第三章量子力学
量子力学讲义第三章讲义
第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。
ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。
为强调算符的特点,常常在算符的符号上方加一个“^”号。
但在不会引起误解的地方,也常把“^”略去。
二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。
例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。
2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。
3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。
ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。
一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。
5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
原子物理3
19世纪末的三大发现 揭开了近代物理的序幕
1895年的X射线 1896年放射性元素 1897年的电子的发现
早期量子论 量子力学
相对论量子力学
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
狄拉克把量子力学与狭义 相对论相结合
四、德布罗意波和量子态
v 质量为 m 的粒子以速度 匀速运动时,具有能
量 E 和动量 p ;从波动性方面来看,它具有波长
和频率 ,这些量之间的关系遵从下述公式:
E mc2 h
p mv h
具有静止质量 m0 的实物粒子以速度 v 运动,
则和该粒子相联系的平面单色波的波长为:
的精密度的极限。还表明
px 0 x 位置不确定
x 0 px 动量不确定
pyqy 2
pzqz 2
pxqx 2
这就是著名的海森伯测不准关系式
二、测不准关系式的理解 1、 用经典物理学量——动量、坐标来描写微 观粒子行为时将会受到一定的限制 。 2、 可以用来判别对于实物粒子其行为究竟应 该用经典力学来描写还是用量子力学来描写。
电子的动量是不确定的,应该用量子力学来处理。
例3 电视显象管中电子的加速度电压为10kV,电子 枪的枪口的直径为0.01cm。试求电子射出电子枪后 的横向速度的不确定量。
解: 电子横向位置的不确定量 x 0.01cm
vx 2mx 0.58m s
v 2eU 6 107 m/s m
pdp m
E vp
Et vpt pq
2
mv
第三章-量子力学中的力学量(下)
1= ∫ψ ψdV = ∑∑c c ∫ψ ψ dV =∑∑c c δ =∑cn
* * n m * n m * n m nm n m n m n
2
第5(6)节 算符与力学量的关系 5(6
ˆ 量子力学基本假定:力学量 对应厄米算符 对应厄米算符, 量子力学基本假定:力学量F对应厄米算符 算符F的本征函数构成 描述时, 完全系。当系统由归一化 归一化波函数 完全系。当系统由归一化波函数 ψ = ∑ cnψ n 描述时,测量力学
角动量算符本征函数
* Y lm (θ , ϕ )Y l ' m ' (θ , ϕ )d Ω ≡ ∫ 2π
波函数 ψ
r p
r (r ) =
1 e ( 2πh )3 / 2
r r ip⋅ r h
波函数 Ylm (θ , ϕ ) = N lm Pl|m| (cosθ )e imϕ
* d ϕ ∫ sin θ d θ Y lm (θ , ϕ )Y l 'm ' (θ , ϕ ) = δ ll 'δ mm ' ∫ 0 0
的结果必定是对应算符的本征值, 量F的结果必定是对应算符的本征值,测量到本征值 f n 的几率 的结果必定是对应算符的本征值 是 cn 2。 ˆ 如果测量F的结果为 如果测量 的结果为 fn, 波函数塌缩为ψ = ∑cnψn →ψn (Fψ n = f nψ n ) 。
量子力学 第三章
−ρ / 2
[s(s −1) − l(l + 1)]b0 ρ
令 ν'=ν-1 第一个求和改为
s−2
+ ∑[(ν + s)(ν + s − 1) − l(l + 1)]bν ρν +s−2
ν =1
∞
∑ bν ρ ν
s+ν −1
:
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0
∞
即
b ≠ 0 0 s ≥ 1
对应一个本征值有一个以上的本征函数的情况成为简并。 对应一个本征值有一个以上的本征函数的情况成为简并。 对 应同一个本征值的相互独立的本征函数的数目称为简并度。 应同一个本征值的相互独立的本征函数的数目称为简并度。
个取值。 ˆ 对给定的 l , m 有 ( 2l + 1) 个取值。 L2 的本征值是 ( 2l + 1) 度 简并的。 简并的。
∑[(ν + s)(ν + s −1) − l(l +1)]bν ρ ν
=0
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0
∞
把第一个求和号中ν= 0 项单独写出,则上式改为: 把第一个求和号中ν= 项单独写出,则上式改为:
u αf (ρ )e R= = r ρ =e
−ρ / 2 =0
四、讨论: 讨论:
ˆ ˆ a. Ylm 是 L z , L2 得共同本征函数 .
