色谱分析法分析化学
分析化学精品课程课件色谱法
组分在固定相中的浓度 K 组分在流动相中的浓度
(1) 一定温度下, K值最小的组分最先流出色谱柱,而 K值越大的组分,出峰越慢;
(2) 试样一定时,K 主要取决于固定相性质;即 每个组 份在各种固定相上的分配系数 K 不同;
(3) 选择适宜的固定相可改善分离效果;
(4) 试样中的各组分具有不同的 K 值是分离的基础;
2.色谱法分类
根据流动相和固定相物理状态分:
气相色谱 液相色谱
气固色谱
流动相为气体, 固定相为固体吸附剂
气液色谱
流动相为气体, 固定相为液体
液固色谱 流动相为液体, 固定相为固体吸附剂。
液液色谱 流动相为液体, 固定相为液体
(2) 根据分离过程中固定相的形状分:
A、柱色谱法:填充柱色谱、毛细管色谱 B、平面色谱:纸色谱、薄层色谱
第九章 色谱法
GC/HPLC/IC
2024年11月3日12时20 分
§9.1 概述 §9.2 气相色谱分析理论基础 §9.3 气相色谱分离操作条件
的选择
§9.4 气相色谱检测器 §9.5 气相色谱定性/定量分析 §9.6 高效液相色谱法简介 §9.7 离子色谱法简介
本章基本要求
1.熟悉GC/HPLC/IC的基本组成、结构流程及各部件作用; 2.熟悉分配系数、容量因子的定义及相互关系; 3.掌握塔板理论、速率理论及分离度; 4.掌握气相色谱检测器结构、原理及特点; 5.掌握定量分析方法,了解定性分析方法; 6.了解操作条件的选择原则以及操作条件对分离的影响.
(3) C ·u —传质阻力项
传质阻力包括气相传质阻力 Cg和液相传质阻力CL即:
C =(Cg + CL)
Cg
0.01k (1 k)2
无机及分析化学第十二章色谱分析法
液相色谱法
按两相所处状 态不同分类
流动相为液体,当固定相为固体吸附剂时,称为液-固色谱; 当固定相为液体,称为液-液色谱。
气相色谱法
流动相为气体,当固定相为固体吸附剂时,称为气-固色谱; 当固定相为液体,称为气-液色谱。
按操作形式 不同分类
柱色谱法 将固定相装于柱管内,构成色谱柱,利用色谱柱分离混合组 分的方法。
1. 气相色谱法的分类 (1) 按固定相的物态 可分为气-固色谱、气-液色谱。 (2) 按色谱原理不同 可分为吸附色谱、分配色谱。 (3) 按色谱柱的不同 可分为填充柱色谱法、毛细管柱色谱法。 2. 气相色谱法的特点 气相色谱法具有分辨效能高,选择性好,试样用量少、灵敏度高、分析速度快及 应用广泛等特点。主要用来分离测定一些气体及易挥发性物质。对于挥发性较差 的液体、固体,需采用制备衍生物或裂解等方法,增加挥发性来测量。
薄层色谱法 将固定相涂铺在平板上,制成薄层板,点样后,用展开剂(流 动相)将其展开,然后用薄层板斑点定位后进行定量和定性分 析的方法。
纸色谱法
以滤纸作为载体,以滤纸上面吸附的水作为固定相,然后与 薄层色谱法相同的操作形式进行分离分析的方法。
按色谱过程的 分离原理分类
吸附色谱法
用吸附剂作固定相,利用吸附剂表面对不同组分吸附能力的 差异来进行的分离分析方法。 分配色谱法
第三节 柱色谱
一、原理 柱色谱法是把固体吸附剂填充在直立的填充色谱柱内。将要分离的溶液试样由顶端加 入,然后连续地加入流动相或者洗脱液,随着展开剂自上而下流过,被分离的组分在 吸附剂表面不断产生吸附-解吸,再吸附-再解吸的过程,不同的组分,与固定相的吸 附能力有差异,与固定相吸附弱的组分,在柱内迁移速度较快,先流出色谱柱;与固 定相吸附强的组分,在柱内迁移速度较慢,后流出色谱柱,从而达到分离的目的。
分析化学中常用的色谱技术
分析化学中常用的色谱技术在分析化学领域,色谱技术是一种常用的分离和测定物质的方法。
通过利用物质在固定相和流动相之间的相互作用,实现物质混合物的分离,进而实现对目标物质的测定和定量。
常用的色谱技术包括气相色谱(GC)、液相色谱(LC)、超高效液相色谱(UHPLC)以及薄层色谱(TLC)等。
本文将对这些色谱技术进行深入分析。
气相色谱是一种基于气体载气的色谱技术。
在气相色谱中,样品先通过高温下固定在管柱内的固定相,然后通过气体载气的作用,将样品分离出来。
这种色谱技术可以广泛应用于石油化工、环境监测、食品安全等领域。
气相色谱具有分离效率高、分析速度快、灵敏度高的特点,适用于对挥发性和半挥发性化合物的分析。
液相色谱是一种基于液相流动的色谱技术。
