高三数学平面向量一轮复习资料

合集下载

平面向量知识点总结 高三数学一轮复习

平面向量知识点总结 高三数学一轮复习

知识点总结4 平面向量一.平面向量向量的线性运算向量运算加法减法数乘几何表示首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量(1)|λa |=|λ||a |,(2)当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反; 当λ=0时,λa =0一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量, 即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.平面向量基本定理e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是平面内两个不共线向量,那么对这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ . 我们把不共线的向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面的一组基底. 3.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD ⃗⃗⃗⃗⃗ =n m+nAB⃗⃗⃗⃗⃗ +m m+nAC⃗⃗⃗⃗⃗ , 特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 二.平面向量的坐标运算1.平面向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.向量加法、减法、数乘运算及向量的模:设坐标表示 a =(x 1,y 1),b⃗ =(x 2,y 2),则 a +b ⃗ =(x 1+x 2,y 1+y 2), a −b ⃗ =(x 1−x 2,y 1−y 2), λa =(λx 1,λy 1), |a |=x 21+y 21.三.平面向量的数量积 1.向量a 与b⃗ 的夹角 已知两个非零向量a 和b ⃗ .作OA =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b ⃗ 的夹角. 当θ=0°时,a 与b ⃗ 同向; 当θ=180°时,a 与b⃗ 反向. 如果a 与b ⃗ 的夹角是90°,我们说a 与b ⃗ 垂直,记作a ⊥b ⃗ . 2.平面向量的数量积(1)若a ,b ⃗ 为非零向量,夹角为θ,则a ∙b ⃗ =|a |∙|b ⃗ |cosθ. (2)设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ∙b ⃗ =b ⃗ ∙a (交换律);(2)λa ∙b ⃗ =λ(a ∙b ⃗ )=a ∙(λb ⃗ ) (结合律); (3)(a +b ⃗ )∙c =a ∙c +b ⃗ ∙c (分配律). 4.平面向量数量积运算的常用公式 (1) (a +b ⃗ )∙(a −b ⃗ )=(a )2−(b⃗ )2. (2)(a +b ⃗ )2=(a )2+(b ⃗ )2+2a ∙b ⃗ =|a |2+|b ⃗ |2+2a ∙b ⃗ . (3)(a −b ⃗ )2=(a )2+(b ⃗ )2−2a ∙b ⃗ =|a |2+|b ⃗ |2−2a ∙b ⃗ . (4)极化恒等式:a ∙b ⃗ =14[(a +b ⃗ )2−(a −b ⃗ )2]; (平行四边形模式)a ∙b⃗ =14[|AC |2−|DB |2] 5.利用数量积求长度(1)若a =(x,y),则|a |=√(a )2=√a ∙a =√x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则:|AB |=√(x 2−x 1)2+(y 2−y 1)2.6.利用数量积求夹角:设a ,b ⃗ 为非零向量,若a =(x 1,y 1),b ⃗ =(x 2,y 2),θ为a ,b ⃗ 的夹角, 则cosθ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1∙√x 2+y 27.向量的投影向量a 在向量b ⃗ 上的投影为:|a |cosθ=a⃗ ∙b ⃗|b ⃗ |. 向量a 在向量b ⃗ 上的的投影向量为:|a |cosθ∙b ⃗|a ⃗ |=a ⃗ ∙b ⃗|b⃗ |∙b ⃗|b ⃗ |. 四.平面向量的平行与垂直1.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b⃗ =(x 2,y 2),则 (1)a ∥b ⃗ ⇔a =λb ⃗ (b ⃗ ≠0⃗ )⇔x 1x 2=y 1y 2⇔x 1y 2-x 2y 1=0.(2)a ⊥b ⃗ ⇔a ·b ⃗ =0⇔x 1x 2+y 1y 2=0. (3)与a 同方向的单位向量为:a⃗ |a ⃗ |=√x 2+y2y)=(√x 2+y2√x 2+y 2),与a 共线的单位向量为:±a ⃗ |a ⃗ |=√x 2+y 2y)=√x 2+y 2√x 2+y 2).2.三点共线的充要条件的三种形式(1)A ,P ,B 三点共线⇔AP =λAB (λ≠0)(2)A ,P ,B 三点共线⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )(3)A ,P ,B 三点共线⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 五.奔驰定理与三角形“四心”1.奔驰定理:如图,已知P 为ABC 内一点,则有0PBCPACPABSPA SPB SPC ++=.2.奔驰定理的推论及四心问题推论O 是ABC 内的一点,且0x OA y OB z OC ⋅+⋅+⋅=,则::::BOCCOAAOBS SSx y z =已知点O 在ABC 内部,有以下四个推论: ①若O 为ABC 的重心,则0OA OB OC ++=;①若O 为ABC 的外心,则sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=;或OA OB OC == ①若O 为ABC 的内心,则0a OA b OB c OC ⋅+⋅+⋅=;备注:若O 为ABC 的内心,则sin sin sin 0A OA B OB C OC ⋅+⋅+⋅=也对.①若O 为ABC 的垂心,则tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,或OA OB OB OC OC OA ⋅=⋅=⋅。

