第八章 带传动
第八章带传动(习题及答案) 精品
第8章带传动一、选择填空:1.带传动主要依靠来传递运动和动力的。
A.带与带轮接触面之间的正压力B.带的紧边压力C.带与带轮接触面之间的摩擦力D.带的初拉力2.带传动不能保证精确的传动比,其原因是。
A.带容易变形和磨损B.带在带轮上打滑C.带的弹性滑动D.带的材料不遵守虎克定律3.带传动的设计准则为。
A.保证带传动时,带不被拉断B.保证带传动在不打滑的条件下,带不磨损C.保证带在不打滑的条件下,具有足够的疲劳强度4.普通V带带轮的槽形角随带轮直径的减小而。
A.增大B.减小C.不变5.设计V带传动时发现V带根数过多,可采用来解决。
A.增大传动比B.加大传动中心距C。
选用更大截面型号的V带6.速比不等于1的带传动,当工作能力不足时,传动带将在打滑。
A.小轮表面B.打轮表面C.两轮表面同时7.带传动采用张紧轮的目的是。
A.减轻带的弹性滑动B.提高带的寿命C.改变带的运动方向C.调节带的初拉力8.在设计V带传动中,选取小带轮直径d1>d min,d min主要依据选取。
A.带的型号B.带的线速度C.传动比D.高速轴的转速9.带传动在工作时产生弹性滑动,是由于。
A.带不是绝对挠性体B.带绕过带轮时产生离心力C.带的松边与紧边拉力不等10.确定单根带所能传递功率的极限值P0的前提条件是。
A.保证带不打滑B.保证带不打滑、不弹性滑动C.保证带不疲劳破坏D.保证带不打滑、不疲劳破坏11.带传动的挠性摩擦欧拉公式推导的前提条件是。
A.带即将打滑B.忽略带的离心力C.带即将打滑,且忽略带的离心力D.带即将打滑,且忽略带的弯曲应力12.带传动中,用方法可以使小带轮包角α1加大。
A.增大小带轮直径d1B.减小小带轮直径d1C.增大大带轮直径d2D.减小中心距a13.带传动中紧边拉力为F1,松边拉力为F2,则其传递的有效圆周力为。
A.F1+F2B.(F1-F2)/2C.F1+F2D.(F1+F2)/214.带传动中,带和带轮打滑。
机械设计基础---带传动设计(第八章)
带传动概述
一、类型、特点
1.带传动的组成及工作原理
组成: 固联于主动轴上的带轮1(主动轮);
固联于从动轴上的带轮3(从动轮); 紧套在两轮上的传动带2。
传动原理
摩擦传动:当主动轮转动时,由于带和带轮间的摩擦力,便拖动从 动轮一起转动,并传递动力(平带和V带传动) 。 啮合传动:当主动轮转动时,由于带和带轮间的啮合,便拖动从动 轮一起转动,并传递动力(同步带传动)。
∴ 带绕过主动轮时,将因缩短而使带相对于轮1向后滑动,使 带速落后于轮速,即 v带<v1;带绕过从动轮时情况相反。 因带两边拉力不等、带的弹性变形量变化所导致的带与轮之间 的相对运动称为弹性滑动。弹性滑动只发生在接触弧的局部。
(演示→ )
带传动的几何计算和基本理论
弹性滑动后果: (1) v1 > v带 > v2 (2) η↓ (3) 带磨损 (4) 带温度↑ 速度降低的程度可用滑动率ε来表示:
带传动的张紧装臵
一、定期张紧装臵
(详细介绍)
普通V带传动的结构设计
二、自动张紧装臵 三、采用张紧轮张紧装臵
带传动的张紧2
张紧轮一般应放在松边的内侧,使带只受单向弯曲。同时张紧轮应尽 量靠近大轮,以免过分影响在小带轮上的包角。张紧轮的轮槽尺寸与带轮 的相同。
链传动概述
组成:主、从动链轮、传动链 工作原理:链传动是依靠链轮轮齿与链节的啮合来传递运动 和动力。
一、链传动的特点和应用
◆ 与带传动相比,链传动能保持准确的平均传动比,径向压轴力小,适于低
速情况下工作。 ◆ 与齿轮传动相比,链传动安装精度要求较低,成本低廉,可远距离传动。 ◆ 链传动的主要缺点是不能保持恒定的瞬时传动比。 ◆ 链传动主要用在要求工作可靠、转速不高,且两轴相距较远,以及其它不 宜采用齿轮传动的场合。
机械设计基础第8章 带传动
第8章带传动带传动是一种常用的机械传动形式,它的主要作用是传递转矩和转速。
大部分带传动是依靠挠性传动带与带轮间的摩擦力来传递运动和动力的。
本章将对带传动的工作情况进行分析,并给出带传动的设计准则和计算方法。
着重讨论V带传动的设计计算,同时对同步带传动作了简介。
8.1 概述如图8.1所示,带传动一般是由主动轮1、从动轮2、紧套在两轮上的传动带3及机架4组成。
当原动机驱动带轮1(即主动轮)转动时,由于带与带轮间摩擦力的作用,使从动轮2一起转动,从而实现运动和动力的传递。
图8.1 带传动8.1.1 带传动的类型1.按传动原理分(1)摩擦带传动靠传动带与带轮间的摩擦力实现传动,如V带传动、平带传动等;(2)啮合带传动靠带内侧凸齿与带轮外缘上的齿槽相啮合实现传动,如同步带传动。
2.按用途分(1)传动带传递动力用;(2)输送带输送物品用。
本章仅讨论传动带。
3.按传动带的截面形状分(1)平带如图8.2 a)所示,平带的截面形状为矩形,内表面为工作面。
常用的平带有胶带、编织带和强力锦纶带等。
(2)V带V带的截面形状为梯形,两侧面为工作表面,如图8.2 b)所示。
传动时,V带与轮槽两侧面接触,在同样压紧力F Q的作用下,V带的摩擦力比平带大,传递功率也较大,且结构紧凑。
(3)多楔带如图8.3所示,它是在平带基体上由多根V带组成的传动带。
多楔带结构紧凑,可传递很大的功率。
(4)圆形带如图8.4所示,横截面为圆形,只适用于小功率传动。
(5)同步带带的截面为齿形,如图8.5所示。
同步带传动是靠传动带与带轮上的齿互相啮合来传递运动和动力,除保持了摩擦带传动的优点外,还具有传递功率大,传动比准确等优点,多用于要求传动平稳、传动精度较高的场合。
图8.2 平带和V带图8.3 多楔带图8.4 圆形带图8.5 同步带8.1.2 带传动的特点和应用带传动属于挠性传动,传动平稳,噪声小,可缓冲吸振。
过载时,带会在带轮上打滑,从而起到保护其他传动件免受损坏的作用。
第八章 带传动
§4 V带轮设计 自学 自学思考题: 1. 带轮槽角与V带楔角是否相等?若不等,那个大?那个小?为 什么? 2.V带轮轮毂宽度是依据什么来确定的?它与轮缘宽度之间有无
必然联系? §5 V带传动的张紧装置
自学 自学思考题:V带轮张紧有哪些方法?其应用场合如何?
