丽水2015中考数学试题(解析版)
2015年浙江省丽水市初中毕业生学业考试(中考)(含答案解析)
2015年浙江省初中毕业生学业考试(丽水市卷)科学卷Ⅰ一、选择题(本大题共有15小题,1~5小题每题4分,6~15小题每题3分,共50分。
每小题只有一个选项是正确的,不选、多选、错选均不得分)1. 2015年9月13日,在部分地区能观察到日偏食,观察这一天象应选用()A.平面镜B.潜望镜C.放大镜D.带滤镜的天文望远镜2. 我市对生活垃圾已经实施分类投放,金属饮料罐应投放在标有哪种标志的垃圾箱中()3. 下列措施中,能增大摩擦的是()A.鞋底印有花纹B.溜冰鞋底装有滚轮C.用光滑材料做滑梯D.在机器的转轴处加润滑油4. 在用显微镜观察洋葱表皮细胞时,发现细胞的像在视野的右上方,若要使细胞的像在视野中央,应将装片移向()A.左下方B.右上方C.正上方D.正下方(第5题)5. 如图是丽水市国家级风景名胜——缙云仙都,平静的水面形成的“倒影”是由于()A.光的反射B.光的折射C.光的漫反射D.光的直线传播6. 2015年10月26日(农历九月十四),天空将出现金星和木星再次紧密相连的天文奇观,这一天的月相最接近图中的()7. 规范的操作是科学实验的基本要求,下列实验操作规范的是()8. 用电设备发生火灾时,可用装有液态四氯化碳的“灭火弹”扑灭。
灭火时,液态四氯化碳迅速转化为气态并覆盖在火焰上。
据此推测四氯化碳可能具有的性质是() A.能导电B.不易燃烧C.不易汽化D.密度比空气小(第9题)9.如图,某同学将一张细条状铝箔纸的两端分别压在干电池的正负极,发现铝箔纸发热并燃烧。
关于该实验的分析正确的是()A.实验时干电池的正极与正极相连B.用普通纸代替铝箔纸也能燃烧C.实验中铝箔纸没有发生化学变化D.该实验能说明短路带来的危害(第10题)10. 20℃时,在两只各盛有50克水的烧杯中,分别加入30克氯化钠和蔗糖固体,搅拌使其充分溶解,结果如图所示。
下列说法正确的是()A.两烧杯中的溶液质量相等B.20℃时两者的溶解度相等C.氯化钠溶液一定是饱和溶液D.蔗糖溶液一定是饱和溶液(第11题)11. 第二届世界青年奥运会于2014年8月在南京举行,庆元县年仅15岁的吴琳俐在T293级女子帆板比赛中荣获冠军。
浙江省中考数学《填空压轴题》专题练习含答案解析
2016年中考数学《填空压轴题》专题练习1. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 . (第1题)(第2题)2. (2015年广东深圳3分)如图,已知点A 在反比例函数(0)k y x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k = .3. (2015年广东汕尾5分)(2015年广东梅州3分)若()()121212121a b n n n n =+-+-+,,对任意自然数n 都成立,则a = ,b = ;计算:11111335571921m =+++⋅⋅⋅+=⨯⨯⨯⨯ .. 4. (2015年广东广州3分)如图,四边形ABCD 中,∠A =90°,33AB =,AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .(第4题)(第6题)(第7题)5. (2015年广东佛山3分)各边长度都是整数,最大边长为8的三角形共有 个.6. (2015年陕西3分)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .7. (2015年浙江衢州4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是 .【 8. (2015年浙江绍兴5分)(2015年浙江义乌4分) 实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm. (第8题)(第9题)9. (2015年浙江台州5分)如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 。
浙江省丽水市中考数学真题试题(带解析)
丽水市中考数学试题解析卷一、选择题(共10小题,每小题3分,满分30分)1.(•丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃考点:正数和负数。
专题:计算题。
分析:一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃,故选A.点评:此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(•丽水)计算3a•(2b)的结果是( )A.3ab B.6a C.6ab D.5ab考点:单项式乘单项式。
分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a•(2b)=3×2a•b=6ab.故选C.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( ) A.-4 B.-2 C.0 D.4考点:绝对值;数轴。
专题:计算题。
分析:如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.解答:解:如图,AC的中点即数轴的原点O.根据数轴可以得到点A表示的数是-2.故选B.点评:此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.4.(•丽水)把分式方程转化为一元一次方程时,方程两边需同乘以( )A.x B.2x C.x+4 D.x(x+4)考点:解分式方程。
分析:根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.解答:解:由两个分母(x+4)和x可得最简公分母为x(x+4),所以方程两边应同时乘以x(x+4).故选D.点评:本题考查解分式方程去分母的能力,确定最简公分母应根据所给分式的分母来决定.5.(•丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A.①B.②C.③D.④考点:利用旋转设计图案。