液相色谱相比于气相色谱具有更广泛的适用性,可以用于分离和测定溶解度较低、热稳定性较差的化合物。
在液相色谱中,样品通过固定在色谱柱内的固定相,以流动相的作用,分离出目标物质。
液相色谱可以进一步细分为高效液相色谱(HPLC)、离子色谱(IC)以及液相-质谱联用技术(LC-MS)等。
这些技术在食品检测、药物分析、环境监测等领域发挥着重要作用。
超高效液相色谱是一种相对于传统液相色谱发展起来的一种技术。
UHPLC相比于HPLC具有更高的分离效率和分析速度。
这是由于UHPLC使用更小的颗粒和更高的压力来减小流速,从而提高分离效率和分析速度。
UHPLC在药物分析、代谢物研究等领域应用广泛,可以帮助研究人员更快地得到准确的结果。
薄层色谱是一种基于平面固定相的色谱技术。
在薄层色谱中,样品在涂有固定相的玻璃、铝或塑料片上进行分离。
这种技术可以用于复杂样品的初步分离和快速筛查。
薄层色谱在药物分析、天然产物萃取等领域被广泛应用。
除了以上介绍的常见色谱技术外,还有许多其他的色谱技术,如气相质谱联用技术(GC-MS)、液相质谱联用技术(LC-MS)以及毛细管电泳(CE)等。
这些技术在不同的分析领域发挥着重要作用。
第五章 色谱分析法分析化学
• VM 为色谱柱中流动相的体积,即柱内固定相间的空隙体积 • Vs为色谱柱中固定相的体积。在气液色谱中它为固定液体积;在 气固色谱中则为吸附剂表面容量 • VM 与 Vs之比称为相比以 β 表示
2018/11/22
11
色谱分析法
§11-2 固定相
气固色谱固定相 气液色谱固定相
2018/11/22
2018/11/22
固定液
固定液分类方法
如按化学结构、极性、应用等的分类方法。在各种色谱手册中,一
般将固定液按有机化合物的分类方法分为:脂肪烃、芳烃、醇、 酯、聚酯、胺、聚硅氧烷等, 最高最低使用温度 高于最高使用温度易分解,温度低呈固体;
混合固定相
对于复杂的难分离组分通常采用特殊固定液或将两种甚至两种以 上配合使用;
SQ APL OV-101 OV-3 OV-7 OV-17 OV-22 DNP OV-210 OV-225
150 300 350 350 350 300 350 130 250 250
乙醚 苯 丙酮 甲苯 甲苯 甲苯 甲苯 乙醚 氯仿
0 — +1 +1 +2 +2 +2 +2 +2 +3
非极性和弱极 性各类 高 沸点有机化合物 各类高沸点弱 极性有 机 化合物,如芳烃
2018/11/22
气固色谱固定相
2018/11/22
固定相 / 气液色谱固定相
气液色谱固定相 [ 固定液 + 担体(支持体)]
•
•
固定液在常温下不一定为液体,但在使用温度下一定呈液体状态。 固定液的种类繁多,选择余地大,应用范围不断扩大。
担体:化学惰性的多孔性固体颗粒,具有较大的比表面积。
色谱分析—经典色谱(分析化学课件)
二甲基黄与罗丹明B的薄层色谱的鉴别
实验原理 实验仪器 与试剂
实验数据 实验步骤 的处理
二甲基黄与罗丹明B的薄层色谱的鉴别
一、实验原理: 薄层吸附色谱是将吸附剂均匀地涂在玻璃板上做固定相,经干燥活化
后点上样品,以适当极性的有机溶剂作为展开剂。由于组分的性质差异, 易被固定相吸附的组分移动慢,难被固定相吸附组分移动快。经过一段 时间的展开后,不同组分彼此分开,形成相互分离的斑点。
纸色谱法
二、操作方法 1.点样 用内径为0.5mm的平头毛细管或微量注射器点样,将1~2μL样品溶 液点在起始线原点上,可反复点几次,点样后用红外灯或电吹风迅速 干燥。 2.展开 展开剂的选择 选择展开剂主要根据样品组分在两相中的溶解度,即 分配系数来考虑。
纸色谱法
3.斑点的定位 展开完毕后,取出滤纸,在展开剂到达的位置划一条前沿线,观察有无色 斑,然后置紫外灯下观察荧光斑点,标出位置、颜色、记录大小和强度。
氨基酸的纸色谱分析
三、实验步骤: 点样 展开 显色 计算Rf值。 将展开完毕的滤纸,用电吹风吹干,使展开剂挥发。然后喷上
0.1%水合茚三酮-正丁醇溶液,再用电吹风热风吹干,即出现氨基 酸的色斑。
氨基酸的纸色谱分析
四、数据处理: 分别计算丙氨酸和亮氨酸的Rf值。
纸色谱法
一、概论 分离原理:以滤纸为载体的色谱法; 固定相:纸纤维吸附的水(或以氢键结合的水); 流动相:与水不互溶的有机(或与水相混溶的 )溶剂; 分离机制:同液-液分配色谱,利用样品中各组分在两相互不相溶的溶 剂间分配系数不同实现分离的方法; 定性参数:比移值Rf 、相对比移值Rs; 正相分配纸色谱:极性大的组分,移动速度慢,Rf 小。