第八章 带传动
主要内容:
1.带传动的工作原理、特点和应用。 2.带传动的受力分析、应力分析、弹性滑动和打滑。 3.V带传动的设计准则和设计方法。
重点和难点:
1.带传动的工作原理。 2.平带传动与V带传动的特点比较。 3.欧拉公式的物理意义。 4.弹性滑动与打滑的本质。 5.V带传动的设计计算。
§1 概述 1、 带传动的工作原理
§6 V带的适用于维护(补充) 1) 正确安装带轮; 2) 轴应有足够的刚度; 3) 带在轮槽中应有正确位置; 4) 成组使用的V带长度应经过挑选,长短不应相差太大; 5) 避免新、旧带混用,以免使带受力不均; 6) V带不可与油接触,避免在阳光下直接暴晒; 7) 避免在有爆炸危险的场合使用。
接触弧 有效拉力↑→滑动弧↑→ε↑ 打滑:当静弧等于零时,带与带轮之间产生全面的相对滑动,这 种现象称为打滑。必须避免。
主动轮小与从动轮→主动轮接触弧长小于从动轮→打滑首先发 生于主动轮上(小轮上)
§3 V带传动的设计计算 1、 失效形式、设计准则和单根V带的许用功率 1. 失效形式:过载打滑、疲劳断带 2. 设计准则:保证带传动不打滑且具有一定的疲劳强度或寿 命。 3. 单根V带的许用功率 在实验条件下确定单根V带得P0(基本额定功率) 实验条件 实验条件与实验条件不相同时→修正法(系数法) 2、 原始数据及设计内容 原始数据:P、n1、n2(或n1、i),工作条件和要求等。 设计内容:带的型号、长度、根数、带传动中心距、带轮直径及 结构。 3、 设计步骤和方法 1. 确定计算功率Pca Pca=KA×P ∟工作情况系数 T8—6∕p151 2. 选择带的型号 Pca 、N1 → F8-8, F8-9∕p152→ 型号 注意:若Pca、n1坐标交点恰好位于两种型号交接区域时,应两种 型号同时计算,比较最后结果,取优者。 3. 确定主动轮直径D1、计算从动轮直径D2 型号→ T8-3∕p145, T8-7∕p153→ D1≥ddmin(可初选D1=min) 验算带速:V=πD1n1∕60×1000 , 应使Vmin≥5m∕S,且: 普通V带: Vmax≤25~ 30m∕S 窄V带: Vmax≤30~40m∕S D2≈iD1 按F8-7∕p153 圆整
第八章 带传动
取主动轮一端的带为分离体, 其受力:F1、F2、N、Ff
TO1 0 : Ff
d p1
2 F f F1 F2 Fe
F2
d p1 2
F1
d p1 2
Ff
0
N O 1
有效拉力
Fe F1 F0 2 F2 F0 Fe 2
Fe——是由功率P(外载) 决定的, P Fe Ff ——是有限的,当F0和f 一定时, Ffmax= f N
Fc qv2 离心拉应力为: c A A
v c
3.弯曲应力:
c
2Байду номын сангаас
b2
b E
h h E dp dd
d d b
b1
b1 b 2
式中:h为带的高度
max
1
(P141表8-1)。
min
结论: 1)带是在变应力作用下工作——疲劳破坏。 2)最大应力发生在带的紧边开始绕上小带轮处,其值为:
越好吗?