浙江省丽水市中考数学真题及答案F
浙江省丽水市中考数学真题及答案F参考公式:二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是(ab 2-,a b ac 442-);一组数据1x ,2x ,3x ,…,n x 的方差:])()()()[(122322212x x x x x x x x nS n -++-+-+-= (其中x 是这组数据的平均数)。
一、选择题(本题有10小题,每小题3分,共30分) 1. 在数32,1,-3,0中,最大的数....是 A.32B. 1C. -3D. 0 2. 下列四个几何体中,主视图为圆的是3. 下列式子运算正确的是A. 628a a a =÷B. 532a a a =+C. 1)1(22+=+a a D. 12322=-a a4. 如图,直线a ∥b ,AC ⊥AB,AC 交直线b 于点C,∠1=60°,则∠2的度数是A. 50°B. 45°C. 35°D. 30°5. 如图,河坝横断面迎水坡AB 的坡比是3:1(坡比是坡面的铅直高度BC 与水平宽度AC之比),坝高BC=3m,则坡面AB 的长度是A. 9mB. 6mC. 36mD. 33m6. 某地区5月3日至5月9日这7天的日气温最高值统计图如图所示。
从统计图看,该地区这7天日气温最高值的众数与中位数分别是A. 23,25B. 24,23C. 23,23D. 23,247. 如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C,D,则直线CD 即为所求。
连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC 一定是...A. 矩形B. 菱形C. 正方形D. 等腰梯形8. 在同一平面直角坐标系内,将函数3422-+=x x y 的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是A.(-3,-6)B. (1,-4)C. (1,-6)D. (-3,-4) 9. 如图,半径为5的⊙A 中,弦BC,ED 所对的圆心角分别是∠BAC,∠EAD 。
2015年浙江省舟山市、嘉兴市中考数学试卷及解析
2015年浙江省嘉兴市、舟山市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分,请选出各题中唯一的正确选项,不选,多选,错选,均不得分)1.(3分)(2015•嘉兴)计算2﹣3的结果为()A.﹣1 B.﹣2 C.1D.22.(3分)(2015•嘉兴)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)(2015•嘉兴)2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为()A.33528×107B.0.33528×1012C.3.3528×1010D.3.3528×10114.(3分)(2015•嘉兴)质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A.5B.100 C.500 D.100005.(3分)(2015•嘉兴)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2C.D.6.(3分)(2015•嘉兴)与无理数最接近的整数是()A.4B.5C.6D.77.(3分)(2015•嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB 相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.68.(3分)(2015•嘉兴)一元一次不等式2(x+1)≥4的解在数轴上表示为()A.B.C.D.9.(3分)(2015•嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.10.(3分)(2015•嘉兴)如图,抛物线y=﹣x2+2x+m+1交x轴与点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是()A.①B.②C.③D.④二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2015•嘉兴)因式分解:ab﹣a=.12.(4分)(2015•嘉兴)如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西度方向上,到嘉兴的实际距离约为.13.(4分)(2015•嘉兴)把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.14.(4分)(2015•嘉兴)如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为.15.(4分)(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.16.(4分)(2015•嘉兴)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA 上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x 轴于点N(n,0),设点M转过的路程为m(0<m<1).(1)当m=时,n=;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为.三、解答题(本题有8小题,共66分)17.(6分)(2015•嘉兴)(1)计算:|﹣5|+×2﹣1;(2)化简:a(2﹣a)+(a+1)(a﹣1).18.(6分)(2015•嘉兴)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19.(6分)(2015•嘉兴)如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20.(8分)(2015•嘉兴)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C.