铺板
点样 展开 计算Rf值
色谱分离法在分析化学中的应用
色谱分离法在分析化学中的应用一、引言色谱分离法是一种常见的分析化学方法,其主要原理是将混合物中的各种组分分离出来,从而进行定性和定量分析。
这种方法可以应用于许多不同领域,例如化学、生物学、医药和环境科学等。
在本文中,我们将详细介绍色谱分离法在分析化学中的应用。
二、色谱分离法原理色谱分离法的基本原理是利用固定相和流动相的相互作用,将样品分离成单个的化合物或混合物的组分。
固定相可以是固体或涂覆在固体上的薄膜,而流动相则可以是气体或液体。
根据流动相的类型,色谱分离法可以分为气相色谱(GC)和液相色谱(HPLC)两种。
在气相色谱中,样品被挥发成气体并通过管柱,固定相在管柱内被涂覆或充填。
样品中的各种成分被吸附在固定相上,然后根据插入管柱中的流动相和温度的变化来逐一分离。
在液相色谱中,样品被注入到含有一种液体固定相的柱中,然后通过控制流动相的极性来分离各个组分。
三、气相色谱在分析化学中的应用气相色谱广泛应用于许多不同的分析领域。
在环境监测中,气相色谱可以用于检测水和空气中有毒物质的浓度,例如甲醛、有机挥发物(VOC)和氨等。
在食品和药品制造中,气相色谱可以用于检测残留的有害物质,如农药、重金属和抗生素等。
在石油和石化工业中,气相色谱可以用于分析油品的成分和质量。
四、液相色谱在分析化学中的应用液相色谱也广泛应用于许多不同的分析领域。
在生物学领域中,液相色谱可以用于检测氨基酸、蛋白质和核酸等生物分子。
在药学中,液相色谱可以用于分析药品中的成分和质量。
在环境科学中,液相色谱可以用于检测水中的污染物,如重金属和有机化合物等。
五、色谱技术的发展色谱技术自20世纪50年代以来一直在快速发展。
近年来,随着技术的不断进步,色谱分离法已经成为高灵敏度分离和检测的重要工具。
例如,新型色谱柱和固定相技术的开发,使得色谱分离的效率和分离度得到了显著提高。
与此同时,质谱联用技术的应用,使得色谱分离的准确性得到了增强。
六、总结色谱分离法在分析化学中的应用已经得到了广泛的认可。
色谱法在化学分析中的应用
色谱法在化学分析中的应用色谱法是一种重要的化学分析技术,广泛应用于药物研发、环境监测、食品安全等领域。
本文将介绍色谱法的基本原理、常见的色谱分析技术和其在化学分析中的应用。
一、色谱法的基本原理色谱法基于混合物中成分的分配行为,通过利用不同样品成分在固定相与移动相间的相互作用力差异,使各成分按一定顺序从固定相中溶出,从而分离出目标物质。
常见的色谱法包括气相色谱法和液相色谱法,它们的原理和操作步骤略有不同。
二、气相色谱法在化学分析中的应用气相色谱法广泛应用于有机物的分离和鉴定。
例如,在药物研发中,科学家常常使用气相色谱法对药物中的杂质进行分析,确保药物的纯度和安全性。
此外,气相色谱法还可以用于食品中有害残留物的检测,如农药残留、食品添加剂等。
三、液相色谱法在化学分析中的应用液相色谱法是一种高效的分离技术,常用于生物分析、环境监测等领域。
在生物医药领域,液相色谱法被广泛应用于药物代谢物的分离和鉴定,有助于了解药物在人体内的代谢途径和代谢产物的形成机制。
此外,液相色谱法还可以用于环境样品的分析,如水中重金属、有机污染物等的定量检测。
四、液相色谱质谱联用技术液相色谱质谱联用技术结合了液相色谱法和质谱法的优势,成为当今分析化学领域的重要工具。
它可以实现对复杂样品中多种成分的快速分离和鉴定,广泛应用于药物代谢动力学研究、生物样品分析、环境污染物的检测等。
液相色谱质谱联用技术的出现,大大提高了分析的灵敏度和准确性。
五、色谱法在新药临床研究中的应用色谱法在新药临床研究中起着重要的作用。
通过色谱法的分析,可以确定药物的含量、纯度、杂质和稳定性等关键指标,为新药的研发和质量控制提供依据。
此外,色谱法还可以用于药物的生物等效性研究,评估药物在体内的吸收、分布、代谢和排泄情况。
六、结论色谱法是一种高效、准确的化学分析技术,广泛应用于药物研发、环境监测、食品安全等领域。
气相色谱法和液相色谱法作为色谱法的两种主要形式,在化学分析中发挥着不可替代的作用。
分析化学第11章色谱法
04
薄层色谱法
薄层色谱法的原理
薄层色谱法是一种基于吸附原理的分离技术,利用固定相吸附剂对不同组 分的吸附能力差异实现分离。