ˆ L2 Ylm = l(l + 1)h 2 Ylm
ˆ = −ih ∂ 作用于 Ylm 上,有: 而让 L z ∂ϕ ∂ m ˆ L z Ylm (θ, ϕ) = − ih [(−1) m N lm Pl (cos θ)e imϕ ] ∂ϕ
量子力学_第三章3.8力学量期望值随时间的变化__守恒定律
dinger 方程 o 接地描写各力学量的变化。当然,我们也可以由 Schr
推出一个力学量随时间变化的一般方程,即量子力学运动方程或 海森堡运动方程,由它可以更直接的描述力学量的变化,并可得 出一些重要结论。
ˆ 的本征值 C 1 。 所以 P
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
ˆ F 1 ˆH ˆ H ˆF ˆ ) dx dx ( F t i
ˆ 1 d F F ˆ,H ˆ] 即: [F dt t i
(1)
ˆ 显含时间而引 此即为海森伯运动方程。 其中右边第一项是由于 F
起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F 不随 t 变化这一项也存在。
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
y
x
y
ˆ ˆ2 L L 0, x t t dL d L2 所以: 0; x dt dt
ˆ L y
ˆ L z =0 t t dL y dL z 0; 0 0; dt dt
量子力学第三章
(dS = rdrd ) θ
(2)氢原子的磁矩为
M = ∫ dM = ∫
π ∞
0 0
∫
−
ehm
µ
πψnlm r2 sinθ drd θ
2
=− =−
=−
π ∞ ehm 2 ⋅ 2π ∫ ∫ ψnlm r 2 sinθ drd θ 0 0 2µ
ehm 2π π ∞ 2 ψnlm r2 sinθ drd dϕ θ 2µ ∫0 ∫0 ∫0
1
3 π a0
e−r / a0 ,求:
(1)r 的平均值;
e2 (2)势能 − 的平均值; r
(3)最可几半径;
(4)动能的平均值;
(5)动量的几率分布函数。 解:(1) r = rψ2π ∞ −2r / a0 2 re r sinθ drdθ dϕ 3 πa0 ∫0 ∫0 ∫0
∫
=
1 2πh
∫
∞
−∞
i α − 1α x − h Px 2 e e dx π
2 2
=
1 2πh
α ∞ −2α x −h Px ∫−∞ e e dx π
1
2 2
i
= = = 1
1 2πh 1 2πh 2πh
α e π ∫−∞
∞
ip p2 1 − α 2 ( x+ 2 )2 − 2 2 2 α h 2α h
4 −2r / a0 2 e r dr 3 a0
ω(r) =
dω(r) 4 2 = 3 (2 − r )re−2r / a0 dr a0 a0
令
dω(r ) = 0, r1 = 0, ⇒ dr
r2 = ∞,
r3 = a0
当 r1 = 0, r2 = ∞时, (r) = 0 为几率最小位置 ω
量子力学第三章
3.1求一维无限深势阱中的粒子处于第一激发态时概率密度最大值 的位置。
解 一维无限深势阱中粒子的波函数是 对第一激发态,,故 令 得五个极值可疑点:
和4 又因为 将代入上式得,故概率密度最大值位于和处。
3.2若粒子的波函数形式为,求粒子的概率分布,问粒子所处的状 态是否定态?