(1)求k的值.(2)求△OBC的面积.21.(8分)(2015•嘉兴)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).22.(10分)(2015•嘉兴)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?23.(10分)(2015•嘉兴)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价﹣成本)24.(12分)(2015•嘉兴)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC 的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.2015年浙江省嘉兴市、舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分,请选出各题中唯一的正确选项,不选,多选,错选,均不得分)1.(3分)考点:有理数的减法.分析:根据减去一个数等于加上这个数的相反数进行计算即可.解答:解:2﹣3=2+(﹣3)=﹣1,故选:A.点评:本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.2.(3分)考点:中心对称图形.分析:根据中心对称的概念对各图形分析判断即可得解.解答:解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将335 280 000 000用科学记数法表示为:3.3528×1011.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)考点:用样本估计总体.分析:先求出次品所占的百分比,再根据生产这种零件10000件,直接相乘得出答案即可.解答:解:∵随机抽取100件进行检测,检测出次品5件,∴次品所占的百分比是:,∴这一批次产品中的次品件数是:10000×=500(件),故选C.点评:此题主要考查了用样本估计总体,根据出现次品的数量求出次品所占的百分比是解题关键.5.(4分)考点:平行线分线段成比例.分析:根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.解答:解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.点评:本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.6.(3分)考点:估算无理数的大小.分析:根据无理数的意义和二次根式的性质得出<<,即可求出答案.解答:解:∵<<,∴最接近的整数是,=6,故选:C.点评:本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.7.(3分)考点:切线的性质;勾股定理的逆定理.分析:首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.解答:解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.8.(3分)考点:在数轴上表示不等式的解集;解一元一次不等式.分析:首先根据解一元一次不等式的方法,求出不等式2(x+1)≥4的解集,然后根据在数轴上表示不等式的解集的方法,把不等式2(x+1)≥4的解集在数轴上表示出来即可.解答:解:由2(x+1)≥4,可得x+1≥2,解得x≥1,所以一元一次不等式2(x+1)≥4的解在数轴上表示为:.故选:A.点评:(1)此题主要考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.(2)此题还考查了解一元一次不等式的方法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.9.(3分)考点:作图—基本作图.分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.解答:解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.点评:此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.10.(3分)考点:二次函数综合题.分析:①根据二次函数所过象限,判断出y的符号;②根据A、B关于对称轴对称,求出b的值;③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.解答:解:①当x>0时,函数图象过二四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣=1,当a=﹣1时有=1,解得b=3,故本选项错误;③∵x1+x2>2,∴>1,又∵x1<1<x2,∴Q点距离对称轴较远,∴y1>y2,故本选项正确;④如图,作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.当m=2时,二次函数为y=﹣x2+2x+3,顶点纵坐标为y=﹣1+2+3=4,D为(1,4),则D′为(﹣1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,﹣3);则DE==;D′E′==;∴四边形EDFG周长的最小值为+,故本选项错误.故选C.点评:本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称﹣﹣最短路径问题等,值得关注.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)考点:因式分解-提公因式法.分析:提公因式a即可.解答:解:ab﹣a=a(b﹣1).故答案为:a(b﹣1).点评:本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公因式.12.(4分)考点:比例线段;方向角.