当混合物溶液涂布在薄层板上,流动相携带组分通过固定相时,组分在两 相之间产生分配平衡,随流动相移动而实现分离。
薄层色谱法的分离效果取决于组分在固定相和流动相之间的分配系数差异。
色谱法的分类
80%
按固定相类型
可分为液相色谱、气相色谱、薄 层色谱等。
100%
按操作方式
可分为柱色谱、纸色谱、电泳等 。
80%
按分离原理
可分为吸附色谱、分配色谱、离 子交换色谱、凝胶渗透色谱等。
色谱法的原理
01
02
03
04
分离原理
利用不同组分在固定相和流动 相之间的分配平衡进行分离。
流动相作用
携带待分离组分通过固定相, 实现组分的分离。
通过色谱法对药物进行定性和定 量分析,可以有效地控制药物的 质量,确保药物的稳定性和安全 性。
药物代谢研究
色谱法可以用于研究药物的代谢 过程,了解药物在体内的吸收、 分布、代谢和排泄情况。
色谱法在食品分析中的应用
食品添加剂分析
色谱法可以用于检测食品中的添加剂,如防 腐剂、色素、抗氧化剂等,确保食品的安全 性。
食品分析
高效液相色谱法用于检测食品中的添加剂、农药 残留等有害物质。
环境监测
高效液相色谱法用于检测水、土壤等环境样品中 的有害物质和污染物。
生物分析
高效液相色谱法用于分离生物体内的代谢产物、 蛋白质、核酸等生物分子。
高效液相色谱法的优缺点
优点
高分离效能、高灵敏度、高选择性、应用范围广。
缺点
色谱法在分析化学中的应用
色谱法在分析化学中的应用色谱法是一种用于分离和分析混合物中化合物的技术。
它采用了化学分离原理和现代仪器设备,能够完成对复杂化合物的快速、准确分离和定量分析。
本文将着重探讨色谱法在分析化学中的应用。
一、色谱法的基本原理色谱法是通过在固体、液体或气体介质中,以不同的力对试样成分产生不同的效应,实现对混合物组分的分离和测定。
其基本原理是根据化合物在移动相(流动介质)和固定相之间的差异来实现分离。
固定相包括固体、液体和气体三种,其中液态和气态最常用。
以气液色谱为例,气相负责物质传递和色谱柱温度控制,液相则提供化学作用,并具有足够的选择性。
二、色谱法的种类色谱法根据分离介质的不同,分为气相色谱、液相色谱和超临界流体色谱等。
其中气相色谱的分离依据是物质在气相中的分配系数,因而该方法非常适用于易挥发的物质的分析。
液相色谱则是利用物质在液相中的分配系数来实现分离,适用于不挥发的物质和非极性物质的分析。
超临界流体色谱可以提供类似于气相色谱的速度和精度,并在脆弱的分子上表现出良好的选择性。
三、色谱法成为了现代分析化学中的一个重要工具,其广泛应用于食品、药品、环境、化工和材料科学等领域。
以下是常用色谱法在分析化学中的一些应用:1. 气相色谱法在食品中的应用。
气相色谱被广泛应用于食品中有害化合物如残留农药、复合增塑剂、微量元素、香料和营养素等的分析和检测。
2. 液相色谱法在药品中的应用。
液相色谱是药物控制中最常用的方法之一,可以用于药物纯度分析、微量杂质分析、药效物质分析和药物代谢产物的鉴定。
3. 超临界流体色谱法在化工中的应用。
超临界流体色谱是化学工业分析中应用广泛的一种分析方法,用于质量控制、过程监控和催化剂研究。
4. 二维色谱在材料科学中的应用。
二维色谱法是制备材料和表征材料中复杂混合物时必不可少的一种技术。
它可以使分离和鉴定更加精确和可靠。
四、总结色谱法是分析化学中不可或缺的技术之一,其应用已经遍及各个领域。
它具有分离精度高、选择性强、分析速度快等优点,在化学分析中越来越受到重视。
第十七章 色谱分析法概论-分析化学
I X 100 [Z n
' ' lg t R lg t ( x) R( z )
lg t
' R( z n)
lg t
' R( z )
]
Ix为待测组分的保留指数,z 与 z+n 为
正构烷烃对的碳原子数。
P
16
乙酸正丁酯的保留指数测定
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
第十七章 色谱分析法概论
P
1
第一节 色谱法的分类和发展
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
色谱分析法是一种物理或物理化学分离分 析方法。 始于20世纪初; 30与40年代相继出现了薄层色谱与纸色谱; 50年代气相色谱兴起、色谱理论、毛细管色 谱; 60年代气相色谱-质谱联用; 70年代高效液相色谱; 80年代末超临界流体色谱、高效毛细管电泳 色谱。