四. 带传动弹性滑动:
1.弹性滑动的产生机理: 带受拉力产生弹性变形,而拉力不同弹 性变形量也不同。 1) 带的紧边在A1点绕上主动轮时: 带的受力:F1 带的速度:v = v1 当带由A1B1运动时: 带拉力:F1F2 减小 带的弹性变形量减小(带收缩), 即带一边随带轮前进,一边又向后收 缩,带的速度:v v1 2)从动轮上:正好相反,即: v v2 即有: v1 B
§8-1
概
述
一.带传动的组成及工作原理:
1.组成:主动轮1、从动轮2、传动带3
2.工作原理:靠带与带轮之间的摩擦力来传递运动和动力。
工作前:带已受到预拉力的作用,使带与带轮接触面间产生压力, 工作时:主动轮通过摩擦力使带运动,带通过摩擦力使从动轮转动。
带传动设计
dl Fc’
r
dα
式中,q为传动带线密度,kg/m;
dα
v为带速,m/s。
2
离心力只发生在带作圆周运动的部分,
Fc
F1
但由此引起的拉力却作用在带的全长。
3.带传动的极限有效拉力Felim及其影响因素
dFN
F
' c
F sin
d
2
(F
dF) sin
d
2
0
f dFN
F
cos d
2
(F
dF) cos d
2
0
dF sin d 0,sin d d ,
2
22
cos d
2
1, F 'C
qv2d
代入,则
F
dF qv2
fd
两端积分
F1
F2 F
dF qv2
1
0
f d
可得:
F1 qv2 F2 qv2
e f1
低速时取v=0,则带在带轮上即将打滑时有:
F1 e f1 (Euler公式) F2
是带传动的失效形式,设计时必须避免; 打滑
发生在带和带轮的全部接触弧上。
B αβ11
n1
A
C
n2
α2
β2
D
弹性滑动
B n1
βα1 1
A
C
α2
β2
D
打滑
四)滑动率和传动比
v1
=
πd1n1 60×1000
m
/
s
v2
=
πd2n2 60×1000
m
/
s
总有:v2 < v1
定义: ε = v1 - v2 = d1n1 - d2n2
带传动
沈阳航空工业学院第八章带传动§8-1带传动类型及应用§8-2带传动的受力分析§8-3带的应力分析§8-4 带传动的打滑、弹性滑动和传动比§8-5 V带传动的计算§8-6 V带的张紧装置一、组成主动带轮带从动带轮二、工作原理:摩擦带:原动机驱动主动带轮转动,通过带与带轮之间产生的摩擦力,使从动带轮一起转动,从而实现运动和动力的传递。
啮合带:靠带与带轮的啮合传递运动和动力。
三、常见带传动的类型◆摩擦带传动◆啮合带传动平带传动V带传动多楔带传动§8-1 带传动的类型和应用四、摩擦带传动的特点优点:①因带是弹性体,可以缓冲和吸振,传动平稳、噪声小;②当传动过载时,带在带轮上打滑,可防止其他零件损坏;③可用于中心距较大的传动;④结构简单、装拆方便、成本低。
其主要缺点是:①传动比不准确;②外廓尺寸大;③传动效率低;④带的寿命短;⑤需要张紧装置;五、V带与带轮的结构V带有普通V带、窄V带、宽V带、汽车V带、大楔角V带等。
其中以普通V带和窄V带应用较广。
1、V带的结构标准V带都制成无接头的环形带,横截面结构如下:V带的结构2、带的型号:我国普通V带和窄V带都已标准化。
按截面尺寸由小到大,普通V带可分为Y、Z、A、B、C、D、E七种型号;窄V带可分为SPZ、SPA、SPB、SPC四个型号。
在同样条件下,截面尺寸大,则传递的功率就大。
3、带的主要参数◆节线:当带纵向弯曲时,在带中保持原长度不变的周线。
◆节面:由全部节线构成的面称为节面。
◆节宽b p :长度不变层。
所在位置称为中性层。
节面节线◆基准直径d d :V 带装在带轮上,和节宽b p 相对应的带轮直径。
◆基准长度L d :V 带在规定的张紧力下,位于带轮基准直径上的周线长度。
它用于带传动的几何计算。
表8-2 普通V带的基准长度系列及长度系数(部分)基准长度L d/mm长度系数KY Z A B C D E2500 1.09 1.030.932800 1.11 1.050.950.833150 1.13 1.070.970.863550 1.17 1.090.990.894000 1.19 1.13 1.020.914500 1.15 1.040.930.90 5000 1.18 1.070.960.92 5600 1.090.980.95 6300 1.12 1.000.97 7100 1.15 1.03 1.00§8-2 带传动的受力分析一、带传动中的力分析1)带不运转时初拉力F0。
第8章---带传动
单根带所能传递的有效拉力为:
传递的功率为:
为保证带具有一定的疲劳寿命,应使:
1.单根V带的基本额定功率P0
σ1 ≤ [σ] –σb1 - σc
代入得:
※在 α=π,Ld为特定长度、平稳的工作条件下,所得 P0 称为单根普通V带的基本额定功率,见表8-4。P.151
东莞理工学院专用
称带与带轮接触弧的总摩擦力Ff为有效拉力Fe,即带所能传递的圆周力:
Fe= F1 - F2
且传递功率与有效拉力和带速之间有如下关系:
2、有效拉力(有效圆周力)及传递功率
F1
Ff
F2
紧边
松边
主动轮
n1
Ff =F1 - F2
当非满负荷工作时,此摩擦力分布范围并未充满整个接触弧。
东莞理工学院专用
*
二、带传动的最大有效拉力Fec及其影响因素
顶宽b 6 10 13 17 22 32 38
节宽 bp 5.3 8.5 11 14 19 27 32
高度 h 4 6 8 11 14 19 25
§8-6* 同步带传动简介
内容提要
东莞理工学院专用
*
§8-1 概述
一. 带传动的组成 及工作原理