高考数学一轮复习知识点大全-平面向量

高考数学一轮复习知识点大全-平面向量

特别提醒:①,sin()sin ,sincos 22A B C A B C A B C π++=-+==: ②锐角三角形⇒sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭⇒sin sin sin cos cos cos A B C A B C ++>++.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin i a b A B :=:;()sin 2a ii A R =;()2sin iii a R A =; ②已知三角形两边及一边的对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等, 解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.(4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径). (5)大边对大角:当出现多个解时,常用于判断哪些是符合题意的解、哪些不是.在三角形中,sin sin A B A B >⇔>,这是“正弦定理+大边对大角”的应用.14. 致命易错点提示:(1)特殊角三角函数值、诱导公式和三角变换公式使用错误;(2)大题第一步化简错误(应在化简完后立刻检验);(3)已知三角函数值求角、同角三角函数之间的互化、三角函数值域和最值的研究经常会忽略角的范围.第五部分 平面向量1. 向量有关概念:(1)向量的概念:既有大小又有方向的量,叫向量. 向量常用有向线段来表示.注意向量和数量的区别.(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的.(3)单位向量:长度为一个单位长度的向量叫做单位向量.(与AB 共线的单位向量有两个:AB±,一个同向,一个反向).(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性.(5)相反向量:长度相等方向相反的向量叫做相反向量, a 的相反向量是-a .(6)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行.提醒:①两个向量平行与两条直线平行是不同的两个概念,两个向量平行包含基线平行与重合两种情况, 但两条直线平行不包含两条直线重合.②三点A B C 、、共线⇔AB ∥AC .2. 向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意前为起点,后为终点.(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等.(3)坐标表示法:在平面直角坐标系内,以与x 轴、y 轴正方向同向的两个单位向量i ,j 为基底,则平面内任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.3. 平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.如:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(用,a b 表示)(答:1322a b -). (2)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0).4. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:(1);a a λλ=(2)当λ0>时,λa 的方向与a 的方向相同;当λ0<时,λa 的方向与a 的方向相反;当λ=0时,0a λ=,注意:λa ≠0. 5. 平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角.当θ=0时,a ,b 同向;当θ=π时,a ,b 反向;当θ=2π时,a ,b 垂直.(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积,或点积),记作:b a ⋅,即b a ⋅=cos a b θ.规定:零向量与任一向量的数量积是0.注意数量积是一个实数,不再是一个向量.如:①2=5=,3-=⋅b a ,则a b +等于____.) ②已知非零向量,a b 满足a b a b ==-,则,a a b 〈+〉的大小为____.(答:30)(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0. 如:已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在→b 上的投影为____.(答:512) (4)b a ⋅的几何意义:数量积b a ⋅等于a 的模||a 与b 在a 上的投影数量的积.(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0=⋅⇔⊥b a b a .②当a ,b 同向时,b a ⋅=a b ,特别地,22||a a a a =⋅=,||a = 当a 与b 反向时,b a ⋅=-a b .当θ为锐角时,b a ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件.当θ为钝角时,b a ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件.③非零向量a ,b 夹角θ的计算公式:||||cos b a b a =θ ④||||||b a b a ≤⋅.如 :已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______.(答:43λ<-或0λ>且13λ≠) 6.向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行.向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC叫做a 与b 的和,即a b AB BC AC +=+=.②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么, 由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同.(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±.②实数与向量的积:()()1111,,a x y x y λλλλ==.③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.④平面向量数量积:2121y y x x b a +=⋅.⑤向量的模:222222||,||a x y a a x y =+==+.⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =.7. 向量的运算律: (1)交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅.( 2 ) 结合律:()(),a b c a b c a b c a b c ++=++--=-+,)()()(b a b a b a λλλ⋅=⋅=⋅.(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+, c b c a c b a ⋅+⋅=⋅+)(.如:在下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(.② →→→→→→⋅⋅=⋅⋅c b a c b a )()(. ③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+. ④ 若0=⋅→→b a ,则0=→a 或0=→b . ⑤ 若,a b c b ⋅=⋅则a c =.⑥22a a =. ⑦2a bb a a ⋅=.⑧222()a b a b ⋅=⋅. ⑨222()2a b a a b b -=-⋅+.其中正确的是______.(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约). (2)向量的“乘法”不满足结合律,即c b a c b a )()(⋅≠⋅.(为什么?)8. 向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0.如:(1)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =___.(答:4).(2)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 三点共线.(答:-2或11)9. 向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如:已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = .(答:32)10.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-. 当 a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.当 a b 、不共线⇔||||||||||||a b a b a b -<±<+. (这些和实数比较类似)(3)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭. 如 :若ABC ∆的三边的中点坐标分别为(2,1)、(-3,4)、(-1,-1),则ABC ∆的重心坐标为_______.(答:24(,)33-) ②1()3PG PA PB PC =++⇔G 为ABC ∆的重心, 特别地,0PA PB PC P ++=⇔为ABC ∆的重心.③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.④向量()(0)||||AC AB AB AC λλ+≠的基线经过ABC ∆的内心. (4)P 为12P P 的中点122MP MP MP +⇔=. (5)向量 PA PB PC 、、的终点A B C 、、共线⇔存在实数αβ、,使得PA PB PC αβ=+,且1αβ+=.如:平面直角坐标系中,O 为坐标原点,已知)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是____. (答:直线AB ) 第六部分 数列1.数列的定义:数列是一个定义域为正整数集*N (或它的有限子集{}n ,,3,2,1 )上 的特殊函数,数列的通项公式也就是相应函数的解析式.2. 一般数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 3. 等差数列的概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数).(2)等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d =+-.(3)等差数列的前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 注意n S 与中间项的关系.(4)等差中项:若,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,2a b A +=. 4.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是。

(完整版)高三文科数学第一轮复习-平面向量

(完整版)高三文科数学第一轮复习-平面向量

1高三文科数学平面向量复习讲义一:若向量1122(,),(,),a x y b x y ==,且0b ≠,则1212//0a b x y y x ⇔-=。

1.(1)已知向量(2,3),(,6),a b x ==,且//a b ,则x=_______。

(2)已知向量(1,2),(,1),2a b x u a b ===+r r r r r ,2v a b =-rr r ,且//u v r r ,求实数x 的值。

练习1:设31(,sin ),(cos ,)23a b αα==,且有//a b r r ,则锐角=α 。

练习2: 平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=,回答下列问题:(1)求c 23-+ (2)求满足a mb nc =+的实数m,n ; (3)若()//(2)a kc b a +-,求实数k ;(4)若满足()()b acd +-//,且||d c -=练习3: (1) 向量(,12),(4,5),(10,)OA k OB OC k ===,当k 为何值时,,,A B C 三点共线?2(2) 已知(1,0),(2,1)a b == ,(1)求|3|a b +; (2)当k 为何实数时,ka b -与3a b +平行, 平行时它们是同向还是反向?.二:若向量1122(,),(,),a x y b x y ==,则1212a b x x y y ⊥⇔+2:在△ABC 中,∠C =90°,(,1),(2,3),AB k AC ==,则k 的值是( )A 5B -5C 32D 32-练习:已知向量(3,4),(2,1)a b ==-r r,如果向量a xb +r r 与b r 垂直,则x 的值为 ( )()A 323 ()B 233 ()C 2 ()D 25-三:若(,)a x y =则222||a x y =+,或||a =3:(1)已知向量(2,2),(5,),a b k =-=,若||a b +不超过5,则k 的取值范围是__________。