• R=1 4σ分离 • R=1.5 6σ分离 95.4% 99.7%
w1
w1
tR2-tR1
P
21
三、分配系数与色谱分离
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
1、分配系数 在一定温度和压力下,达到分配平衡 时,组分在固定相和流动相中的浓度之比 CS K Cm 2、容量因子
m
X+
H+
SO3-R
S
X+ SO -R 3 H+
P
30
阳离子交换树脂
xie 仪 器 分 析
《分析化学》课件——10 色谱分析法
“相似相溶”原则选择适当固定液。
常用固定液
相对极性:
麦氏常数: 5个值代表 各种作用力。
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
APL
300
苯
3、硅油
OV-101 350
丙酮
4、 苯基 10%
OV-3
350
甲基聚硅氧烷
5、 苯基(20%)
载气流速的选择
作图求最佳流速。 实际流速稍大于最佳流速,缩短时间。
三、气相色谱检测器
浓度型检测器:热导池检测器
电子俘获检测器
测量的是载气中通过检测器组分浓度瞬间 变化,检测信号值与组分的浓度成正比。
质量型检测器:氢火焰离子化检测器
火焰光度检测器
测量的是载气中某组分进入检测器的速度 变化,即检测信号值与单位时间内进入检 测器组分的质量成正比。
检测器性能评价指标
在一定范围内,信号E与进入检测器的 物质质量m成正比:
保留时间 tR(retention time)
时间 死时间 t0 (dead time)
tR'= tR - t0
调整保留时间 tR'(adjusted retention time)
保留体积VR(retention volume) 体积 死体积 V0 (dead volume) VR'= VR - V0
Sample
D A
C
B
Sample
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
B A CD
分析化学(第四版_高职高专第十二章 色谱分析法
(第四版)
高职高专化学教材编写组 编
第十二章 色谱分析法
“十二五”职业教育国家规划教材
主要内容
第一节 概述 第二节 气相色谱仪 第三节 气相色谱理论基础 第四节 气相色谱分离条件的选择 第五节 气相色谱分析方法 第六节 高效液相色谱法简介 第七节 色谱法应用实例
知识目标:
学习目标
理解色谱分析基本术语。
(2)按分离原理分类
① 吸附色谱法 在气-固色谱和液-固色谱中,组分与固定相间的作用是吸
附和脱附作用,故该固定相被称为固体吸附剂,对应的色谱则 称为吸附色谱。组分在固体吸附剂上的吸附能力越强,在色谱 柱内停留的时间越长,流过色谱柱需要的时间越长,反之则越 短。不同的组分在同种固体吸附剂上吸附能力不同,流过色谱 柱需要的时间也不同,因此分先后流出色谱柱而得到分离。
气相色谱仪基本结构-温控系统
一般地,气化室温度比柱温高30℃~70℃,以保证试样能瞬 间气化而不分解。
检测器温度与柱温相同或略高于柱温,以防止样品在检测器 冷凝。检测器的温度控制精度要求在±0.1C以内,色谱柱的温度 也要求能精确控制。
气相色谱仪基本结构 5.检测、记录系统
检测记录系统包括:检测器、放大器和记录仪。 目前许多气相色谱仪采用了色谱工作站的计算机系统,不仅可 对色谱仪进行实时控制,还可自动采集数据和完成数据处理。 气相色谱检测器的种类很多,常用的有热导检测器、火焰离子 化检测器、电子捕获检测器和火焰光度检测器等。
② 分配色谱法 在气-液色谱和液-液色谱中,固定相是由一种惰性固体(即 载体或担体)和表面涂渍的高沸点有机化合物液体(称为固定 液)组成,而能与被分离的组分起作用的是固定液。组分随流 动相进入色谱柱后,会溶解在固定液中,然后又从固定液中挥 发出来,再进入流动相。即组分在固定液中反复地进行溶解、 挥发、再溶解、再挥发的过程,不断在流动相和固定相两相间 进行分配并达到平衡。故气-液色谱和液-液色谱被分别称为气液分配色谱和液-液分配色谱。
分析化学中的色谱与质谱分析方法
分析化学中的色谱与质谱分析方法色谱和质谱是分析化学中常用的两种分析技术方法。