解 (1)
(2)
3.5在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态
波函数具有确定的宇称。
解 一维运动的薛定谔方程为
(1)
式中
(2)
依题意,在坐标反射变换时
再注意到当时是不变量,因此 (3)
即在坐标反射变换下,哈密顿算符具有不变性。 设坐标反射变换而得的态用表示,这时薛定谔方程为 (4)
有一个交点,故只有一个束缚态。 当 ,即
时两曲线有两交交点和,故有两个束缚态。
(5)式中常数由归一化条件求得:
最后得到波函数为
3.9设粒子处于半壁无限高的势场中 中运动,设粒子能量,求束缚态能量所满足的方程及至少存在一个束缚 态的条件。
解(1) 一维定态薛定谔方程为 将所给势能代入上式得 即 令 它们皆为实数,于是得到
它们的解分别为 但,否则时,不满足波函数有限性的要求,于是
因此在势阱中粒子满足如下薛定谔方程
或
即
(1)
其中
(2)
假设粒子处于态,与无关,因而
,
于是(1式变成
它的解为
代入(3)式得
(4)
为满足有限性要求,,否则处无限大,于是
(5)
又在处,这是因为边界是理想反射壁,粒子不能透出势阱外,于是
即
即 注意到(2)式,便得到球形势阱中粒子的能级 可见能级是量子化的,与一维无限深势阱的结果相似。
第三章 量子力学中的力学量
1 2πh
eipx/ h
hk E= ≥0 2m
ˆ H p H Lz与 ˆ,ˆ与 ˆ
2 2
k可 续 值 故 是 续 。 连 取 , E 连 的
能 二 简 。 级 度 并
为啥具有相同的本征态?
(5)坐标算符的本征值和本征函数 )
ˆ xϕ x′ ( x) = x′ϕ x′ ( x) x′取一切实数 ϕ x′ ( x) = δ ( x − x′)
,
n = 1,2,3L l = 0,1, L n - 1 m = 0,±1 L ± l ,
二、量子力学的基本原理四
在 意 ψ中 ψ = ∑anϕn 任 态 ,
n
测量力学量A,可得到各种可能取值,可能取 值必为某一本征值。
ˆ在 征 谱 取 的 率 | a |2 。 A 本 值 中 A 几 为 n n
2 2 ˆ2 ˆ = Lz = − h ∂ H 2I 2I ∂ϕ2
z
h2 ∂2 − ψ = Eψ 2 2I ∂ϕ
1 imϕ ψm(ϕ) = e 2π m2h2 Em = ≥0 2I
m = 0 ±1 ± 2 L ,, ,
要求: 要求:会求解
(3)求 量 分 px的 征 。 动 x 量ˆ 本 态
∂ −ih ψ = px'ψ ∂x
ˆz = x py − y px = −ih(x ∂ − y ∂ ) ˆ ˆ L ∂y ∂x
1 ∂ ∂2 ∂ 1 ˆ2 L = − h2 sin θ + 2 2 ∂θ sin θ ∂ϕ sin θ ∂θ
从而有
ˆ = ihsin ϕ ∂ +cotθ cosϕ ∂ Lx ∂θ ∂ϕ ˆ = −ihcosϕ ∂ −cotθ sin ϕ ∂ Ly ∂θ ∂ϕ ˆz = −ih ∂ L ∂ϕ
第三章 量子力学中的力学量c
第三章 量子力学中的力学量§1.1 学习指导实验表明,微观粒子具有波粒二象性,在传播过程中出现干涉和衍射现象,显示出波动的特性;在相互作用过程中出现碰撞,能量和动量守恒,显示出粒子性。
量子力学理论中用波函数来描述微观粒子的状态,很好地解释了微观粒子波动性的一面,这在上一章中已经作了介绍。
本章主要介绍量子力学中力学量的描述,来处理其粒子性的一面。
在经典力学中,粒子的状态用广义坐标和广义动量来描述,力学量是广义坐标和动量的函数。
在量子力学中,粒子的状态用波函数来描述,坐标和动量成为作用在波函数上的算符。
按照对应原理,量子力学中的力学量应该是坐标算符和动量算符的函数,也是一个作用在波函数上的算符。
根据实验,微观粒子的波函数满足叠加原理,因此力学量算符必须是线性算符;力学量的测量结果为相应算符的本征值,它们都是实数,因此力学量算符必须是厄密算符。
用波函数来描述微观粒子的状态,用线性厄密算符(以下称厄密算符)来描述微观粒子的力学量,两者相互配合,形成了一个可以全面处理微观粒子波粒二象性特点的完整理论。
本章的主要知识点有 1.力学量算符 1)力学量的描述量子力学中的力学量Q 用厄密算符ˆQ 表示,位置算符ˆrr =v v 和动量算符ˆp i =-∇vh 是量子力学中最基本的力学量算符,而能量算符,即哈密顿算符122ˆ()mHp U r =+v是最重要的力学量算符。
厄密算符ˆQ是自共轭的,即ˆˆQ Q +=。
对于任意两个态函数,ψϕ,都有 ˆˆ()Q d Q d ψϕτψϕτ**=⎰⎰ (3-1)厄密算符ˆQ 的本征值nq 为实数,对应的本征函数()n r ϕv满足本征方程 ˆ()()n n nQ r q r ϕϕ=v v , (3-2) 本征函数之间具有正交性。
归一化的本征函数()n r ϕv满足正交归一性关系,()()m n m n r r d ϕϕτδ*=⎰v v, (3-3)其集合具有完备性(')()(')n n nr r r r ϕϕδ*=-∑v v v v。
量子力学 第三章 表象理论
第三章表象理论本章提要:本章讨论态矢和算符的具体表示形式。
首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。
之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。
接着,用投影算符统一了态矢内积与函数内积。
最后,简单介绍了一些矩阵力学的内容。
1.表象:完备基的选择不唯一。
因此可以选用不同的完备基把态矢量展开。
除了态矢量,算符在不同表象下的具体表示也不同。
因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。
若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数③本征函数与本征矢的关系:设本征方程ψ=ψλQˆ又可写作()()G Q G Q ψψ=ˆ 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G QG ˆˆˆψψ 因此:本征函数()ψ=G G ψ就是Q ˆ的本征态ψ在表象G ˆ下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ˆ的本征态ψ在表象G ˆ的iG 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基)*注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象)2.投影算符:我们将使用这个算符统一函数与矢量的内积符号(1)投影算符:令()()连续谱离散谱dG G Gi i Pi⎰∑==ˆ,称为投影算符(2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量(3)本征方程:ψ=ψ=ψI Pˆˆ,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i⎰∑==ˆ3.不同表象下的态矢量展开和波函数:①离散谱:∑=ii iF Fψψ,ψψi i F =为Fˆ表象下的波函数 {}i ψ可表示为一列矩阵,第i 行元素就是ψψi i F =观测值恰为i Q 的概率:用Qˆ表象展开∑=ii i Q Q ψψ,22Pr ψψi i Q ob ==概率归一等价于波函数归一∑==ii 12ψψψ算符Qˆ的观测平均值:ψψψQ Q Q ii i ˆˆ2==∑②连续谱:⎰==dG G GIψψψˆ,ψψG =称为Gˆ表象下的波函数观测值落在dQ Q Q +~范围内的概率:用Qˆ表象展开⎰=dQ Q Qψψ,dQ Q dQ ob 22Pr ψψ==,满足概率归一⎰=12dQ ψ算符Qˆ的观测平均值:()()ψψψQ dQ Q Q Q ˆ,ˆ2==⎰③本征函数和态矢量的内积统一:设f f =,g Q g =,有()g f gdQ f dQ g Q f Q dQ g Q f g I f g f ,ˆ**=====⎰⎰⎰结论:量子态g f 在同一表象Q 下投影得波函数g f ,,则()g f g f ,=算符对本征函数作用:()()ϕψϕψϕψϕψϕψQ Q QQ Qˆˆˆ,ˆˆ,==== 示例:()ϕψϕψϕψϕψϕψϕψp dx pdx x p dx p x x p I pˆ,ˆˆˆˆˆˆ**=====⎰⎰⎰④位置表象与动量表象:4.力学量的测量值问题:①当待测系统处于算符本征态:此时ψ=ψQ Qˆ,对系统中所有粒子的测量结果都是本征态ψ对应的本征值i Q ,显然i Q 的统计平均值还是i Q ,iQ Q =ˆ。
(完整)曾谨言量子力学第3章ppt
例,若 Aˆ d dx
则
Aˆ n dn dx n
显然算符的乘幂满足: Aˆ mn Aˆ m Aˆ n
[Aˆ m, Aˆ n ] 0
两个任意量子态的标积: (ψ ,φ ) dτψ φ
对一维粒子
dτ
dx
对三维粒子 dτ dxdydz r2 sinθdrdθdφ
(ψ ,φ ) dτψ φ
φ arctan(y / x)
lˆx
isin φ
θ
cotθ cosφ
φ
lˆy
i cosφ
θ
cotθ
sin φ
φ
lˆz
i
φ
lˆ 2
2
1
sin θ
θ
sin θ
θ
1
sin 2 θ
2
φ
2
角动量的对易关系
Levi-Civita 符号
[lˆα , xβ ] εαβγ ixγ
εαβγ ε βαγ εαγβ
即 (Aˆ A)ψ 0
或写成 Aˆn Ann
( 3)
An称为算符A的本征值,ψn为相应的本征态, 方程(3)称为算符A的本征方程。
量子力学的测量公设:在任意态下测量力学量A时所有可能出现 的值,都相应于线性厄米算符A的本征值;当体系处于算符A的 本征态时,则每次测量所得的结果都是完全确定的,即An
~ 0 x x
练习 证明: (1) pˆ x pˆ x , (2) (Aˆ Bˆ)T BˆAˆ
(g)复共轭算符和厄米共轭算符 算符A 的复共轭算符A*定义为
Aˆψ (Aˆψ) (40)
通常算符A的复共轭算符A* 按如下方法求解: 把算符A中的 所有量都换成其复共轭。 如 pˆ (i) i pˆ
第三章:量子力学中的力学量_6讲
令: 1 2
ˆ ( ))=(A ˆ ( ), ((1 2 ),A (1 2 )) 1 2 1 2 ˆ ψ )+(ψ ,A ˆ ψ )=(A ˆ ψ ,ψ )( ˆ ψ ,ψ ) (ψ1,A + A 2 2 1 1 2 2 1
ˆ ˆ ˆ ( r )A ( r ) dr A ( ,A ) A * ( , ) ( r ) ( r ) dr
算符在量子力学中的重要位置,由此可见一斑
因此,先定义出各种力学量算符是必要的
二、由经典物理引进量子力学量算符
五、线性算符的运算 1. 算符的和: 算符的和运算满足交换律和结合律
ˆ ˆ ˆ ˆ A+B=B+A
ˆ ˆ ˆ A+(B+C) ˆ ˆ ˆ (A+B)+C
2. 算符的积 算符的积不一定满足交换律
ˆˆ x p ˆxx ˆ i xp
3. 算符的对易式, 定义:
ˆ ˆ ˆ ˆ ,称两算符对易,否则称不对易 如果: [A,B]=[B,A]
px
px | c( px ) |2 dpx c ( px ) px c( px )dpx
i px x 1 ( x)e dx px c( px )dpx 2
i px x 1 ( x )e px c( px )dxdpx 2 i px x 1 d ( x)(i )e c( px )dxdpx dx 2
ˆ A
厄密算符作用于一波函数,结果等于这个波函数乘以一个常数, ˆ 的本征值, 为属于 的本征函数,此方程称 则称 是 A ˆ 的本征值方程。全部本征值 { }是且仅是相应力学 为算符 A 量A的所有可能取值(或测量值).
量子力学 第三章习题与解答
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
量子力学导论第3章答案
第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(by a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为m E y x n n 222π =)(2222bn an y x +,2,1, ,sinsin2==y x y x nn n n byn axn abyx ππψ若b a =,则 )(222222y x n nn n ma E yx +=πayn axn ay x nn yx ππψsinsin2=这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(cz b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn bn an mnn n Ez y x zyx++=π ,,3,2,1,, ,sinsinsin8==z y x z y x n n n czn byn axn abcn n n zy x πππψ当c b a ==时,)(2222222z y x n n n mann n Ezyx++=πayn ayn axn a n n n z y x zy x πππψsinsinsin223⎪⎭⎫⎝⎛=z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
z y x n n n ,,三者皆不相等时,能级一般为6度简并的。
如 ⎩⎨⎧→++=++→++=++)9,6,3()10,5,1(2086161210)11,3,1()9,7,1(10438652222222222223.3)设粒子处在一维无限深方势阱中,⎩⎨⎧><∞<<=ax 0, ,0 ,0),(x ax y x V 证明处于定态)(x n ψ的粒子)61(12)x -(x ,22222πn aa x -==讨论∞→ n 的情况,并于经典力学计算结果相比较。
量子力学第三章
2
a ( n
1 2
( n )
2
2 a
所以
E
n
2
2
于是波 函数:
1 2 ( n ) 2 2 a
( 2 n1)
2 2
2
8 a
2
I III 0 n II n 1 2n 1 2 n A sin(x ) A cos x A cos x A cos x 2 a 2a
d dx d dx d dx
2 2 2 2 2 2
2
I
0 0 0
V(x)
II
2
II
I -a
II 0 a
III
III
2
III
V(x)
1。单值,成立; 2。有限:当x - ∞ ,
I
II
III
-a
类似 I 中关于 n = m 的讨论可知:
( n 0,1, 2, )
综合 I 、II
结果,最后得:
Em
m
2
2
2
2
8a
I
对应 m = 2 n
III
m
0 m 2a x m 0 的偶数
I II
0
C 1e
x
a
C 2e
x
ψ 有限条件要求 C2=0。
x
I
d dx d dx d dx
第三章 量子力学中的力学量
∞
=∑
n=0
F
( n,m)
∞
F
( n)
(0) n!
ˆn A
∂n (n) F (x) = n F(x) ∂x
n m
ˆ ˆ ˆ ˆ 算符 A、B 的函数 F( A, B)为: ˆ ˆ F( A, B) =
n,m=0
∑
(0,0) n!m!
ˆ n Bm ;F(n,m) (x) = ∂ n ∂ m F(x, y) A ˆ
∂x ∂y
例:
将算符函数
ˆ ˆ F(H) = e
i − xt h
i ˆ − Ht h
展开成幂级数
解: F′(x) = d e
i = − te dx h i i 2 − xt − xt d i 2 h 2 h F (x) = 2 e = (− t) e dx h i i n − xt − xt d i n h n h ⋅ ⋅⋅, F (x) = dxn e = (− h t) e i n n F (0) = (− t) h
ˆ = h ∂ Px i ∂x
ˆ = − h ∂ = −P ˆ P x i ∂x
* x
r* r ˆ ˆ P = −P
~ ˆ ˆ (3)算符 F 的转置算符 F ) ~ ˆ ˆ 定义: 定义: u * Fv dτ ≡ vFu * dτ ∫ ∫
~ ˆ ˆ (u, Fv) = ( v* , Fu * )
~ ∂ ∂ 性质: 性质:ⅰ =− ∂x ∂x ~ ∞ ∞ ∞ ∂ * 证: * ∂ * ∞ * ∂ ∫−∞ u ∂x vdx = ∫−∞ v ∂x u dx = vu −∞ − ∫−∞ u ∂xvdx ~ ∞ ∂ ∂ * ∂ = = −∫ u vdx −∞ ∂x ∂x ∂x
量子力学 第三章
ˆ ˆ ˆ ˆ (∆A) (∆B) ≥ (∆Aψ , ∆Bψ ) = (ψ , ∆A∆Bψ )
2
ˆ, ˆ ˆ, ˆ [∆A ∆B]+ [A B] ψ ) + i(ψ , ψ) = (ψ , 2 2i
2
2 2 1 1 ˆ ˆ ˆ ˆψ = (ψ ,[∆A, ∆B]+ψ ) + (ψ ,[A, B] ) 4 4
1 2 1 2 2 1 2 1
ˆ ˆ ˆ ˆ c =1, (ψ1, Aψ2 ) − (Aψ1,ψ2 ) = (Aψ2 ,ψ1) − (ψ2 , Aψ1) ˆ ˆ ˆ ˆ c = i, (ψ1, Aψ2 ) − (Aψ1,ψ2 ) = −(Aψ2 ,ψ1) + (ψ2 , Aψ1) ˆ ˆ ˆ ˆ + : (ψ , Aψ ) = (Aψ ,ψ ), − : (Aψ ,ψ ) = (ψ , Aψ )
± lm
ˆ 因为 lz 的本征值 (m ±1)h非简并,所以 ˆ λ l±Y (θ,ϕ) = λ±Y,m±1(θ,ϕ), ± 是常数 lm l
物理上认为: 描述同一方位, ϕ 物理上认为:ϕ与 + 2π 描述同一方位,
ψ (ϕ +2π ) =ψ (ϕ),
lz = mh, m = 0, ±1, ± 2,L
周期性边界条件 或自然边界条件
满足 (ψm,ψn ) = δmn
1 imϕ ψm (ϕ) = e 2π
ˆ 也是保证 lz 厄米的要求
例2 平面自由转子的本征能量和定态
ˆ ˆ (A− A)ψ = 0 或Aψn= Anψn
即算符的本征态时, 学量有确定测值。 学量有确定测值。
3.2.2 力学量假定
Postulate 3
v v 1. 经典力学中的任一力学量F(r , p) ,对应量 v v ˆ (r , p) = F(r ,−ih∇) ; ˆ v ˆ 子力学中的线性厄密算符 F ˆ的本征值为力学量F的测量值(称可测值); 2. F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 量子力学导论
一、学习要点
1.德布罗意假设:
(1)内容: ων ==h E , n k k h p λ
πλ2,=== (2)实验验证:戴维孙—革末试验
电子 λ
≈(nm ) 2.测不准关系:2 ≥
∆⋅∆x p x , 2 ≥∆⋅∆E t ; 3.波函数及其统计解释、标准条件、归一化条件
薛定谔方程、定态薛定谔方程、定态波函数、定态
4.量子力学对氢原子的处理
第三章自测
1.选择题
(1)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:
A.电子的波动性和粒子性
B.电子的波动性
C.电子的粒子性
D.所有粒子具有二相性
(2)德布罗意假设可归结为下列关系式: A .E=h υ, p=λh
; B.E=ω ,P=κ ; C. E=h υ ,p =λ
; D. E=ω ,p=λ
(4)基于德布罗意假设得出的公式
λ=nm 的适用条件是: A.自由电子,非相对论近似; B.一切实物粒子,非相对论近似;
C.被电场束缚的电子,相对论结果; D 带电的任何粒子,非相对论近似
(5)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):
A .10-34; B.10-27; C.10-24; D.10-30
2.简答题
(1)波恩对波函数作出什么样的解释?(长春光机所1999)
(2)请回答测不准关系的主要内容和物理实质.(长春光机所1998)。