高三一轮复习14平面向量学生版

高三一轮复习14平面向量学生版

平面向量的概念及线性运算一、知识要点梳理知识点一:向量的概念1.向量:既有大小又有方向的量叫做向量.2.向量的表示方法:(1)字母表示法:如等.(2)几何表示法:用一条有向线段表示向量.如等.(3)向量的有关概念向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度).零向量:长度为零的向量叫零向量.单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量.相反向量: 长度相等且方向相反的向量.共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).规定:与任一向量共线.要点诠释:1.数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.零向量的方向是任意的,注意0与0的含义与书写区别.3.平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.知识点二:向量的加(减)法运算1.运算法则:三角形法则、平行四边形法则2.运算律:①交换律:;②结合律:要点诠释:1.两个向量的和与差仍是一个向量,可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点.2..探讨该式中等号成立的条件,可以解决许多相关的问题.知识点三:数乘向量1.实数与向量的积:实数与向量的积是一个向量,记作:(1);(2)①当时,的方向与的方向相同;②当时.的方向与的方向相反;③当时,.2.运算律设为实数结合律:;分配律:,3.共线向量基本定理非零向量与向量共线的充要条件是当且仅当有唯一一个非零实数,使.要点诠释:是判定两个向量共线的重要依据,其本质是位置关系与数量关系的相互转化,体现了数形结合的高度统一.三、规律方法指导1.向量的线性运算(1)在正确掌握向量加法减法运算法则的基础上能结合图形进行向量的计算,将数和形有机结合,并能利用向量运算完成简单的几何证明;(2)向量的加法表示两个向量可以合成,利用它可以解决有关平面几何中的问题,减法的三角形法则应记住:连接两端(两向量的终点),指向被减(箭头指向被减数).记清法则是灵活运用的前提.2.共线向量与三点共线问题向量共线的充要条件实质上是由实数与向量的积得到的.通常用来判断三点在同一条直线上或两直线平行.该定理主要用于证明点共线、求系数、证直线平行等题型问题.经典例题透析类型一:向量的基本概念例1.判断下列各命题是否正确:(1)若,则;(2)若A、B、C、D是不共线的四点,则是四边形为平行四边形的充要条件;(3)若,则(4)两向量相等的充要条件是且.举一反三:【变式1】下列说法正确的个数是( )①向量,则直线直线②两个向量当且仅当它们的起点相同,终点也相同时才相等;③向量既是有向线段;④在平行四边形中,一定有.A.0个B.1个C.2个D.3个类型二:向量的线性运算例2.如图所示,的两条对角线相交于点,且用表示举一反三:【变式1】如图,△中,点是的中点,点在边上,且,与相交于点,求的值.类型三:共线向量与三点共线问题例3.设两非零向量和不共线,(1)如果求证三点共线.(2)试确定实数,使和共线.举一反三:【变式1】设和是两个不共线的非零向量,若向量,试证明:A、C、D三点共线类型四:综合应用例4.在中,分别为三边上的动点,且在时,分别从A,B,C出发,各以一定的速度沿各边向B,C,A移动,当t=1时,分别到达B,C,A,求证:在的任何一时刻t,的重心为G.举一反三:【变式1】如图,已知点分别是三边的中点,求证:.课堂练习基础题1.下面的几个命题:①若;②长度不等且方向相反的两向量不一定是共线向量;③若满足且与同向,则;④由于方向不定,故不能与任何向量平行;⑤对于任意向量必有.其中正确命题的序号是:( )A.①②③B.⑤C.③⑤D.①⑤2.在正六边形ABCDEF中,O为其中心,则A. B. C. D.3.如图所示,D、E、F分别是△ABC的边AB、BC、CA的中点,则=( )A. B. C. D.4.若是不共线的任意三点,则以下各式中成立的是( )A. B.C. D.5.如图,在平行四边形ABCD中,M、N分别是DC、BC中点,已知,用表示=___________,___________.6.设是两个不共线向量,则向量与向量共线的充要条件是_______________.7.一条渔船距对岸4km,以2km/h速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8km,求河水的流速.8.如图,D、E是△ABC中AB、AC的中点,M、N分别是DE、BC的中点,已知,试用分别表示.提高题1.已知向量,且则一定共线的三点是( )A.A、B、DB.A、B、CC.B、C、DD.A、C、D2.已知则是A、B、C三点构成三角形的( )A.充分不必要条件B.必要不充分条件C.充要条件D既不充分也不必要条件3.已知向量若与共线,则( )A. B. C. D.或4.若则(用表示)5.已知在△ABC中,D、E、F分别是BC、CA、AB的中点,求证:(1);(2); (3).6.已知△OAB中,点C是以A为中心的B的对称点,D是将分成2:1的一个内分点,DC与OA交于E,设.(1)用与表示;(2)若,求实数的值.。

高三数学一轮复习材料02平面向量

高三数学一轮复习材料02平面向量

高三数学一轮复习材料02平面向量复习(第五章 平面向量)二. 知识要点:1. 向量的概念:向量是既有大小,又有方向的量。

向量的大小(长度)叫做向量的模,模是非负数,可以比较大小,但由于方向不能比较大小,所以,向量不可以比较大小,这是数量与向量的最大差异。

2. 向量的表示方法:(1)几何表示法。

向量可以用有向线段表示,如:A →B()字母表示法:如、或、等。

2a b AB BC →→3. 零向量与单位向量:零向量:长度为零的向量叫做零向量,记作0。

单位向量:长度等于1个单位长度的向量叫做单位向量。

4. 平行向量、相等向量、共线向量。

平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。

规定0与任一向量平行,平行向量也叫做共线向量。

相等向量:长度相等且方向相同的向量叫做相等向量。

任意两个相等的非零向量都可以用同一条有向线段表示。

5. 向量的加法:已知向量、,在平面内任取一点,作,,则向量叫a b A AB a BC b AC →=→=→做与的和,记作,即。

求两个向量和的运算,叫做向量的加a b a b AC a b +→=+法。

注意:(1)两个向量的和仍为向量。

(2)对于零向量与任一向量a 有a+0=0+a=a 。

6. 向量的加法法则 (1)三角形法则:(首尾连接) (2)平行四边形法则:(共起点) 7. 向量的加法运算律。

(1)交换律:a+b=b+a(2)结合律:a+(b+c)=(a+b)+c8. 相反向量:与a 长度相等,方向相反的向量叫做a 的相反向量,记作-a 。

零向量的相反向量为零向量。

相反向量性质: ()1--=()a a()20a a a a +-=-+=()()()如、为相反向量,那么,,30a b a b b a a b =-=-+= 9. 向量的减法:向量a 加上向量b 的相反向量叫做a 与b 的差。