分析:先根据方向角得到杭州在嘉兴的方位,再量出杭州到嘉兴的图上距离,再根据比例尺的定义即可求解.解答:解:测量可知杭州在嘉兴的南偏西45度方向上,杭州到嘉兴的图上距离是4cm,4×4000000=1600 0000cm=160km.故答案为:45,160km.点评:考查了方向角和比例尺的定义,比例尺=图上距离:实际距离.13.(4分)考点:列表法与树状图法.分析:举出所有情况,看正面都朝上的情况数占总情况数的多少即可.解答:解:共4种情况,正面都朝上的情况数有1种,所以概率是.故答案为:.点评:本题主要考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.14.(4分)考点:翻折变换(折叠问题).分析:如图,D为BC的中点,AD⊥BC,因为折叠该纸片使点A落在BC的中点D上,所以折痕EF垂直平分AD,根据平行线等分线段定理,易知E是AC的中点,故AE=2.5.解答:解:如图所示,∵D为BC的中点,AB=AC,∴AD⊥BC,∵折叠该纸片使点A落在BC的中点D上,∴折痕EF垂直平分AD,∴E是AC的中点,∵AC=5∴AE=2.5.故答案为:2.5.点评:本题考查了折叠的性质,等腰三角形的性质以及平行线等分线段定理,意识到折痕EF垂直平分AD,是解决问题的关键.15.(4分)考点:一元一次方程的应用.专题:数字问题.分析:设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.解答:解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:.点评:此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.16.(4分)考点:圆的综合题;等腰三角形的性质;锐角三角函数的定义.分析:(1)当m=时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角∠APM为90°,根据PA=PM可得∠PAM=∠PMA=45°,则有NO=AO=1,即可得到n=﹣1;(2)当m从变化到时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON中运用三角函数可求出ON的长;当m=时,连接PM,如图3,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.解答:解:(1)当m=时,连接PM,如图1,则有∠APM=×360°=90°.∵PA=PM,∴∠PAM=∠PMA=45°.∴NO=AO=1,∴n=﹣1.故答案为﹣1;(2)①当m=时,连接PM,如图2,∠APM=360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在Rt△AON中,NO=AO•tan∠OAN=1×=;②当m=时,连接PM,如图3,∠APM=360°﹣×360°=120°,同理可得:NO=.综合①、②可得:点N相应移动的路经长为+=.故答案为.点评:本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.三、解答题(本题有8小题,共66分)17.(6分)考点:整式的混合运算;实数的运算;负整数指数幂.分析:(1)首先求出﹣5的绝对值,然后根据整式的混合运算顺序,计算乘法和加法,求出算式|﹣5|+×2﹣1的值是多少即可.(2)根据整式的混合运算顺序,首先计算乘法和,然后计算加法,求出算式a(2﹣a)+(a+1)(a﹣1)的值是多少即可.解答:解:(1)|﹣5|+×2﹣1;=5+2×=5+1=6(2)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1点评:(1)此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了绝对值的非负性,以及算术平方根的求法,要熟练掌握.18.(6分)考点:解分式方程.专题:图表型.分析:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.解答:解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(6分)考点:全等三角形的判定与性质;正方形的性质.分析:(1)由图示得出∠DAG,∠AFB,∠CDE与∠AED相等;(2)根据SAS证明△DAE与△ABF全等,利用全等三角形的性质即可证明.解答:解:(1)由图可知,∠DAG,∠AFB,∠CDE与∠AED相等;(2)选择∠DAG=∠AED,证明如下:∵正方形ABCD,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,在△DAE与△ABF中,,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED.点评:此题考查全等三角形的判定和性质,关键是根据SAS证明△DAE与△ABF全等.20.(8分)考点:反比例函数与一次函数的交点问题.分析:(1)由直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),先将A (1,a)代入直线y=2x求出a的值,从而确定A点的坐标,然后将A点的坐标代入反比例函数y=中即可求出k的值;(2)由反比例函数y=的比例系数k的几何意义,可知△BOC的面积等于|k|,从而求出△OBC的面积.解答:解:(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),先∴将A(1,a)代入直线y=2x,得:a=2∴A(1,2),将A(1,2)代入反比例函数y=中得:k=2,∴y=;(2)∵B是反比例函数y=图象上的点,且BC⊥x轴于点C,∴△BOC的面积=|k|=×2=1.点评:本题主要考查函数图象的交点及待定系数法求函数解析式,掌握图象的交点的坐标满足两个函数解析式是解题的关键.21.(8分)考点:折线统计图;条形统计图;算术平均数;中位数.分析:(1)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(2)根据平均数的定义,求解即可;(3)根据增长率的中位数,可得2015年的销售额.