1 组成:主动轮1、从动轮2、环形带3。
2 工作原理:安装时带被张紧在带轮上,产生的初拉力使得带与带轮之间产生压力。主动轮转动时,依靠摩擦力拖动从动轮一起同向回转。
3
1
n2
打滑将使带的磨损加剧,从动轮转速急速降低,带传动失效,这种情况应当避免。
避免打滑的条件: Fe ≤ Fec
1)相同点:都是滑动;2)不同点:本质不同:前者是一种固有特性,不可避免;后者是一种失效,可以避免。发生原因不同:前者是带两边的拉力差引起的,后者是过载导致。发生区域不同:前者是在局部接触弧上,后者是在整个接触弧上。3)联系:弹性滑动区域的量变导致打滑的质变
机械设计 带传动
第八章带传动重点:带传动的原理受力分析应力分析带传动的设计过程难点:带传动的受力分析组成:主动轮,从动轮和环行带主要应用场合:中小功率传动系统(目前,国外的带式输送机已有飞速发展,如:Austrilia某带式输送机的单机长度已达34公里;荷兰鹿特丹多机(17段),达206公里)本章主要内容▪带传动的特点和工作原理;▪带传动的类型及其特点;▪带传动的受力情况及应力分析;▪带传动的运动分析(弹性滑动、打滑与传动比);普通V带传动的设计。
重点难点▪带传动的受力情况及应力分析;▪带传动的运动分析(弹性滑动、打滑与传动比);【主要内容】▪带传动的特点和工作原理;▪带传动的类型及其特点;▪带传动的受力情况及应力分析;▪带传动的运动分析(弹性滑动、打滑与传动比);▪普通V带传动的设计。
【重点难点】▪带传动的受力情况及应力分析;▪带传动的运动分析(弹性滑动、打滑与传动比);第一节概述带传动是通过中间挠性件(带)传递动力和运动的。
按工作原理可分为摩擦传动和啮合传动两种。
本章主要介绍第一种——摩擦带传动1.带传动的组成固联于主动轴上的带轮1(主动轮);固联于从动轴上的带轮3(从动轮);紧套在两轮上的传动带2。
2.传动原理•摩擦传动:当主动轮转动时,由于带和带轮间的摩擦力,便拖动从动轮一起转动,并传递动力(平带和V带传动)。
•啮合传动:当主动轮转动时,由于带和带轮间的啮合,便拖动从动轮一起转动,并传递动力(同步带传动)。
3.带传动的特点优点:适用于较大中心距的传动;能缓和载荷冲击——带有良好的弹性过载时,带在轮面上打滑,起保护作用;运行平稳,无噪音;结构简单,成本低。
缺点:传动的外廓尺寸较大;传动比不稳定;带的寿命比较短(与齿轮传动相比)传动效率低,一般在0.94~0.98之间带传动的类型:摩擦带传动:(按带的剖面形状)平带;V带;圆带;多楔带啮合传动:同步齿形带带传动的型式:开口传动交叉传动半交叉传动所以,往往应用在功率小于等于700千瓦,带速在5~25米每秒的机械中。
第八章 带传动
二、带传动的最大有效拉力Fec及其影响因素
• 忽略带作圆运动时离心力,取主动轮上一小段带为分离体
受力分析如下:Fy 0 :
1 d 2
1 1 fdN F cos d ( F dF ) cos d 2 2 1 若取: cos d 1 2 则:fdN dF (b)
e f 1 ……(4) Fec 2 F0 f e 1
• 分析:由(4)式可知最大有效拉力与下列因素有关 # 预紧力——F0 ↑ Fec ↑,但F0 过大,摩擦力加剧,缩短带寿命。 F0 过小,带传动的工作能力不能充分利用 # 包角——α ↑ Fec ↑,为增大α应把紧边放在下面,松边在上面
# 摩擦系数——f ↑ Fec ↑,V带比平带的f大
受力分析小结
F1 F2 2F0 (1)
Ff F1 F2 Fe (2)
Fe F1 F0 2 F F2 F0 e 2
预紧力F0 紧边拉力F1 松边拉力F2 摩擦力的总合Ff
有效拉力Fe
……(3) 欧拉公式 最大有效拉力Fec 带传动时,当带有打滑趋 势时,摩擦力达到极限, 则带传动的有效拉力达到 最大有效拉力
计算压轴力Fp
d d 2 d d1 57.5 120 a
Pca z ( P0 P0 ) K K L
Z<10
K ——包角系数,查表8-8 K L ——长度系数,查表8-2
Pca z ( P0 P0 ) K K L
P0 ——单根带基本额定功率,查表8-5a或8-5c P0 ——额定功率的增量(计入传动比的影响),
查表8-5b或8-5d •预紧力:F0 500 Pca ( 2.5 1) qv2
zv K
带传动
㈦、轴上受力 Fp a、确定带的预紧力F0
F0
500
Pca( 2.5 vz k
k
)qc v 2
qc 查表8-3
b、轴上受力 Fp
Fp
2ZF0
cos 2
2ZF0
sin
2
㈧、V带轮设计
由带轮直径D的大小决定带轮结构,参见图8-1,图8-14a-d.
提醒:轮槽角 φ (32~38°) ,不等于带的楔角 (40°)
的摩擦系数是不同的。
平带的摩擦系数为f, V带的摩擦系数为f‘,如图示
2N sin Q 即
2
2N
Q
sin
2
摩擦力
Ff
2Nf
Q
sin
f
f Q
2
式中:f’称为当量摩擦系数。且
f
f
sin
f
,
2
表明V带传递功率大于平带。
4、设计准则
带传动的主要失效形式-----打滑和带的疲劳破坏 带传动的设计准则------在保证带传动不打滑的条件下,具有
0
F0 A
A-带断面面积
紧边: ,
1
F1 A
松边:
2
F2 A
2).离心应力: c
Fc A
qv 2 A
q为单位长度质量,㎏/m。离心应力作用在带全长上, 沿整个带均部。
3).弯曲应力(小轮大于大轮):
发生在绕过带轮处, b
E
h D
;
E:为弹性模数,h:为带高,D:为弯曲直径。
为避免弯曲应力过大,带轮直径不能太小,规定值p155。
机械设计基础第八章