记 a b a b -=+-()求两个向量差的运算叫做向量的减法。

高三文科数学一轮复习之平面向量

高三文科数学一轮复习之平面向量

数学讲义之平面向量【主干内容】1.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 . ⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .2.平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .3.平面向量的坐标运算: 若=(x 1、y 1),=(x 2、y 2),λ∈R,则:+= -= λ=4. 向量的数量积的几何意义: |b |cos θ叫做向量b 在a 方向上的投影 (θ是向量a 与b 的夹角). ·b 的几何意义是,数量·b 等于 .5.向量数量积的运算律:a ·b = ; (λa )·b = =a ·(λb );(a +b )·c =总结: 在近几年的高考中,每年都有涉及向量的题目。

其中小题以填空题或选择题形式出现,考查了向量的性质和运算法则,数乘、数量积、共线问题与轨迹问题。

大题则以向量形式为条件,综合考查了函数、三角、数列、曲线等问题。

【题型分类】题型一:向量的概念与几何运算〖例1=,则b a =; ②若A 、B 、C 、D 是不共线的四点,则=是四边形为平行四边形的充要条件; ③若==,,则c a =; ④b a ==且a ∥b ; ⑤若∥,∥,则∥。

其中,正确命题的序号是____________〖例2〗(2011四川)如图1-2,正六边形ABCDEF 中,BA →+CD →+EF →=( )图1-2A .0B . BE →C ..AD → D .CF →〖例3〗(2011届杭二模)已知非零向量a ,b 满足|a + b | =|a –b|a |,则a + b 与a –b 的夹角为( )A .30︒B .60︒C .120︒D .150︒〖例4〗已知,,,,OA a OB b OC c OD d OE e =====,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?【小结】:1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB∥CD,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥AC 即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.题型二:平面向量的坐标运算〖例1〗设=(ksin θ, 1),b =(2-cos θ, 1) (0 <θ<π),∥,求证:k≥3.〖例2〗(2011稽阳联考)已知向量,均为单位向量,它们的夹角为︒45,实数x 、y 满足1||=+y x ,则y 的取值范围是 .〖例3〗已知向量=(cos2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.〖例4〗(2011湖南)在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.〖例5〗在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.【小结】:1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算. 题型三:平面向量的数量积〖例1〗已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a⊥b,求θ;(2) 求|a +b |的最大值.〖例2〗(2011全国) 已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k =________.〖例3〗(2011浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________. 【小结】:1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =.3.应根据定义找两个向量的夹角。