它们通过对样品的分离和检测,可以从复杂的混合物中确定和识别化合物的成分,广泛应用于食品、环境、药物等领域。
本文将对色谱和质谱的原理以及常用的分析方法进行详细介绍。
一、色谱分析方法色谱是一种用于分离混合物中组分的方法,根据组分在固体或液体固定相和流动相之间的分配差异来实现分离。
常用的色谱方法包括气相色谱(GC)和液相色谱(LC)。
1. 气相色谱(GC)气相色谱是利用气体作为流动相,通过气相色谱柱中的固定相来进行分离的方法。
在气相色谱中,样品通过流动相的推动下被蒸发,并在固定相上发生分配,不同成分在固定相上停留的时间不同,从而实现分离。
随后,通过检测器检测各组分的信号,并通过峰的高度或面积确定各组分的含量。
2. 液相色谱(LC)液相色谱是利用液体作为流动相,通过液相色谱柱中的固定相来进行分离的方法。
在液相色谱中,样品溶解在流动相中,通过与固定相的相互作用进行分配和分离。
与气相色谱相比,液相色谱更适用于分析极性物质和高沸点化合物。
二、质谱分析方法质谱是一种用于分析物质的方法,通过测量物质的离子质量来获得其分子结构、分子量等信息。
常用的质谱方法包括质谱仪和质谱联用技术。
1. 质谱仪质谱仪是一种用于测量物质质谱图的仪器,其主要组成部分包括离子源、质量分析器和检测器。
在质谱仪中,样品经过离子源产生离子,然后通过质量分析器进行质量筛选,最后由检测器检测并得到质谱图。
质谱图可以用于确定物质的结构、分子量、碎片等信息。
2. 质谱联用技术质谱联用技术是将质谱与色谱或电泳等分离技术相结合的分析方法。
常见的质谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)。
质谱联用技术具有分离能力强、鉴定准确性高、灵敏度高等优点,广泛应用于复杂样品的分析。
三、色谱与质谱在分析化学中的应用色谱和质谱作为分析化学中的重要技术手段,广泛应用于食品、环境、药物等领域。
中国药科大学-分析化学课件-第17色谱分析
峰宽和之半
tR2 W1
tR1 W2
2
R 2(tR2 tR1) 1.177(tR2 tR1)
W1 W2
W1 2(1) W1 2(2)
讨论
• 设色谱峰为正常峰,W1≈W2= 4σ
R 1.0 tR 4 基本分离 R 1.5 tR 6 完全分离(定量分析前提)
R 1.0 完全未分开
调整保留体积VR’:保留体积与死体积之差,即组分 停留在固定相时所消耗流动相的体积
VR'
VR
V0
t
' R
FC
注:VR' 与Fc无关;t
' R
1 Fc
V0 和 Vm、t0 和 tm 的区别
• V0 :由进样器至检测器的流路中未被固定相占有的空 间体积 ; 流定相充满死体积所需的时间为t0 。
• Vm :平衡时流动相在色谱柱中占有的体积,流动相经 过色谱柱所需时间用tm 表示。
线性:对称峰 凸形:拖尾峰
• 对称因子(symmetry factor)
——衡量色谱峰对称性
色谱峰
正常峰(对称)——fs在0.95~1.05之间
非正常峰 前沿峰 ——fs小于0.95 拖尾峰 ——fs大于1.05
对称因子:(拖尾因子)
fs
W0.05h 2A
A B 2A
8.分离因子和分离度:—分离参数
➢吸附色谱:利用物理吸附性能的差异(固定相固体)
( absorption chromatography)
➢离子交换色谱:利用离子交换原理(固定相离子交换树脂)
(ion exchange chromatography )
➢空间排阻色谱:利用排阻作用力的不同(固定相凝胶)
化学中的色谱分析方法
化学中的色谱分析方法色谱分析是一种在化学领域中广泛应用的分析技术,通过分离混合物中的成分并对其进行定量或定性分析。
色谱分析方法主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)和超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)等。
本文将重点介绍这几种色谱分析方法的原理、应用及特点。
一、气相色谱(Gas Chromatography, GC)气相色谱是一种在气相流动条件下进行分离的色谱技术。
其原理是利用气相载气将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
气相色谱广泛应用于食品、环境、药物、石油化工等领域。