解答:解:(1)数据从小到大排列10.4%,12.5%,14.2%,15.1%,18.7%,则嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数14.2%;(2)嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数是:(799.4+948.6+1083.7+1196.9+1347.0)÷5=1075.12(亿元);(3)从增速中位数分析,嘉兴市2015年社会消费品零售总额为1347×(1+14.2%)=1538.274(亿元).点评:本题考查了折线统计图,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是一组由小到大排列的数据中间的一个或中间两个数的平均数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.22.(10分)考点:解直角三角形的应用;旋转的性质.分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OB•sin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.解答:解:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D∵sin∠BOD=,∴BD=OB•sin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OB•sin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=3﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.点评:本题考查了解直角三角形的应用,旋转的性质,正确的画出图形是解题的关键.23.(10分)考点:二次函数的应用.分析:(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;解答:解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.点评:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.24.(12分)考点:四边形综合题.分析:(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.解答:解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠CAF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2=CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.点评:本题主要考查了对新定义的理解,菱形的判定,勾股定理,相似三角形的性质等,理解新定义,分类讨论是解答此题的关键.。
历年中考数学试卷62.浙江丽水
2015年浙江省丽水市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A .﹣3 B.﹣2 C.0 D.32.计算(a2)3的正确结果是()A .3a2B.a6C.a5D.6a3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A .B.C.D.4.分式﹣可变形为()A .﹣B.C.﹣D.5.一个多边形的每个内角均为120°,则这个多边形是()A .四边形B.五边形C.六边形D.七边形6.如图,数轴上所表示关于x的不等式组的解集是()A .x≥2B.x>2 C.x>﹣1 D.﹣1<x≤27.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A .30,27 B.30,29 C.29,30 D.30,288.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A .B.C.D.9.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A .a<b B.a<3 C.b<3 D.c<﹣210.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A .3种B.6种C.8种D.12种二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:9﹣x2=.12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.13.如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是度.14.解一元二次方程x2+2x﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程.15.如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=.16.如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C 在第四象限,AC与x轴交于点P,连结BP.(1)k的值为.(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是.三、解答题(本题有8个小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.计算:|﹣4|+(﹣)0﹣()﹣1.18.先化简,再求值:a(a﹣3)+(1﹣a)(1+a),其中a=.19.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.20.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.22.甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?23.如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB 于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n ,当n 为何值时,MN ∥BE ?24.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A 处的正上方,假设每次出发的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A 的水平距离为x (米),与桌面的高度为y (米),运行时间为t (秒),经多次测试后,得到如下部分数据: t (秒) 0 0.16 0.2 0.4 0.6 0.64 0.8 6 X (米) 0 0.4 0.5 1 1.5 1.6 2 … y (米) 0.25 0.378 0.4 0.45 0.4 0.378 0.25 … (1)当t 为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A 的水平距离是多少?(3)乒乓球落在桌面上弹起后,y 与x 满足y=a (x ﹣3)2+k . ①y 用含α的代数式表示k ;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A ,求α的值.参考答案一、选择题(本大题共10小题) 1. C解析:先将数-3,2,0,3按从小到大的顺序排列为-3,0,2,3,其中大小在-1和2之间的数只有0,故选择C .点评:本题考查了有理数的大小比较,解题的关键是熟练掌握有理数大小的比较方法. 2. B解析:23236()a a a ⨯==,故选择B.点评:本题考查了整式的幂的运算,幂的运算主要包括:同底数幂的运算、幂的乘方,积的乘方等,解题的关键是正确区分运算的类型,再按照运算法则计算.3.A解析:从正面看,第一列有2个正方体,第二列有1个正方体,故选择A .点评:本题考查了简单组合体的三视图,解题的关键是熟练掌握三种视图的概念.4. D解析:1111(1)1x x x-=-=----,故选择D .点评:本题考查了分式的基本性质的简单运用,解题的关键是理解分式符号变化的规律.5. C解析:因为多边形的每个内角均为120°,所以多边形的每个外角度数为180°-120°=60°,这个多边形的边数=360°÷60°=6,即这个多边形是六边形,故选择C.点评:本题考查了多边形的边数,解题的关键是理解并掌握多边形的内角和及外角和定理.6.A解析:由数轴可以获取各个不等式的解集分别x≥-1、x≥2,则两个一元一次不等式解集的公共部分为x≥2,故选择A.点评:本题考查了考查不等式组的解集,解题的关键是正确地从数轴上获取不等式组中各个不等式解集的公共部分.7. B解析:将题中的7个数据按照从小到大的顺序排列为:27,27,28,29,30,30,30,其中最中间位置上的数值是29,即中位数是29,出现次数最多的数据是30,即众数30,故选择B.点评:本题考查了数据的中位数和众数的求法,解题的关键是掌握中位数和众数的概念.8. jC解析:因为AC⊥BC,CD⊥AB,所以∠B+∠BAC=∠ACD+∠BAC=90°,所以∠B=∠ACD=α,即cosα=BDBC=BCAB=CDAC,故选择C.点评:本题考查了锐角三角形函数的概念,解题的关键是理解掌握正弦、余弦、正切等概念.9. jD解析:因为直线l经过点(-2,3),(0,a),(-1,b),(c,-1),如图所示,根据“y 随x的增大而增大”可以得出b<a,a>3,b>3,c<-2,所以选项A、B、C是错误的,故选择D.点评:本题考查了一次函数的图象性质,解题的关键是掌握一次函数的图象分布与增减性变化之间的关系.10. jB解析:根据题意得25255a b c d ====,,,,其中能组成三角形的三边是255a b d ===,,,要得到这三边组成的三角形,只要同时移动其中任意两边——ab 、ac 、bc ,如图所示,能组成三角形的不同平移方法有6种,故选择B.点评:本题考查了勾股定理及其三角形三边关系,解题的关键是灵活运用勾股定理和三角形三边关系定理.二、填空题(本大题共6小题) 11. (3)(3)x x +-解析:29x -=(3+x )(3-x ),故答案为(3+x )(3-x ).点评:本题考查了多项式的因式分解,解题的关键是会用公式法进行因式分解.12. 13解析:总共有6种情况,其中卡片上的数是3的倍数有2种可能,所以其概率21(3)63P ==卡片上的数是的倍数,故答案为13.点评:本题考查了等可能条件下的概率的计算,解题的关键是依据概率的意义,列举出所有等可能的结果数. 13.20解析:因为圆心角∠AOB =20°,所以»AB 的度数为20度,因为»CD =»AB ,所以»CD的度数是20°,故答案为20.点评:本题考查了圆心角、旋转的有关性质,解题的关键是理解圆心角与所对弧的度数的关系定理.14. 3x +=0(或1x -=0)解析:因为x 2+2x -3=0,所以(x -1)(x +3) =0,所以 x -1=0或x +3=0,故答案为3x +=0(或1x -=0). 点评:本题考查了因式分解法解一元二次方程,解题的关键是理解掌握因式分解法的方法步骤. 62+ 解析:因为四边形ABCD 是菱形,∠BAD =120°,所以AB=AD ,∠ABD=∠ADB=30°,因为四边形AECF 都是菱形,所以AE=AF ,所以△ABE ≌△ADF ,因为∠EAF =30°,即∠BAE=∠DAF=45°,过点E 作EM ⊥AB 于M ,所以∠MAE =∠MEA =45°,即MA =ME ,所以AE 22ME MA +2ME ,在Rt △BME 中,∠ABE =30°,tan MEMBE MB=∠,所以BM =tan MEMBE∠=3ME ,即AB =AM +MB =(31)ME ,所以AB AE =312ME ME+()=622+.故答案为622+.点评:本题考查了菱形的性质与等腰三角形的性质,解题的关键是熟练领会菱形和等腰三角形的性质.16.