高考数学(平面向量)第一轮复习

高考数学(平面向量)第一轮复习

高考数学(平面向量)第一轮复习资料知识点小结1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.5、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)6、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.7、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则12c o s a b a bx θ⋅==+试题选讲一、选择题 1.(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c ) .答案:D解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.评述:向量的积运算不满足结合律.2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A.3x +2y -11=0B.(x -1)2+(y -2)2=5C.2x -y =0D.x +2y -5=0.答案:D解析:设=(x ,y ),=(3,1),=(-1,3),α=(3α,α), βOB =(-β,3β)又αOA +βOB =(3α-β,α+3β)∴(x ,y )=(3α-β,α+3β),∴⎩⎨⎧+=-=βαβα33y x又α+β=1 因此可得x +2y =5评述:本题主要考查向量法和坐标法的相互关系及转换方法.3.(2001江西、山西、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( )A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4) 答案:D解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法.4.(2001江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅等于( )A.43B.-43 C.3 D.-3答案:B解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -21),则OB OA ⋅=x 1x 2+y 1y 2.又⎪⎩⎪⎨⎧=-=x y x k y 2)21(2,得k 2x 2-(k 2+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)=k 2(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=41-1=-43. 解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2=-1.x 1·x 2同上.评述:本题考查向量的坐标运算,及数形结合的数学思想.5.(2001上海)如图1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则下列向量中与MB 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 答案:A 解析:)(21111A B B ++=+==c +21(-a +b )=-21a +21b +c 评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.(2001江西、山西、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A.-21a +23b B.21a -23b C.23a -21bD.-23a +21b 答案:B解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).∴⎩⎨⎧=--=+21n m n m ∴⎪⎪⎩⎪⎪⎨⎧-==2321n m评述:本题考查平面向量的表示及运算.7.(2000江西、山西、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假; ④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真. 评述:本题考查平面向量的数量积及运算律.8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )A.-31 B.-3 C.31 D.3答案:A解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-31.评述:本题考查平移变换与函数解析式的相互关系.二、填空题9.(2002上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____.答案:13解析:∵(2a -b )·a =2a 2-b ·a =2|a |2-|a |·|b |·cos120°=2·4-2·5(-21)=13. 评述:本题考查向量的运算关系.10.(2001上海春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____..答案:90°解析:由|α+β|=|α-β|,可画出几何图形,如图14. |α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.(2000上海,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . .答案:4解析:∵OA ={-1,2},OB ={3,m },OA OB AB -=={4,m -2},又OA ⊥AB ,∴-1×4+2(m -2)=0,∴m =4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件.12.(1999上海理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为_____.答案:(223,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为4π,由复数乘法的几何意义,得OB =OA (cos4π+isin4π)=(2+i )i i 22322)2222(+=+. ∴b =(223,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.13.(1997上海,m =_____. 答案:-2∵(a +b )⊥(a-b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2.评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件.14.(1996上海,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.得∴a ·b =(-3)×5+4×(-12)=-63.评述:本题考查平面向量数量积的坐标表示及求法.15.(1996上海,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____. 答案:(4,2)解析:设P (x ,y ),由定比分点公式12113210,22116210=+⋅+==+⋅+=y x , 则P (2,1),又由中点坐标公式,可得B (4,2).三、解答题16.(2003上海春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图2.(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱;(2)若m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.(1)证明:∵}0,23,2{mm AB AC BC=-=,∴| BC |=m ,又}0,0,{},0,23,2{m AC m m AB =-= ∴|AB |=m ,|AC |=m ,∴△ABC 为正三角形.又AB ·1AA =0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =23m ,CA 1=22n m +, ∴sin CA 1O =221=CA CO ,即∠CA 1O =45°.17.(2002上海春,19)如图3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:(1)二面角O 1—AB —O 的大小;(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示) 解:(1)取OB 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面OBB 1O 1⊥平面OAB , ∴O 1D ⊥平面OA B.过D 作AB 的垂线,垂足为E ,连结O 1E . 则O 1E ⊥A B.∴∠DEO 1为二面角O 1—AB —O 的平面角. 由题设得O 1D =3,sin OBA =72122=+OB OA OA , ∴DE =DB sin OBA =721 ∵在R t △O 1DE 中,tan DEO 1=7,∴∠DEO 1=arctan7,即二面角O 1—AB —O 的大小为arctan 7.(2)以O 点为原点,分别以OA 、OB 所在直线为x 、y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系如图15.则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0). 设异面直线A 1B 与AO 1所成的角为α, 则}3,1,3{},31,3{1111-=-=--=-=OO OA A O OA OB B A ,cos α71||||1111=⋅A O B A A O B A ,∴异面直线A 1B 与AO 1所成角的大小为arccos 71.18.(2002上海,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)图3 图5—4 图5解法一:如图16,以O 点为原点建立空间直角坐标系.由题意,有B (3,0,0),D (23,2,4),设P (3,0,z ),则 BD ={-23,2,4},OP ={3,0,z }.∵BD ⊥OP ,∴·OP =-29+4z =0,z =89. ∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. tan POB =83,∴∠POB =arctan 83. 解法二:取O ′B ′中点E ,连结DE 、BE ,如图17,则DE ⊥平面OBB ′O ′,∴BE 是BD 在平面OBB ′O ′内的射影. 又∵OP ⊥B D.由三垂线定理的逆定理,得OP ⊥BE .在矩形OBB ′O ′中,易得Rt △OBP ∽Rt △BB ′E , ∴B B OBE B BP '=',得BP =89. (以下同解法一)19.(2002天津文9,理18)如图5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.解:(1)如图18,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2 a ),C 1(a aa 2,2,23-). (2)坐标系如图,取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1有 1MC =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,0,2 a ) 由于1MC ·AB =0,1MC ·1AA =0,所以MC 1⊥面ABB 1A 1.∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(a aa 2,2,23-),AM =(0,2,2a a ), ∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=a a a a 32443222=++.|AM |=a a a 232422=+.∴cos <1AC ,AM >=2323492=⋅a a a.所以1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ⋅,PN PM ⋅⋅成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.解:(1)记P (x ,y ),由M (-1,0),N (1,0)得PM =-MP =(-1-x ,-y ), PN =-NP =(1-x ,-y ),MN =-NM =(2,0) ∴MP ·MN =2(1+x ),PM ·PN =x 2+y 2-1,NM ·NP =2(1-x ). 于是,MP ·MN ,·PN ,NM ·NP 是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即⎩⎨⎧>=+0,322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0).PM ·PN =x 02+y 02-1=2.|PM |·|PN |=20202020)1()1(y x y x +-⋅++.∴cos θ2202043tan .41||||x x x PB PM --=-=⋅θ21.(2001江西、山西、天津理)如图6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .(1)求cos<DE BE , >;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED.图6 图5—7 图5—8解:(1)由题意知B (a ,a ,0),C (-a ,a ,0),D (-a ,-a ,0),E (2,2,2ha a -). 由此得,)2,23,2(),2,2,23(h a a DE h a a BE =--= ∴42322)232()223(22h a h h a a a a DE BE +-=⋅+⋅-+⋅-=⋅,222221021)2()2()23(||||h a h a a DE BE +=+-+-==. 由向量的数量积公式有cos<DE BE , >222222222210610211021423||||h a h a h a h a h a DE BE ++-=+⋅++-=⋅ (2)若∠BED 是二面角α—VC —β的平面角,则CV BE ⋅,则有CV BE⊥=0.又由C (-a ,a ,0),V (0,0,h ),有CV =(a ,-a ,h )且)2,2,23(ha a BE --=, ∴02223222=++-=⋅h a a .即h =2a ,这时有cos<DE BE ,>=31)2(10)2(610622222222-=++-=++-a a a a h a h a , ∴∠BED =<DE BE ,>=arccos (31-)=π-arccos 31评述:本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(2001上海春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.(1)求证:A 1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE . 同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE , 所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角. 由已知,计算得DG =49. 如图19建立直角坐标系,则得点A (0,0,0),G (49,3,0),A 1(0,0,5), C (4,3,0).AG ={49,3,0},A 1C ={4,3,-5}.因为AG 与A 1C 所成的角为α, 所以cos α=25212arccos ,25212||||11==⋅⋅αC A AG C A AG .由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos25212. 注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=AEFABDS S ∆∆. 评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.(2001上海)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.(1)求证:A ′F ⊥C ′E .(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)建立坐标系,如图5—20.(1)证明:设AE =BF =x ,则A ′(a ,0,a ),F (a -x ,a ,0),C ′(0,a ,a ),E (a ,x ,0)∴A '={-x ,a ,-a },E C '={a ,x -a ,-a }. ∵F A '·E C '=-xa +a (x -a )+a 2=0 ∴A ′F ⊥C ′E(2)解:设BF =x ,则EB =a -x 三棱锥B ′—BEF 的体积 V =61x (a -x )·a ≤6a (2a )2=241a 3当且仅当x =2a时,等号成立. 因此,三棱锥B ′—BEF 的体积取得最大值时BE =BF =2a,过B 作BD ⊥EF 于D ,连 B ′D ,可知B ′D ⊥EF .∴∠B ′DB 是二面角B ′—EF —B 的平面角在直角三角形BEF 中,直角边BE =BF =2a ,BD 是斜边上的高.∴BD =42a .∴tan B ′DB =22='BDBB 故二面角B ′—EF —B 的大小为arctan22.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于F A '·E C '=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(2000上海春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:PA ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义. (1)证明:∵⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设与的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.25.(2000上海,18)如图9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos1010,求四面体ABCD 的体积.图9 图10 图11解:如图21建立空间直角坐标系 由题意,有A (0,2,0)、C (2,0,0)、E (1,1,0) 设D 点的坐标为(0,0,z )(z >0) 则BE ={1,1,0},={0,-2,z }, 设BE 与AD 所成角为θ. 则AD ·BE =2·224+cos θ=-2,且AD 与BE 所成的角的大小为arccos1010.∴cos 2θ=101422=+z ,∴z =4,故|BD |的长度为4. 又V A —BCD =61|AB |×|BC |×|BD |=38,因此,四面体ABCD 的体积为38.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.26.(2000天津、江西、山西)如图10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M.解:如图22,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2}, M C 1={21,21,0}.∴A 1·M C 1=-2121++0=0,∴A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件27.(2000全国理,18)如图11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. (1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD -==b -a , ∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0, ∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角. ∵21)(21=+=CD BC CO(a +b ),2111=-=CC CO O C (a +b )-c∴CO ·211=OC (a +b )·[21(a +b )-c ] =41(a 2+2a ·b +b 2)-21a ·c -21b ·c=41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23.则|CO |=3,|O C 1|=23,∴cos C 1OC 3311= (3)解:设1CC CD=x ,CD =2, 则CC 1=x 2.∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,DC =c , ∵C A 1=a +b +c ,D C 1=a -c ,∴D C C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=x x 242+-6,令6-242xx -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.28.(1999上海,20)如图12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.(1)证明:∵PA ⊥平面ABCD ,∴PA ⊥AB ,又AB ⊥AD .∴AB ⊥平面PAD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵PA ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a ,EF =23a ,∴E (0,23,21a a ) 于是,CD a a AE},23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE CDAE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a ∴θ=arccos42,即AE 与CD 所成角的大小为arccos 42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.29.(1995上海,21)如图13在空间直角坐标系中BC =2,原点O 是BC 的中 点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°, ∠DCB =30°。

高三数学平面向量一轮复习

高三数学平面向量一轮复习

第七章平面向量2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算1.向量的有关概念⑴既有又有的量叫向量.的向量叫零向量.的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 . ⑶ 且 的向量叫相等向量. 2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 . 3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下: ① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ . ⑵ λ(μ)= . (λ+μ)= . λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 . 4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .中,D 为BC 的中点,E 为AD 的中点.设=,b AC =,求. 解:=-=41(+)-=-43+41 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( ) A .-+21 B .--21 C .-21 D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,使μλ+=.解:c =λa +μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC 和AB 的中点,若a =,b =,试用a 、b 表示BC 和.解:连NC ,则==b a CN AB CN MC MN -=+=+=4141;a b NB NC BC 21-=-= 变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,CN =31CD ,试用a 、b 表示OM ,ON ,MN . 解:=61+65b ,=32+32b , =21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ 故21=t 时,)(31,,t +三向量的向量的终点在一直线上. 变式训练4:已知,,,,OA a OB b OC c OD d OE e =====,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条 直线上的充要条件是存在实数k ,使得CE kCD =,即(3)32t a tb ka kb -+=-+, 整理得(33)(2)t k a k t b -+=-. ①若,a b 共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥CD ,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量a ,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系. 3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则: a +b = -= λ=已知A(x 1、y 1),B(x 2、y 2),则AB = .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .2,3),B (-1,5),且=31,求点C 的坐标.解=31=(-1,32),=+=(1,311),即C(1, 311) 变式训练1.若(2,8)OA =,(7,2)OB =-,则31AB = . 解: (3,2)--提示:(9,6)AB OB OA =-=-- 例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值. 解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257- 变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b . 解 =(-1,1),b =(1,0),∴+b =(0,1)例3. 已知向量=(1, 2),b =(x, 1),1e =+2b ,2e =2-b ,且1e ∥2e ,求x . 解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21 变式训练3.设a =(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),a ∥b ,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标; (2) 当||=||时,求点P 的轨迹. 解:(1)设点C 的坐标为(x 0,y 0), 得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量与b ,它们的夹角为θ,则数量 叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = .3.向量的数量积的几何意义:|b |cosθ叫做向量b 在a 方向上的投影 (θ是向量a 与b 的夹角).·b 的几何意义是,数量·b 等于 . 4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角. ⑴ e ·a =a ·e = ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cosθ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ a ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =例1. 已知||=4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|+b |的最大值. 解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<.(1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数). 证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+=a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,212cos()k a b k k βα→+=++-,212cos()a kb k k βα→-=+--,而2212cos()12cos()k k k k βαβα++-=++-cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(OB -OC )·(OB +OC -2OA )=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(OC OB -)(OA OC OB 2-+)=0⇒2BC ·AD =0⇒BC ⊥AD ⇒△ABC 是等腰三角形变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 . 解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥ 例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ 又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0∴cos 25162)4cos(1)82(=++=+παπθ=-54变式训练4.平面向量13(3,1),(,)22a b=-=,若存在不同时为0的实数k和t,使2(3)x a t b=+-,,y ka tb=-+且x y⊥,试求函数关系式()k f t=.解:由13(3,1),(,22a b=-=得0,||2,||1a b a b⋅=== 33311(3),()(3)44k t t f t t t=-=-角度等问题.因此充分挖掘题目所包含的几何意义,2.注意a·b与ab的区别.a·b=0≠>a=,或b=.3.应根据定义找两个向量的夹角。

平面向量高考一轮总复习完整版(含全部知识点习题)

平面向量高考一轮总复习完整版(含全部知识点习题)

第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。

规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。

规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。

其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。

(完整版)高三一轮复习平面向量知识点整理.doc

(完整版)高三一轮复习平面向量知识点整理.doc

平面向量知识点整理1、概念(1)向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.(2)单位向量:长度等于1个单位的向量.(3)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有零向量 )④三点 A、 B、 C共线AB、AC 共线(4)相等向量:长度相等且方向相同的向量.(5)相反向量:长度相等方向相反的向量。

a 的相反向量是 -a(6)向量表示:几何表示法AB ;字母a表示;坐标表示:a=xi+yj=(x,y).uuur r uuur的长度叫做向量r r(7)向量的模:设OA a ,则有向线段OA a 的长度或模,记作:| a | .rx2 r 2 rx2 y2。

)( | a | y2 , a | a |2(8)零向量:长度为0 的向量。

a=O | a|=O.r r r r【例题】 1.下列命题:( 1)若a b ,则a b 。

(2)两个向量相等的充要条件是uuur uuur它们的起点相同,终点相同。

(3)若AB DC ,则 ABCD 是平行四边形。

(4)若uuur uuur r r r r r r r r r r ABCD 是平行四边形,则 AB DC 。

(5)若 a b,b c ,则 a c 。

(6)若 a // b,b// c ,r r则 a // c 。

其中正确的是_______r r uur r (答:(4)(5))2. 已知 a, b 均为单位向量,它们的夹角为60o,那么 | a 3b | =_____(答:13 );2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.Crarbr r uuur uuur uuur a b C Cr rrrrr⑶三角形不等式:.⑷运算性质:①交换律: r r rr r r r r r r;a b ba ;②结合律: a bc a bc ③ r r r r r .a 0 0 a a⑸坐标运算:设 rrx 2 , y 2r rx 1 x 2 , y 1 y 2 .a x 1, y 1 , b,则 a b3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设 r r x 2 , y 2 ,则 r r x 1 x 2 , y 1 y 2 .a x 1, y 1 ,b a b设 、两点的坐标分别为x 1 , y 1 , x 2 , y 2 ,则 uuurx 1x 2 , y 1y 2 .【例题】uuur uuur uuuruuur uuur uuur;( 1) ① AB BC CD ___;② AB AD DCuuur uuur uuuruuur ruuur uuur _____③ ( AB CD ) ( AC BD) (答:① AD ;② CB ;③ 0 );uuur r uuur r uuur r r r r( 2)若正方形 ABCD 的边长为 1, AB a, BC b, AC c ,则 | a b c |=_____(答: 2 2 );( 3)已知作用在点uur uuruurA(1,1)的三个力 F 1 (3,4), F 2 (2, 5), F 3(3,1) ,则合力uruuruur uurF F 1F 2 F 3 的终点坐标是(答:(9,1))4、向量数乘运算:r ⑴实数r的积是一个向量的运算叫做向量的数乘,记作与向量 aa .① r r ; a a②当 0 时, r r 的方向相同;a 的方向与 a r当 0 时, r r 的方向相反;当r a 的方向与 a 0 时, a 0 .⑵运算律:① r r ;②r r r ;③ r r r r aa a a a ab ab .r x, y ,则 r x, y x, y .⑶坐标运算:设 a a【例题】( )若 ( -3 , ), ( , ),且 MP 1MN1 M -2 N 6 -1 3,则点 P 的坐标为 _______(答: ( 6,7) );r rrr35、向量共线定理 :向量,使a a 0 与b 共线,当且仅当有唯一一个实数 r rr x 1 , y 1r x 2 , y 2r r r r 2r r2。

高三数学一轮复习平面向量基本定理及坐标表示

高三数学一轮复习平面向量基本定理及坐标表示

A. 2
√B. 5
C. 10
D.5
解析 根据题意可得1×t=2×(-2),可得t=-4,
所以a+b=(-1,-2),
从而可求得|a+b|= 1+4= 5,故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任
∴-2×(4-k)=-7×(-2k),解得 k=-23.
3 课时作业
PART THREE
基础保分练
1.已知 M(3,-2),N(-5,-1),且M→P=12M→N,则 P 点的坐标为
A.(-8,1)
√B.-1,-23
解析 设 P(x,y),则M→P=(x-3,y+2).
C.1,32
D.(8,-1)
而12M→N=12(-8,1)=-4,12,
x-3=-4, ∴y+2=12,
x=-1, 解得y=-32,
∴P-1,-23.故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·山西榆社中学诊断)若向量A→B=D→C=(2,0),A→D=(1,1),则A→C+B→C等于
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .

平面向量 高三 一轮复习(完整版)

平面向量 高三 一轮复习(完整版)

题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量一.知识清单 向量有关概念1.有向线段: 叫做有向线段,它包含 三个要素2.向量: 叫做向量 3.向量的长度(或模): 就是此向量的长度 4.向量的表示: 表示向量,如AB a 或 5.零向量: 叫做零向量,记作0 6.单位向量: 叫做单位向量7.平行向量: 叫做平行向量(也叫做共线向量)。

如向量a 与b 平行(或共线),记作//a b8.相等向量: 叫做相等向量。

如果向量a 与b 相等,记作a =b 二.基础训练1.在下列各命题中,真命题为( )A 两个有共同起点且共线的向量,其终点必相同B 模为0的向量与任一向量平行C 向量就是有向线段D a =b 是a b =的必要不充分条件 2.下列命题中,假命题是( ) A 向量AB 与向量BA 长度相等B 两个相等向量若起点相同,则终点必相同 C 只有零向量的模等于0 D 共线的单位向量相等3.已知下列命题:①a=b,b=c ,则a=c; ②若a//b,b//c 则a//c;③若a=b,则a//b; ④若a//b,则a=b.其中命题正确的序号是( )A ①③B ②③C ④③D ①② 4.在四边形AB CD中, AB DC =,且AB AD =,则四边形ABCD 是 5.如图,D 、E 、F 分别是ABC ∆的三边BC 、CA 和AB 的中点,试写出: (1)与EF 平行的向量; (2)与EF 相等的向量;三.强化训练1.下列说法正确的是( )A 方向相同或相反的向量是平行向量 B 零向量的长度是0C 长度相等的向量叫相等向量D 共线向量是在一条直线上的向量2.下列命题中,真命题的个数为( ) ① 若a b =,则a =b 或a =b -② 若AB DC =,则A 、B 、C 、D 是一个平行四边形的四个顶点 ③ 若a =b ,b c =,则a =c ④ 若//a b ,//b c ,则//a cA 4B 3C 2D 13.下列命题,正确的是( ) A a b a b =⇒= B a b a b >⇒> C //a b a b =⇒ D 00a a =⇒=4.如图,ABCD 是边厂为3的正方形,把各边三等分后,共有16个交点,从中选取2个交点组成向量,则与AC 平行且长度为的向量个数是A BCD B CD向量的加法与减法一.知识清单1. 向量加法的定义已知向量a、b ,在平面内任取一点A 作AB =a ,BC =b ,则向量 叫做a 与b(1 根据向量加法的定义求向量的方法,叫向量加法的三角形法则,使用三角形法则特别要注意“首尾相接”,具体做法是:把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与前一个向量的终点重合,既用同一个字母来表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。

如a =AB ,b=BC ,c=CD 则a+b +c=AB BC CD AD ++=。

(2)向量加法的平行四边形法则向量加法还可以用平行四边形法则:先把两个已知向量的起点 到同一点,再以这两个已知向量为 作平行四边形,则 就是这两个已知向量的和。

以点A 为起点作向量AB =a ,AD =b,以AB 、AD 为邻边作ABCD 。

则以A 为起点的对角线AC 就是a 与b的和,记作a+b=AC 向量的加法满足交换律、结合律(1)交换律: 。

(2)结合律: 。

以上运算对多个向量也是成立的 2. 向量的减法 1.相反向量:与a 的向量,叫做a 的相反向量,记作 。

零向量的相反向量仍是 。

2.向量的减法:向量a 加上向量b 的 ,叫做a 与b 的差,记作:a-b。

求两个向量差的运算,叫做 。

已知a 、b ,如图,在平面内任取一点O ,作OA =a,OB =b ,则 =a-b ,既a-b 可以表示为从向量 的终点指向向量 的终点的向量,如图。

(1)-(-a)=a ;(2)a+(-a)=(-a)+a=0(3)a 、b 为相反向量,则a=-b,b=-a,a+b=0; (4)差向量是由减向量的终点指向被减向量的终点。