气相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,气相色谱常用于分析挥发性有机物、气体成分、药物、食品添加剂等。
二、液相色谱(Liquid Chromatography, LC)液相色谱是一种在液相流动条件下进行分离的色谱技术。
其原理是利用固定相和流动相之间的相互作用将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
液相色谱广泛应用于生物、药物、环境、食品等领域。
液相色谱的主要特点包括适用性广、分离效果好、灵敏度高、分辨率高等。
在实际应用中,液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
三、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)超高效液相色谱是一种高效、快速的液相色谱技术。
其原理是利用超高压力将样品混合物快速分离成单独的组分,然后通过检测器进行检测和定量分析。
超高效液相色谱广泛应用于生物、药物、环境、食品等领域。
超高效液相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,超高效液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
分析化学课件-色谱分析法
返回
柱效参数
标准差(standard deviation;σ):正态色谱流
出曲线上两拐点间距离之半,即0.607倍峰高处
的峰宽之半。σ的大小表示组分被带出色谱柱的 分散程度。σ越大,组分越分散;反之越集中。 半峰宽(W1/2):峰高一半处的峰宽 W1/2=2.355σ 峰宽 (peak width;W):色谱峰两侧拐点作切线
应用的科学领域:生命科学、材料科学、 环 境科学等。(科学的科学)
药学(药物分析):各国药典收载了许多 色 谱分析方法。中国药典二部,700多,纯 度检查、定性鉴别或含量测定,一部, 600多鉴别或含量测定。
第一节 色谱法的分类和发展
一、色谱法的分类
按流动相的分子聚集状态分类: GC、LC、SFC 等。
附力越强。 ④分子中取代基的空间排列
三、离子交换色谱法
分离原理 利用被分离组分离子交换能力的 差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
阳离子交换:
阴离子交换:
交换
RSO 3 H+ + Na+ 再生
RSO 3 Na+ + H +
离子交换通式: RNR+3 OH- + Cl
交换
分配系数与色谱分离
容量因子(capacity factor;k):在一定温
度和压力下,达到分配平衡时,组分在固定
相和流动相中的质量(m)之比。(摩尔数?)
又称为质量分配系数或分配比。
还与固定相和流动相的体积有关。
容量因子与 分配系数的关系
k
m s
CV ss
V K s
m CV
V
m
mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/23
分配系数 K的讨论
组分在固定相中的浓度 K 组分在流动相中的浓度
一定温度下,组分的分配系数K越大,出峰越慢; 试样一定时,K主要取决于固定相性质; 每个组份在各种固定相上的分配系数K不同; 选择适宜的固定相可改善分离效果; 试样中的各组分具有不同的K值是分离的基础; 某组分的K = 0时,即不被固定相保留,最先流出。
• VM 为色谱柱中流动相的体积,即柱内固定相间的空隙体积 • Vs为色谱柱中固定相的体积。在气液色谱中它为固定液体积;在
气固色谱中则为吸附剂表面容量 • VM 与 Vs之比称为相比以 β 表示
2020/5/23
11
色谱分析法
§11-2 固定相
气固色谱固定相 气液色谱固定相
2020/5/23
固定相 / 气固色谱固定相
2020/5/23
色谱法分类
薄层色谱和纸色谱: 比较简单的色谱方法
凝胶色谱法: 超临界色谱: 高效毛细管电泳:
九十年代快速发展、 特别适合生物试样分析分 离的高效分析仪器。
2020/5/23
3.气相色谱法的特点
(1)分离效率高:
复杂混合物,有机同系物、异构体。手性异构体。
(2) 灵敏度高:
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量.