, 当量摩擦系数 f′>f, V带传动能力更大。 带传动能力更大。 带传动能力更大 注意: 带楔角为 带楔角为40° 注意:V带楔角为 ° 带轮槽角小于40° 带轮槽角小于 °。
带传动概述
二、带传动的结构(阅读) 带传动的结构(阅读) 机构传动中应用最广的是普通V带传动。(窄 带 机构传动中应用最广的是普通 带传动。(窄V带、宽V带、大 带传动。( 带 楔角V带 汽车V带 楔角 带、汽车 带) 普通V带是标准件 制成无接头的环形, 带是标准件, 普通 带是标准件,制成无接头的环形,按剖面尺寸大小分为 Y、Z、A、B、C、D、E七种型号,剖面尺寸由小到大。注意: 七种型号, 、 、 、 、 、 、 七种型号 剖面尺寸由小到大。注意: 节宽b 节径d 和基准直径d 基准长度L 节宽 p、节径 p和基准直径 d,基准长度 d。
带传动的几何计算及基本理论
五、带传动的主要失效形式及设计准则 1、主要失效形式 、 (1)打滑。当传递的圆周力 超过了带与带轮之间摩擦力 )打滑。当传递的圆周力F超过了带与带轮之间摩擦力 总和的极限时,发生过载打滑,使传动失效。 总和的极限时,发生过载打滑,使传动失效。 (2)疲劳破坏。传动带在变应力的长期作用下,因疲劳而 )疲劳破坏。传动带在变应力的长期作用下, 发生裂纹、脱层、松散、直到断裂。 发生裂纹、脱层、松散、直到断裂。 2、设计准则 、 在不打滑的前提下,使带具有一定的疲劳强度和寿命。 在不打滑的前提下, 六、带传动的设计条件和传动功率 根据设计准则,带传动应满足以下两个条件: 根据设计准则,带传动应满足以下两个条件: 1、不打滑条件 、 1000 P 1 F1 ) F= F f lim = F1 F2 = F1 = F1 (1 F≤Fflim fα 1 e fα 1 V
带传动设计
带相对1轮 的滑动方向
δ2 ι
B β1 α1
n1 F2
A′A
F1
ι δ1
v
C
c'
F2
n2
α2 β2
F1 D
4.弹性滑动对传动的影响 1)降低传动效率(V带传动效率η =0.91~ 0.96),使带与
带轮摩损增加和温度升高。 2)使从动轮的圆周速度v2低于主动轮的圆周速度v1,
即: v2< v1 。
缺 点
②传动效率较低,寿命较短,外廓尺寸较大;
③由于需要施加张紧力,轴和轴承受力较大。
应用:用于中心距较大,传动比无严格要求的场合,在多级 传动系统中通常用于高速级传动,如机床中由电动机到主轴 箱的第一级传动。
2.啮合型带传动
兼有带传动和啮合传动的优点,传动比准确;效 率高(98~99.5%);传动比较大(可达12~20),允
F
cos d
2
(F
dF) cos d
2
0
dF sin d 0,sin d d ,
2
22
cos d
2
1, F 'C
qv2d
代入,则
dF fd
F qv2
两端积分
F1 dF
1
fd
F2 F qv2 0
可得: F1 qv2 e f1
拉力差,即:紧边拉力F1大于松边拉力F2,则带在紧
边的伸长量δ 1大于松边的伸长量δ 2。
δ2 ι
v
C
B n1 F2
F2
n2
α1
α2
带相对1轮 的滑动方向
A
F1
F1
D
第八章带传动
FN
1
附件2 带传动主要几何参数的计算
2
附件3 柔韧体的欧拉公式的推导
3
4
附件4 离心拉应力公式的推导
5
附件5 带上弯曲应力公式的推导678910
11
12
13
14
15
第三篇 机械传动
一、机器的组成
机器通常由动力机、传动装置和工作机组成
二、传动装置
1=1800-
0.5(d d 2 d d 1 ) sin 2 a
0 0
0.5(d d 2 d d 1 ) 2 a
d d 2 d d 1 180 1 180 180 a
d d 2 d d 1 180 2 180 180 a
38
④求中心距a和带的基准长度Ld
a) 初选a0
0.7(dd1+dd2)≤a0≤2(dd1+dd2)
b) 由a0定计算长度(开口传动) Ld 0
(dd 2 dd1 ) 2 2a0 (dd1 dd 2 ) 2 4a0
c) 按表8-2定相近的基准长度(节线长度):Ld d) 由基准长度Ld求实际中心距
弹性滑动是带传动 中不 可避免的现象,是正常 工作时固有特性 弹性滑动会引起下列后果: (1)从动轮的圆周速度总是落后于主动轮的圆 周速度 (2)损失一部分能量,降低了传动效率,会使 带的温度升高;并引起传动带磨损
30
打滑造成带的严重磨损并使带的运动处于不稳定 状态
带在大轮上的包角大于小轮上的包角,所以 打滑总是在小轮上先开始的 打滑是由于过载引起的,避免过载就可以避 免打滑
表8-4a,
第八章带传动v讲解学习
Fe≤Femax 二、带的应力分析
1.拉应力
紧边σ1=F1/A
松边σ2=F2/A
2.弯曲应力σb
小带轮σb1=2Eha/dd1 大带轮σb2=2Eha/dd2
3.离心应力 σc=qυ2/A
4.应力线图
1)弯曲应力值较大
且ha
σb ;
dd σb
————σb1>σb2
2)带处于变应力状态,带的破坏属于疲劳强度问 题
(4×700)=1975mm
查表8-2取带的基准长度Ld=2000mm 3)确定中心距
a= a0+(Ld- Ld')/2=700+(2000-1975) /2=712.5mm
安装时所需的最小中心距
amim= a-0.015 Ld=712.50.015×2000=682.5mm
amax= a+0.030Ld=712.5+0.03×2000=772.5mm
试设计某机床用的普通V带传动,已知电动机 功率P=55KW,转速n1=1440r/min,传动 比i=2.2,要求职两带轮轴中心距离不大于 800mm,每天工作16h.
解:
1.选择带的类型:按题目取普通V带
2.选择普通V带型号
查表8-6,取工况系数KA=1.2 计算功率Pca=KAP=1.2×5.5=6.6kW
根据Pca和n1查图8-8,选取A型V带
3.确定带轮基准直径dd1、dd2 线1)下选,取取小dd带1=轮11基2m准m直径dd1。因Pca和n1交点在虚
2)验算带速
υ=πdd1 n1/(60×1000) =π×112×1440/60000=8.44m/s
合适
3)确定大带轮基准直径dd2。 取ε=0.015
带传动1
计算内容
计算结果
Pca 4.4kW
SPZ型
3、确定带轮 直径
4、确定带长 和中心距
5、验算包角
6、计算带根 数 7、计算预紧 力
8、计算压轴 力 9、带轮结构 设计
dd1 80mm
dd2 304mm
Ld 1400mm
a 373mm
合适 3根
F0 221.37N
Fp 1261.5N
dd2
a
dd1
弧度
带长
L AB BD DC CA
L ( ) dd 2 ( ) dd1 2a cos
2
2
2
L 2 (dd1 dd 2 ) (dd 2 dd1) 2 2a cos 2
dd2 dd1 , cos 1 1 ( )2
2 2a
2 22
L
2a
2
2
2
FV F平
楔形增压原理
传递的有效圆周力大约是平带的3倍 V带应用广泛
普通V带有包布形和 切边形两种
中性层
普通V带弯曲时,顶胶伸长、底胶缩短,中间长 度不变——中性层,节面(对应顶面和底面) 节面宽bp,h/bp相对高度,普通V带 h/bp=0.7 与bp相对应的直径为带轮直径D,(基准直径)
机器人关节
返回
按照传动比分类:
按照轴的位置和转向分类:
按照传动轮的数量分类:
四、带传动的几何尺寸计算 包角
1
sin dd 2 dd1 2 2a
dd2 dd1 a
1
dd 2
a
dd1
,
dd2 dd1
2
a
1
180
57.5
dd
第8章 带传动
§8-2 带传动的工作情况分析
§8-2 带传动的工作情况分析
一、受力分析 带传动尚未工作时, 带传动尚未工作时,带所受的 拉力称为初拉力 初拉力, 表示。 拉力称为初拉力,用 F0 表示。 带传动工作时,一边拉紧, 带传动工作时,一边拉紧,称 为紧边;另一边放松,称为松边。 紧边;另一边放松,称为松边。 松边 变形 紧边 松边 变形量 ∆l1 ∆l2 力 力变化量 ∆F1=F1-F0 ∆F2=F0-F2
普通V §8-3 普通V带传动设计
概 述
类型:V带有普通V带、窄V带、宽V带、联组V带等多种类型,其 类型: 带有普通V 联组V带等多种类型, 中普通V带应用最广,本节主要介绍普通V带传动。 中普通V带应用最广,本节主要介绍普通V带传动。 bp 包布 (1)标准普通 带 )标准普通V带 带已经标准化, ♦ 普通 V 带已经标准化 , 是 无接头的环形带。 无接头的环形带。 ♦主要参数
带传动概述4 带传动概述4
概 述
4.带传动的特点 .带传动的特点 优点: 适用于中心距较大的传动, 优点: 1. 适用于中心距较大的传动, 2. 带有弹性,能缓冲减振,运转平稳,噪音小; 带有弹性,能缓冲减振,运转平稳,噪音小; 3. 摩擦带传动过载时带与带轮打滑,以此保护其他零件。 摩擦带传动过载时带与带轮打滑,以此保护其他零件。 4. 结构简单,成本低; 结构简单,成本低; 缺点:1. 带的寿命短,在有油的场合,寿命更短; 缺点: 带的寿命短,在有油的场合,寿命更短; 2. 对摩擦带传动,传动比不恒定; 对摩擦带传动,传动比不恒定; 3. 效率较低。 效率较低。 5.带传动的应用 .带传动的应用 在各类机械中应用广泛, 在各类机械中应用广泛,但摩擦带传动不适用于对传动比有精确 要求的场合。 要求的场合。
机械设计 第8章-带传动 (1)
单根带的基本额定功率P0 :
v 1 v 1 v P0 Fec F1 (1 fV ) 1 A(1 fV ) 1000 1000 1000 e e
表8-4a给出了P0值——在 α=π,Ld为特定长度、载荷平稳的条件 下计算出。
15
第八章 带传动
型 小带轮基 号 d / mm d1
2 F0 F1 F2
6
第八章 带传动
取主动轮一端带为分离体: ΣMo1=0 Ff
D1 D D F2 1 F1 1 0 2 2 2
F2
F f F1 F2
n1
带传动的有效拉力等于摩擦力总和:
Ff
F1
Fe F f Fe F1 F2
有效拉力与传递功率关系: P Fe v 1000 2 F0 F1 F2 F1 F0 Fe / 2
Q
N’
平带传递的摩擦力:F f V带传递的摩擦力:
Nf Qf
Ff 2 N ' f
Ff 2 N ' f Q sin
Q N ' sin 2 2
2 f Q. fV
10
第八章 带传动
紧边拉应力: 1 F1 / A (MPa) 松边拉应力: 2 F2 / A (MPa)
16
第八章 带传动
(二) 单根带的额定功率Pr 实际工作条件与特定条件不同时,应对P0值加以修正,得Pr。
P ( P P ) K a K L r 0 0
Kα 包角系数 ——考虑α≠180˚时对传动能力的影响,表8—5 KL 长度系数 ——考虑带长不为特定长度时对传动能力的影响,表8—2 ∆P0 功率增量 ——考虑在i≠1,单根V带的功率增量,表8-4b
带传动的工作原理及特点
第八章带传动8.1 概述8.1.1 带传动的工作原理及特点1.传动原理——以张紧在至少两轮上带作为中间挠性件,靠带与轮接触面间产生摩擦力来传递运动与动力2.优点:1)有过载保护作用 2)有缓冲吸振作用 3)运行平稳无噪音 4)适于远距离传动(amax=15m) 5)制造、安装精度要求不高缺点:1)有弹性滑动使传动比i不恒定 2)张紧力较大(与啮合传动相比)轴上压力较大 3)结构尺寸较大、不紧凑 4)打滑,使带寿命较短 5)带与带轮间会产生摩擦放电现象,不适宜高温、易燃、易爆的场合。