3.两个向量的和与差仍是二.基础训练1.化简以下各式:(1)AB BC CA ++;(2)AB AC BD CD -+-;(3)OA OD AD -+(4)NQ QP MN MP ++-,结果为零向量的个数是( )A 1B 2C 3 D 42.已知8,5AB AC ==,则BC 的取值范围是a abab a+bO AC D B3.在如图所示的四边形AB CD 中,设AB =a ,AD =b ,则DC 等于 4.设a 、b是非零向量,则“a b a b -=+”成立的充要条件是( ) A a 、b 方向相同 B a 、b 方向相反 C a=b D a b =5.在矩形ABCD 中,3AB =,1BC =,则向量(AB AD AC ++)的长度等于6.如图M 是线段AB 的中点,求证:对于任意一点O ,1()2OM OA OB =+成立。

7. 在平行四边形A BC D中,若AB AD AB AD +=-,则必有( ) A 0AD = B 00AB AD ==或 C A BC D是矩形 D ABC D是正方形三.强化训练1.在四边形ABC D中,AC AB AD =+,试判断四边形的形状2.如图,在四边形ABC D中,下列结论中错误的是( ) A AB DC = B AD AB AC += C AB AD BD -= D 0AD CB += 3.在AB CD中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN = (用a ,b表示)。

4.如图所示,D 是ABC ∆的边AB 上的中点,则向量CD 等于( )A 12BC BA +B 12BC BA -+ C 12BC BA -- D 12BC BA -5.给出下列命题:(1)若向a 与b 平行,则a 与b 方向相反或者相同;(2)ABC ∆中,必有0AB BC CA ++=;(3)四边形A BCD 是平行四边形的充要条件是AB DC =;(4)若非零向量a 与b 的方向相同或相反,则a+a-b 与a、b之一方向相同。

其中正确的是( ) A (1)(2) B (3)(4) C (1)(4) D (2)(3)MBABCDC实数与向量的积一.知识清单1. 实数与向量的积的定义实数λ与向量a 的积是一个向量,记作 ,它的长度与方向规定如下: (1) ;(2)当0λ>时,λa 的方向与a的方向 ;当0λ<时,λa的方向与a 的方向;0λ=时,λa = 。

2. 实数与向量的积的运算律:设R λμ∈,则 (1)()a λμ= ; (2)()λμ+a= ; (3)λ(a+b )= ; 3.两个向量共线的充要条件向量b 与非零向量a 共线的充要条件是 ,使得b =λa 4. 平面向量基本定理如果12,e e 是同一平面内两个不共线向量,那么对于这一平面内的任一向量a, ,使得1122a e e λλ=+5.基底用来表示某一平面内任一向量的一对不共线的向量,叫做 。

6.三点共线的充要条件,OA OB 不共线,三点A、B 、P 共线的充要条件是()AP t AB t R =∈ 二.基础训练1.已知a =12e e +,b =122e e -,则向量a +2b 与2a-b ( )A 一定共线B 一定不共线C 仅当12e e 与共线时共线D 以上均不成立 2.在ABCD 中,A C与BD 交于点M,若设AB =a ,AD =b,则下列选项中与12-a +12b 相等的向量是( )A MAB MB C MCD MD 3.设四边形ABCD 中,有12DC AB =,且AD BC =,则这个四边形是( ) A 平行四边形 B 矩形 C 等腰梯形 D 菱形4.已知向量12,e e 不共线,实数x,y 满足1212(34)(23)63x y e x y e e e -+-=+,则x-y的值等于( )A 3 B -3 C 0 D 2 5.若M是ABC ∆的重心,则下列各向量中与AB 共线的是( ) A AB BC AC ++ B AM MB BC ++ C AM BM CM ++ D 3AM AC + 6.若3a =,b 与a 的方向相反,且5b =,则a = b 7.已知向量12,e e 不共线(1)若12AB e e =-,1228BC e e =-,1233CD e e =+,求证A、B 、D 三点共线; (2)向量12e e λ-与12e e λ-共线,求实数λ的值 三.强化训练1.已知向量a 、b 且AB =a+2b ,BC =-5a +6b,CD =7a -2b,则一定共线的三点是( )A A 、B 、D B A、B 、C C C 、B、D D A 、C 、D 2.如图D 是ABC ∆的边AB 上的中点,则向量CD =( ) A 12BC BA +B 12BC BA -+ C 12BC BA -- D 12BC BA -3.如图,在ABC ∆中,OA =a,OB =b,M 为OB 的中点,N 为AB 的中点,P为ON 、AM 的交点,则AP 等( )A 23a13- bB 23-a 13-b C 13a23-b D 13-a 23+b4.如图所示),已知43AP AB =,用OA 、OB 表示OP ,则OP 等于( )A 1433OA OB -+ B 1433OA OB +C 1433OA OB - D 1433OA OB --BCD AAO MNPB平面向量的数量积及运算率一.知识清单 1.向量a与b的夹角两个非零向量a 和b ,作OA =a ,OB = b,则(0180)AOB θθ∠=≤≤叫做 当0θ=时,a 与b ;当180θ=时, a 与b 。

2.向量a与b垂直如果a 与b 的夹角是90,叫做 ,记作a ⊥b 3.向量a 与b的数量积两个非零向量a 和b,它们的夹角为θ,则数量cos a b θ⋅,叫做 ,记作a b ⋅,既a b ⋅= 。

规定:零向量与任一向量的数量积为0。

两个向量的数量积是一个量,这个 量的大小与两个向量的长度及其夹角有关。

4.向量b 在a 方向上的投影若向量a 与b 的夹角是θ,则 叫做向量b在a 方向上的投影。

当θ为 角时,它是正值;当θ为 角时,它是负值;当θ= 时,它是0;当θ= 时,它是b ;当θ= 时,它是b -。

二.基础训练1.已知3b =,a 在b 方向上的投影是32,则a ⋅b 为 2.在边长为2的等边三角形ABC 中,AB BC ⋅的值是 3.已知6a =,a 与b 的夹角为3π,且(a +2b )⋅(a -3b )=72-,则b 为 4.设a 、b 是夹角为60的单位向量,则2a +b 和3a -2b 的夹角为 5.若20AB BC AB ⋅+=,则三角形为 三角形。

相关文档
最新文档