(1)22;(2)(2,22-) 解析:(1)∵反比例函数ky x=的图象经过点(-1,22-), ∴221k-=-,即22k =.(2)解析:如答图1,过点P 作PM ⊥AB 于点M ,过B 点作BN ⊥x 轴于点N ,设22,A x ⎛ ⎝⎭ ,则22,B x ⎛- ⎝⎭. ∴22222222328242AB x x x x x x=+=+=+()() ∵△ABC 是等腰直角三角形,∴2282BC AC x x ⎛⎫==+ ⎪⎝⎭BAC =45°. ∵BP 平分∠ABC ,∴()BPM BPC AAS ∆∆≌.∴2282BM BC x x ⎛⎫==+ ⎪⎝⎭∴(22822AM AB BM x x =-=+. ∵BP 平分∠ABC , PM ⊥AB ,∠C=90°, ∴(22822PM AM x x ==+又∵22182OB AB x x==+,∴()22821OM BM OB x x =-=-+. ∵∠BNO =∠PMO =90°,∠BON =∠POM , ∴OBN OPM ∆∆∽,∴ON BN OBOM PM OP ==. 由ON BNOM PM=得,即()()222222882122x x x x ⎛⎫-- ⎪⎝⎭=-+-+,解得2x =.∴点A 、B 的坐标分别为()2,2 ,()2,2- -..故答案为(22,2,2.点评:本题考查了待定系数法求反比例函数的解析式、正比例函数与反比例函数的交点坐标、等腰直角三角形的性质,解题的关键是从数形结合的角度理解正比例函数与反比例函数的图象性质.三、解答题(本大题共8小题)17. 解析:先分别利用绝对值性质求得4-=4,零指数幂性质求得0(2)-=1,负整数指数幂的运算性质求得11()22-=,然后加减运算.解:原式=4+1-2=3.点评:本题考查了实数的运算,解题的关键是掌握绝对值、零指数幂、负整数指数幂的运算性质.18.解析:根据乘法公式、单项式乘以多项式化简,再合并同类项,代入求值. 解:原式=2231a a a -+-=13a -.当a 3时,原式=13a -=13-点评:本题考查了乘法公式的应用,解题的关键是正确地利用乘法公式和运算法则进行化简代入求值.19. 解析:(1)先根据线段垂直平分线的作法找到点D ;(2)利用垂直平分线的性质和三角形内角和定理求解即可.解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)∵在Rt △ABC 中,∠B =37°, ∴∠CAB =53°. 又∵AD =BD , ∴∠BAD =∠B =37°. ∴∠CAD =53°-37°=16°.点评:本题考查了尺规作图及线段的垂直平分线,解题的关键是准确准确掌握线段垂直平分线的作图方法.20.解析:(1)依据“B 款运动鞋的销售量=A 款运动鞋的销售量×45”来求解;(2)要求三月份的总销售额必须先求出A ,B 两款运动鞋的销售单价,可以依据等量关系“一月份A 款运动鞋的销售+B 款运动鞋的销售=40000”与“二月份A 款运动鞋的销售+B 款运动鞋的销售=50000”来列方程组求解;(3)依据A 、B 款运动鞋1—3的销售情况来提建议.解:(1)50×45=40(双).∴一月份B 款运动鞋销售了40双. (2)设A ,B 两款运动鞋的销售单价分别为x 元,y 元. 由题意可得504040000605250000x y x y +=⎧⎨+=⎩.解方程组得400500x y =⎧⎨=⎩.∴三月份的总销售额为400×65+500×26=39000=3.9(万元). (3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销售量大,建议多进A 款运动鞋,少进或不进B 款鞋.从总销售额来看,由于B 款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.点评:本题考查了条形统计图、折线统计图的知识,解题的关键是读懂统计图,从统计图中得到必要的信息. 21.解析:(1)连结OD ,因为DF 是⊙O 的切线,所以DF ⊥OD ,要证明DF ⊥AC ,只要证明OD ∥AC .由AB =AC ,OB =OD 可以证明∠ODB =∠ACB ;(2)连接OE ,先分别求出△ABCDAOE 和扇形AOE 的面积,依据AOC OAE S S S ∆=-阴影扇形求出阴影部分的面积.解:(1)证明:连结OD .∵OB =OD ,∴∠ABC =∠ODB .∵AB =AC ,∴∠ABC =∠ACB .∴∠ODB =∠ACB .∴OD ∥AC .∵DF 是⊙O 的切线,∴DF ⊥OD .∴DF ⊥AC .(2)连结OE .∵DF ⊥AC ,∠CDF =22.5°,∴∠ABC =∠ACB =67.5°.∴∠BAC =45°.∵OA =OE ,∴∠AOE =90°.∴⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE =8.∴S 阴影=S 扇形AOE -S △AOE =4π-8.点评:本题考查了圆的切线的性质、等腰三角形的性质、三角形与扇形的面积公式等,解题的关键是根据圆的切线的性质正确作出相应的辅助线.22.解析:(1)根据图象,知甲出发5分钟行走了150米,据此求出甲行走的速度;(2)(2)因为乙走完全程要15005030÷=分钟,甲走完全程要15003050÷=分钟,所以两人最后相遇在50分钟处,据此补画s 关于t 函数图象.(3)甲、乙出发第一次相遇时,属于行程问题中的追击问题,依据等量关系“150+甲的速度×相遇时间+乙的行程甲的速度×相遇时间=1500”求出相遇时间,从而求出一次函数图象与x 轴的一个交点坐标为(12.5,0),一次函数图象与x 轴的另一个交点坐标为(50,0),利用待定系数法分别求出12.535t ≤≤和35<50t ≤时的函数解析式,再列方程求解即可.解:(1)甲行走的速度:150÷5=30(米/分);(2)补画的图象如图所示(横轴上对应的时间为50);(3)由函数图象可知,当t =12.5进,s =0.当12.5≤t ≤35时,s =20250t -.当35<t ≤50时,s =301500t -+.∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38.∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.