8.1.2主要类型与应用a.平型带传动——最简单,适合于中心距a较大的情况b.V 带传动——三角带c.多楔带传动——适于传递功率较大要求结构紧凑场合d.同步带传动——啮合传动,高速、高精度,适于高精度仪器装置中带比较薄,比较轻。
图6-1 带传动的主要类型8.1.3带传动的形式1、开口传动——两轴平行、双向、同旋向2、交叉传动——两轴平行、双向、反旋向3、半交叉传动——交错轴、单向◆带传动的优点:①适用于中心距较大的;②传动带具有良好的弹性,能缓冲吸振,尤其是V带没有接头,传动较平稳,噪声小;③过载时带在带轮上打滑,可以防止其它器件损坏;④结构简单,制造和维护方便,成本低。
◆带传动的缺点:①传动的外廓尺寸较大;②由于需要张紧,使轴上受力较大;③工作中有弹性滑动,不能准确地保持主动轴和从动轴的转速比关系;④带的寿命短;⑤传动效率降低;⑥带传动可能因摩擦起电,产生火花,故不能用于易燃易爆的场合。
8.2 V带和带轮的结构V 带有普通V 带、窄V 带、宽V 带、大楔角V 带、联组V 带、齿形V 带、汽车V 带等多种类型,其中普通V 带应用最广。
8.2.1 V 带及其标准 如图所示V 带由抗拉体、顶胶、底胶和包布组成8.2.2带轮结构1、组成部分:轮缘、轮辐、轮毂2、结构形式:实心式、腹板式、孔板式、椭圆轮辐式3、材料:灰铸铁(HT150、HT200常用)、铸钢、焊接钢板(高速)、铸铝、塑料(小功率)普通V 带轮轮缘的截面图及其各部尺寸见表8.3 带传动的工作情况分析8.3.1带传动的受力分析工作前 :两边初拉力Fo=Fo 工作时:两边拉力变化:①紧力 Fo →F1;②松边Fo →F2 F1—Fo = Fo —F2F1—F2 = 摩擦力总和Ff = 有效圆周力Fe所以: 紧边拉力 F1=Fo + Fe/2松边拉力 F2=Fo —Fe/28.3.2 带传动的最大有效圆周拉力及其影响当带有打滑趋势时:摩擦力达到极限值, 带的有效拉力也达到最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 带传动
8.1 概述
一、带传动的工作原理
• 组成
传动带
从动带轮
主动带轮
• 工作原理:当原动机驱动主动轮转动时,因带和带轮间的摩 擦(啮合),带动从动轮一起转动,并传递一定动力.靠摩擦 力传递运动 • 特点:结构简单,传动平稳,缓冲吸振,不受中心距限制, 具有过载保护(过载打滑,有安全保险作用) 。但不能保证准确 传动比,寿命较短
• 从动轮速度的降低量 用滑差率ε表示
v1 v2 100% v1 或:v2 (1 )v1 v1 ; v2 60 1000 60 1000 d p2 n1 i n2 d p1 (1 )
• 但实际应用中,由于ε很
小,可忽略,即:
n1 d p 2 d d 2 i n2 d p1 d d 1
三 传动类型选择 1. 功率与效率高 功率取决于传动原理,承载能力,载荷分布,工作速度, 制造精度,机械效率,发热情况 (带传动不宜用于大功率,蜗杆传动传递功率不宜过大, 齿轮传动应用广) 效率是评定传动性能的主要指标之一,其对立面为功率 损失(蜗杆传动效率最低) 2. 速度(一般速度范围) 主要运动特性之一,最大圆周速度和最大转速 3. 外廓尺寸,质量和成本 传动比与外廓尺寸有关 成本是↑则Fe ↑ ,而Fe ↑则F1和F2的拉力差增大,该差值的增大 反映了带和带轮之间摩擦力的变化。若其他条件不变,这个差值有 个极限,该极限将制约了带传动的能力。若超过这个极限,带传动 将会失效,即打滑出现。
二、带传动的最大有效拉力Fec及其影响因素
• 忽略带作圆运动时离心力,取主动轮上一小段带为分离体
1 180
小带轮上的总摩擦力相应地小于大带轮上的总摩擦力。
打滑只可能发生在小带轮上
弹性滑动与打滑的区别
弹性滑动 打滑
发生 带的弹性变形,传动中紧边与松 过载,需要传递的圆周 原因 边的拉力差,引起带在轮面的弹 力大于摩擦力引起 性滑动 现象 局部带在局部轮面上,即滑动弧 整个带在带轮面上发生 上 弹性滑动
受力分析如下:Fy 0 :
1 d 2
1 1 fdN F cos d ( F dF ) cos d 2 2 1 若取: cos d 1 2 则:fdN dF (b)
d
Fx 0 : 1 1 dN F sin d ( F dF ) sin d 2 2 1 1 若取: sin d d 2 2 1 忽略:dF sin d 2 则:dN Fd (a )
f ——摩擦系数,对V带,采用fV
e f 1 ……(4) Fec 2 F0 f e 1
• 分析:由(4)式可知最大有效拉力与下列因素有关 (1)预紧力——F0 ↑ Fec ↑,但F0 过大,摩擦力加剧,缩短带寿命。 F0 过小,带传动的工作能力不能充分利用 (2)包角——α ↑ Fec ↑,为增大α应把紧边放在下面,松边在上面
F1 F2e f
e f 1 ……(4) Fec 2 F0 f e 1
三、带的应力分析
• 离心应力:
(表8-4)
qv2 c A
q——带单位长度质量,kg/m
2
c
V——带速,m/s
v
d d 1n1
60 1000
A——带截面积,mm(表8-1)
b1
1
b2
F1 F2 • 拉应力: 1 ; 2 A A h • 弯曲应力: b E dd
E——带的弹性模量
h——带的高度,mm(表8-1)
dd——带轮直径,mm
2
c
• 结论:带是处于变 应力下工作的,因此 在工作一定时间后将 发生疲劳破坏。其中 最大应力位于带进入 小轮处。
b1
1
b2
max c 1 b1
四、带的弹性滑动和打滑
1、 弹性滑动:由于带的弹性变形而引起的带与带轮间的相对 运动。
第三篇
机械传动
一 传动的重要性 1. 增速或减速 2. 速度调整 3. 实现多台工作机工作 4. 工作安全及维护方便 二 传动的分类 按工作原理分: 机械传动(包括带传动、绳传动、摩擦轮传动、齿轮传 动、链传动、螺旋传动和谐波传动等),液压传动,气 压传动,电传动 性能比较见表1 (液压传动输出力大、质量轻、体积小;运动平稳;可 实现无级调速;易实现自动控制;可实现过载保护实现 直线运动比机械传动简单。) 机械传动: 按传力方式:摩擦传动(带,摩擦轮),啮合传动(齿轮, 同步带) 按传动比:定传动比传动,变传动比传动
(3)摩擦系数——f ↑ Fec ↑,V带比平带的f大
受力分析小结
F1 F2 2F0 (1)
Ff F1 F2 Fe (2)
Fe F1 F0 2 F F2 F0 e 2
预紧力F0 紧边拉力F1 松边拉力F2 摩擦力的总合Ff
有效拉力Fe
……(3) 欧拉公式 最大有效拉力Fec 带传动时,当带有打滑趋 势时,摩擦力达到极限, 则带传动的有效拉力达到 最大有效拉力
8.2 带传动的工作情况分析
一、带传动的力分析
小 轮 给 带
大轮给带
带 给 大 轮
•工作时:带与轮间产生摩擦力Ff • 未工作时:预紧力F0套在两轮上 上边:两轮给带Ff的使其 带绕上主动轮的一边被拉紧,叫做紧边 放松,为松边,即: 带绕上从动轮的一边被放松,叫做松边 F0→F2——松边拉力 • 以带为分离体,可以看出工作以后: 下边:两轮给带Ff的使其
1、失效形式:打滑,疲劳破坏 2、设计准则:在保证不打滑条件下,具有一定疲劳强度与寿命 3、单根带允许传递的基本额定功率P0(kW)
• 保证不打滑的条件是
Fe Fec
1 ) 1 A(1 f v 1
f v
Fe F1 F2 ; F1 F2e f v e e (2)代入(1)得: • 保证带寿命的疲劳强度条件: max 1 b1 c [ ] 1 Fec ([ ] b1 c ) A(1 f ) (3) e 则: 1 [ ] b1 c (2)
F1
d p1
F2
d p1
0
• 有效拉力Fe:带和带轮接触面上各点摩擦力 的总和。
• 带传动的功率P
Fe v P ; (kW ) 1000 式中:Fe ~ 有效拉力(N);v ~ 带速(m ) s
• 紧边与松边拉力:
将(2)式代入(1)式可得:
Fe F1 F0 2 Fe F2 F0 2
多楔带传动:兼有平带与 V带的优点,柔性好,摩 擦力大,传递的功率高。 主要用于传递功率较大结 构要求紧凑的场合
三、V带的类型与结构
1、类型
2、结构:制成无接头的环形,截面结构如下: ——顶胶 ——抗拉体 ——底胶 ——包布 帘布芯:制造方便 绳芯:柔韧性好,抗弯强度高 适用于转速较高,载荷不大和 带轮直径较小的场合。
帘布芯结构
3、型号 绳芯结构
• 普通V带——h/ bp =0.7,分为:Y.Z.A.B.C.D.E七种型号
• 窄V带——h/ bp =0.9,分为:SPZ.SPA.SPB.SPC四种型号 窄V带:宽度缩小1/3,承载能力提高1.5~2.5倍, 适 用于传递动力大而结构紧凑的场合。
4、尺寸 • 截面尺寸
顶宽 节宽 高度 相对高度
楔角(40°)
带的节面:V带受弯曲时,带中长度及宽度尺寸与自由状态 时相比保持不变的那个面。节面的宽度称为节宽
轮槽节宽bp :V带轮的轮槽与配用V带节宽相等处的槽宽 节圆直径 dd :轮槽节宽处的直径 基准直径 dp : V带轮在轮槽节宽处的直径 基准长度Ld :在规定的预紧力下,在带轮基准直径dd上,而dd 与节宽bp相对应,V带的周线长度称为基准长度,Ld公称长度 表8-2
3.带轮的基准直径 功率一定,减小直径,会增大带有效拉力,v带根数增加。 不仅增大带轮的宽度,也增大载荷在v带之间分配的不均匀性。 另外,增加了带的弯曲应力。为避免弯曲应力过大,小带轮 基准直径不能过小。
dd dd min , 表8 6
4.带速v 功率一定,提高带速,可降低带的有效拉力,相应减少 带的根数或V带的横截面面积,减小带传动的整体尺寸; 提高带速,也提高了V带的离心应力,增加单位时间内 的循环次数,不利于提高带传动的疲劳强度和寿命。
P0:i 1 表8-4b
K
表8-5 表8-2
KL
三 带传动的参数选择
1.中心距a a大, ,N , 可提高带的寿命 a过大,加剧带的波动, 降低平稳性 , 增大整体尺寸 a小,相反 0.7(d d ) a 2(d d )
d1 d2 0 d1 d2
2.传动比i
i大 , 带打滑 i 7, 常用i 2 ~ 5
拉紧,为紧边即: F0 → F1 ——紧边拉力
• 若近似认为带总长度不 变,则:紧边力的增量 应等于松边力的减少量。
即:F1 F0 F0 F2 则:F1 F2 2F0 (1)
• 若取主动轮端的带为分离体,则:有ΣT=0
1
dp1
即:Ff
d p1
2 2 2 得:Ff F1 F2 Fe (2)
后果 从动轮圆周速度低于主动轮,传 引起严重磨损,传动失 动比不稳定,传动效率下降,引 效。优点:起到过载保 起带磨损和升温,降低带的寿命 护作用,避免其他零件 发生损坏
防治 弹性滑动不可避免,但选用大弹 措施 性模量的材料,可降低弹性滑动 保证: F1/F2<efα1
8.3 V带传动的设计计算
一、设计准则和单根带基本额定功率
dF (a)(b)联立: fd F F2 dF F1 两边积分: fd ln f F1 F 0 F2 则:F1 F2e f
——欧拉公式