2020/5/23
气固色谱和气液色谱
气相色谱分离过程是在色谱柱内完成的。 填充柱色谱: 气固色谱和气液色谱,两者的分离机理不同。 气固色谱的固定相: 多孔性的固体吸附剂颗粒。
固体吸附剂对试样中各组分的吸附能力的不同。 气固色谱的分离机理:
吸附与脱附的不断重复过程; 气液色谱的固定相: 由 担体和固定液所组成。
2020/5/23
分配比
• 分配比(又称容量因子或容量比) ,以 k 表示之。K 是 指在一定温度、压力下组分在两相间达到分配平衡时, 它在两相间的质量比。
• ms--表示组分分配在固定相中的质量
• mM--表示组分分配在流动相中的质量
2020/5/23
分配比
• 对于一定的色谱体系,组分的分离最终决定于组分在两相中的质 量,而不是平衡浓度,因此分配比更能表征分配达到平衡时的分 离情况。分配系数与分配比的关系为
11
气相色谱分析法
§11-1 概述
色谱法简介 色谱法特点
气相色谱分析流程
2020/5/23
色谱法简介
色谱法是一种分离技术
俄国植物学家茨维特在1906年使用的色谱原 型装置,如图。 试样混合物的分离过程也就是试样中各组分在 称之为色谱分离柱中的两相间不断进行着的分配 过程。 其中的一相固定不动,称为固定相; 另一相是携带试样混合物流过此固定相的 (动画) 流体(气体或液体),称为流动相。
(3) 分析速度快:
一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广:
适用于沸点低于400℃的各种有机或无机试样的分析。
不足之处:
不适用于沸点高于 450 ℃的高沸点、难挥发、热不稳定物质的分析。 被分离组分的定性较为困难。
2020/5/23
气相色谱分析流程
1-载气钢瓶;2-减压阀;3净化干燥管;4-针形阀;5流量计;6-压力表;4-针形 阀;5-流量计;6-压力表; 7-进样器和汽化室;8-色谱 柱9-热导检测器;10-放大 器;11-温度控制器;12-记 录仪;
(动画)
2020/5/23
色谱法分类
气相色谱:流动相为气体(称为载气)。 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按固定相的不同又分为:气固色谱和气液色谱
2020/5/23
色谱法分类
液相色谱:流动相为液体(也称为淋洗液)。 按固定相的不同分为:液固色谱和液液色谱。 离子色谱:液相色谱的一种,以特制的离子交换树脂为固 定相,不同pH值的水溶液为流动相。
固定液对试样中各组分的溶解能力的不同。 气液色谱的分离机理:
气液两相间的当 试 样 由 载 气 携 带 进 入 色 谱
柱与固定相接触时,被固定相
溶解或吸附。
随 着 载 气 的 不 断 通 入 , 被 溶
解或吸附的组分又从固定相中
挥发或脱附,
挥 发 或 脱 附 下 的 组 分 随 着 载
种类: 活性炭:有较大的比表面积,吸附性较强。 活性氧化铝:有较大的极性。适用于常温下O2、N2、CO
、CH4、C2H6、C2H4等气体的相互分离。CO2能被活性氧化铝 强烈吸附而不能用这种固定相进行分析。
硅胶:与活性氧化铝大致相同的分离性能,除能分析上 述物质外,还能分析CO2、N2O、NO、NO2等,且能够分离臭 氧。
1. 载气系统:包括气源、净化干燥管和载气流速控制; 2. 进样系统:进样器及气化室; 3. 色谱柱:填充柱(填充固定相)或毛细管柱(内壁涂有固定液); 4. 检测器:可连接各种检测器,以热导检测器或氢火焰检测器最为常见; 5. 记录系统:放大器、记录仪或数据处理仪; 6. 温度控制系统:柱室、气化室的温度控制。
2020/5/23
固定相 / 气固色谱固定相
分子筛: 碱及碱土金属的硅铝酸盐(沸石),多孔性。如3A、4A、5A、 10X及13X分子筛等(孔径:埃)。常用5A和13X(常温下分离 O2与N2)。除了广泛用于H2、O2、N2、CH4、CO等的分离外, 还能够测定He、Ne、Ar、NO、N2O等。 高分子多孔微球(GDX系列): 新型的有机合成固定相(苯乙烯与二乙烯苯共聚)。 型号:GDX-01、-02、-03等。适用于水、气体及低级醇的分析。
2020/5/23
色谱法简介
当流动相中携带的混合物流经固定相时, 其与固定相发生相互作用。由于混合物中各组 分在性质和结构上的差异,与固定相之间产生 的作用力的大小、强弱不同,随着流动相的移 动,混合物在两相间经过反复多次的分配平衡 ,使得各组分被固定相保留的时间不同,从而 按一定次序由固定相中流出。与适当的柱后检 测方法结合,实现混合物中各组分的分离与检 测。 两相及两相的相对运动构成了色谱法的基础
气向前移动时又再次被固定相
溶解或吸附。
随 着 载 气 的 流 动 , 溶 解 、 挥
发,或吸附、脱附的过程反复
地进行。
(动画)
2020/5/23
分配系数 K
组分在固定相和流动相间发生的吸附、脱附,或溶解、 挥发的过程叫做分配过程。在一定温度下,组分在两相间 分配达到平衡时的浓度(单位:g / mL)比,称为分配系数, 用K 表示,即: