n
I xy I i1 xyi

《材料力学 第2版》_顾晓勤第05章第2节 截面的惯性矩、惯性积和惯性半径

《材料力学 第2版》_顾晓勤第05章第2节 截面的惯性矩、惯性积和惯性半径

2 2 2 22
64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
例 5-4 如图所示,计算圆形截面对于 x 轴和 y轴
的惯性矩、惯性半径,以及极惯性矩、第一象限部
分对 x、y轴的惯性积。
解 取平行于 x 轴的狭
长条作为微面积 dA,则
dA b(y)dy 2 d 22 y2dy
dy
dA bdy
y
矩形截面对于 x 轴的惯性矩为
H
Ix A y2dA 2h2 y2bdy 2 2b [( H )3 ( h )3 ] 32 2 b (H 3 h3) 12
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
矩形截面对于 x 轴的惯性半径为
ix
Ix A
b 12
圆形截面对于 x 轴的惯性矩为
Ix A y2dA
d2
d 2
y2
2
d 2 2 y2 dy
πd 4 64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
圆形截面对于 x 轴的惯性半径为
ix
Ix A
πd 4 πd 2
64 4
d 4
x 轴和 y 轴都与圆的直径重合,由
于对称的原因,有
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
设任意平面图形其面积
为A。x 轴和 y 轴为图形所在 平面内的坐标轴。在 ( x ,y )
处取微面积 dA,则定义图形
对于x 轴和 y轴 y2dA I y A x2dA
注意
由于 x2 和 y 2总是正的,所以 I x 和 I y 也恒
是正值。
惯性矩的量纲为长度的四次方。

材料力学-截面几何特性

材料力学-截面几何特性
IxC1 (70mm)3 10mm/12 28.58104 mm4 I yC1 70mm(10mm)3 /12 0.58104 mm4
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700

惯性矩与转动惯量的区别

惯性矩与转动惯量的区别

惯性矩与转动惯量的区别在大学物理实验用共振法测量固体材料的杨氏模量的实验原理中,有涉及到惯性矩,若没有学过材料力学,可能会将此概念与普通力学中的转动惯量混淆。

现就本人的理解,将这两个概念作一对比,供初学者参考.惯性矩(截面的惯性矩的简称):(英文area moment of inertia )定义:梁的截面积对某坐标轴的距离(也叫惯性半径)的平方的乘积叫做对某轴的惯性矩。

单位是长度的四次方.梁的截面惯性矩越大,其强度和刚度越大,截面惯性矩是计算梁的挠度和转角的主要参数之一。

在材料力学中用于弯曲计算。

意义:是描述一个物体抵抗扭动、扭转能力的物理量。

是一个用于描述截面几何性质的量。

其中:惯性矩(截面惯性矩):面积元素d A 与其至x 轴或y 轴距离平方的乘积y 2d A 或x 2d A ,分别称为该面积元素对于x 轴或y 轴的惯性矩或截面二次轴矩。

如对X 轴的惯性矩:极惯性矩(截面极惯性矩):截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩.如图形对O 点的极惯性矩; ⎰=A p dA I 2ρ ρ 为面元d A 到O 点的距离。

截面惯性矩和极惯性矩的关系: 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩:x y A A I I dA y x dA I +=+==⎰⎰)(222ρρ截面惯性矩:对某个轴而言;极惯性矩:对某个点而言。

惯性矩的国际单位为:m 4。

转动惯量:(也叫惯性矩),英文是Moment of Inertia如对上图形O 点的转动惯量⎰=m dm I 2ρ d m 为质量元。

是用于描述物体转动惯性大小的物理量。

两者的区别:转动惯量Moment of Inertia ;截面惯量area moment of inertia;xyd Ax y ρO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 1
45°
C
2
FN1
y
FN 2 45° B
F
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 x Fy 0

b2h23 12

20Байду номын сангаас
20
100
3
12
16.67 105
3)求对整个截面形心ZC轴的惯性矩 IzC (Iz1 a12 A1) (Iz2 a22 A2 ) 66.67103 302 200016.67105 302 2000 53.34105 mm4
F
F 作用线也与杆件的轴线重
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
F 压为负
Fx 0 FN F 0
FN F
4、轴力图:轴力沿杆件轴 线的变化
轴力和轴力图
例题3-1
A
F1 F1 F1
FN kN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
杆件的基本变形: 拉(压)、剪切、扭转、弯曲
拉压变形
剪切变形
扭转变形
弯曲变形
二、杆件的轴向拉压变形分析
一、轴向拉伸和压缩的概念
特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
杆的受力简图为
拉伸
F
FF
压缩
F
二、拉伸和压缩时的内力、截面法和轴力
y
yC
dz
hz
dy
a
y
0b
解: dA hdz
zC
Sy

b 0
zhdz

hb2 2

A b 2
z
Sz

ah
ybdy
a

b[(a

h)2 2
a2]
11))同同一 一截截面面对对不不同同轴轴的的静静 bh[ h a] A[ h a]
矩矩不不同同;;
2
2
2)静矩可为正,负值或零; 3)静矩的单位为m33;

yC

xCi Ai
A (正负面积法公式 ) yCi Ai
A
x S yC A xC SxC A yC
Sy AxC Ai xCi xdA
A
2.形心公式
Sx AyC Ai yCi ydA
A
xC
Ai xi A
yC
Ai yi A
ydA
D4
32
o
z
IP Iy0 Iz0
I y0
Iz0

IP 2
D4
64
§ I-3 惯性积
1.定义:图形对两个坐标轴的两个坐标之积的积分。
§ I-3 惯性积
2.表达式:
y
I yz yzdA
A
3.说明: h
1)同一图形对不同轴的惯性积不同; A1 A2
z
2)惯性积可正,可负,可为零。

4
F
90106 Pa 90MPa
x
2

FN 2 A2
20103 152 106

89106 Pa 89MPa
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
SZ SZ1 SZ 2 ... SZn ydA ydA ... ydA Ai yCi
A1
A2
An
n
yC
Sz
Ai yCi i1
Ai
Ai
n
ZC
Sy
Ai ZCi i1
Ai
Ai
例1:求图示T形截面的形心及对z轴的静矩 y
返回
§I-5转轴公式及主惯性矩(简介)
1.转轴公式:
当坐标轴绕原点转一个角度后,得到一个新的坐标轴时,转轴 公式给出在新旧坐标轴下的惯矩及惯积的关系.

y1 z1

y cosa z cosa

z y
sin a sin a
z1
I z1 y12dA ( y cosa z sin a )2 dA
a1 20 10 30mm
20
a2 30mm
A1 A2 20100 2000mm2 100
2)求出A1和A2分别对自身形心 轴的惯性矩
A1 •••


A2
100

z1
a1 zc
30
a2
z2
z
I z1

b1h13 12
100 203 12
66.67 103
Iz2
航空航天
构件的承载能力
强 度:即抵抗破坏的能力 刚 度:即抵抗变形的能力 稳定性:即保持原有平衡状态的能力
构件的强度、刚度和稳定性不仅与构件的 形状有关,而且与所用材料的力学性能有关, 因此在进行理论分析的基础上,实验研究是完 成材料力学的任务所必需的途径和手段。
四川彩虹桥坍塌
美 国 纽 约 马 尔 克 大 桥 坍 塌
I y1

Iy
IZ 2

Iy
IZ 2
c os 2a
I yz sin 2a
IZ1

Iy
IZ 2

Iy
IZ 2
c os 2a
I yz sin 2a
I Y 1Z 1

Iy
2
IZ
sin 2a

I yz
c os 2a
3.主轴及主惯性矩:
1)主轴:图形若对坐标轴的惯矩为零时,这对坐标轴就称为
1 F2
2
F3
3
F4
出图示杆件的轴力图。 解:1、计算各段的轴力。
FN1
FN2 F2
FN3
10


10
AB段 Fx 0
FN1 F1 10kN
BC段
Fx 0 FN 2 F2 F1
F4
25 CD段
FN 2 F1 F2
10 20 10kN
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
古代建筑结构
2200年以前建造的都江堰安澜索桥
古代建筑结构
建于隋代(605年)的河北赵州桥 桥长64.4米,跨径37.02米,用石2800吨
桥梁结构

4.构件的强度计算
4.1截面的几何特征
§Ⅰ-2 惯性矩和惯性半径 §Ⅰ-3 惯性积 §Ⅰ-4的平行移轴公式
§Ⅰ-1 静矩和形心 1、静面矩(也叫面积矩简称静矩) y
(与力矩类似)是面积与它到轴的距离之积。
定义 S y =∫A z dA Sz=∫A y dA
z dA y
z
例:矩形截面,面积为A。求: S y 、 Sz、 SzC
I x
y 2dA
A
xC
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
x
I xC 2bSxC b2 A
SxC AyC 0 I x I xC b2 A 返
§Ⅰ- 4平行移轴公式 y
yC
2.结论: I y I yC a2 A

I
x

I xC
b2A
I xy I xCyC abA
x
dA
a bC y
xC
x
A)在所有的平行轴中,图形对自身形心轴的惯性 矩为最小。
B)当图形至少有一条轴是图形的对称轴时,则有
I xy abA I xCyC 0
解例:组1)合写截出A面1,惯A性2及矩其的形计心算坐,标求a截1;面a2对ZC轴的y 惯性矩。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
拉(压)杆横截面上的应力
σ= FN MPa
A
F
FN 表示横截面轴力(N)
A 表示横截面面积(mm2)
F
mn F
mn
FN
——横截面上的应力
截面上的应力
例题3-2
FN1 cos 45 FN 2 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
截面上的应力
A 1
45°
C
2
FN1
y
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106
它是图形面积与它对轴的距离的平方之积表达式为
Ix y2dA
A
I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
y
x dA
y

x
3)惯性矩的单位为m4;
相关文档
最新文档