点评:本题考查了题考查了待定系数法求一次函数表达式、一次函数实际应用,解题的关键是准确读取图象信息,求出一次函数的解析式.23.解析:(1)先利用AAS 证明△BMF ≌△ECF 得MB =CE ,结合AB =CD ,DE =CE 即可得到结论.(2)设MB =a ,先证明△BMF ∽△ECF ,利用相似三角形的性质求出CE 的长,再证明△AMN ∽△BCM ,利用相似三角形的性质求出AN 、ND 的长即可求解.(3)类比(2)问中的解法证明△AMN ∽△BCM ,利用平行四边形的性质进行求解.解:(1)∵F 为BE 的中点,∴BF =EF .∵AB ∥CD ,∴∠MBF =∠CEF ,∠BMF =∠ECF .∴△BMF ≌△ECF .∴MB =CE .∵AB =CD ,CE =DE ,∴MB =AM .∴AM =CE ;(2)设MB =a .∵AB ∥CD ,∴△BMF ∽△ECF . ∵EF BF =2, ∴CE MB=2.∴AB =CD =2CE =4a ,AM =AB -MB =3a . ∵AB BC=2, ∴BC =AD =2a .∵MN ⊥MC ,∠A =∠ABC =90°,∵∠AMN+∠BMC=∠BCM+∠BMC=90°,∴∠AMN=∠BCM ,∴△AMN ∽△BCM . ∴AN MB =AM BC ,即AN a =23a a. ∴AN =32a ,ND =322a a -=12a . ∴AN ND =32a ︰12a =3.(3)方法一:∵AB BC =EF BF=n ,设MB =a ,由(2)可得BC =2a ,CE =na ,AM =(21)n a -. 由△AMN ∽△BCM ,AN =1(21)2n a -,DN =(25)2n a -. ∵DH ∥AM ,DN AN =DH AM,DH =(25)n a -, ∴HE =(5)n a -.∵MBEH 是平行四边形,∴(5)n a -=a .A B C D EF HMN方法二:∵AB BC =EF BF=n ,设MB =a ,由(2)可得BC =2a ,CE =na . 当MN ∥BE 时,CM ⊥BE ,可证△MBC ∽△BCE . ∴MB BC =BC CE . ∴2a a =2a na. ∴n =4.点评:本题考查了矩形的性质,全等三角形、相似三角形的性质和判定,解题的关键是从复杂的图形中抽象出相似三角形,灵活运用相似三角形的性质构造方程求解.24. 解析:(1)观察表格中数据x 、y 与t 之间的变化规律直接求解;(2)通过在直角坐标系中列表、描点、连线的方法判定出y 是x 的二次函数,用顶点式设二次函数解析式,运用待定系数得出y 关于x 的解析式,求得0y =时的x 值即为所求;(3)①求出乒乓球落在桌面时的坐标代入2(3)y a x k =-+即可得结果;②球网高度为0.14米,球桌长(1.4×2)米,所以扣杀路线在直线110y x =上,将110y x =代入21(3)4y a x a =--,得()22012021750ax a x a -++=,由于球弹起后,恰好有唯一的击球点,所以方程根的判别式等于0,求出此时的a ,符合题意的即为所求.解:以点A 为原点,以桌面中线为x 轴,乒乓球运动方向为正方向,建立平面直角坐标系. (1)由表格中的数据,可得t =0.4(秒).答:当t 为0.4秒时,乒乓球达到最大高度.(2)由表格中数据,可画出y 关于x 的图象,根据图象的形状,可判断y 是x 的二次函数.可设y =2(1)0.45a x -+.将(0,0.25)代入,可得a =15-. ∴y =21(1)0.455x --+. 当y =0时,1x =52,2x =12-(舍去),即乒乓球与端点A 的水平距离是52米. (3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0). 代入y =2(3)a x k -+,得25(3)2a k ⨯-+=0,化简整理,得k =14a -. ②由题意可知,扣杀路线在直线y =110x 上. 由①,得y =21(3)4a x a --. 令21(3)4a x a --=110x ,整理,得220(1202)175ax a x a -++=0.当∆=2(1202)420175a a a +-⨯⨯=0时符合题意.解方程,得1a 2a当1a x =,不符合题意,舍去.当2a x答:当a A . 点评:本题考查了考查了用待定系数法确定二次函数的解析式、函数值的求法、二次函数与一元二次方程的关系以及二次函数的图象及应用,解题的关键是通过建立二次函数模型,把实际问题转化为二次函数问题,运用二次函数图象性质来求解.。
初三中考数学数与式
第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。
2015中考-基础篇-21-一元二次方程 - 学生版
2015中考-基础篇-一元二次方程学习改变命运 教育成就未来 清源教育纵观近年中考命题,不难发现考题一直在求新求变,网上那些过时的参考资料已经不堪再用。
本套资料选题全部选自2014年全国各地中考真题,时效性特别强,针对中考各章重点、难点、易错点以及热点问题进行了全面的汇总和梳理,每道题都配有答案,大多数题目都配有【考点解剖】、【解题思路】、【解答过程】、【方法规律】、【易错点睛】等贴心栏目,特别适合初三毕业班学生专项复习用,同时也适合教师备课参考之用。
本文作者系初中数学教师郑荣国,仓促而作,错漏之处在所难免,恳请读者批评指正!一、一元二次方程、一元二次方程的根、一元二次方程的解法配方法1.(2014年广东珠海,7,4分)填空,2243()1x x x -+=--.一元二次方程的解1.(2014黑龙江哈尔滨,15,3分)若x =-1是关于x 的一元二次方程x 2+3x +m +1=0的一个解,则m 的值为___________.2.(2014广西百色,7,3分)已知2x =是一元二次方程2240x mx -+=的一个解,则m 的值为( )A .2B .0C .0或2D .0或-23.(2014甘肃白银,14,4分)若一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =_________.4.(2014湖南长沙,14,3分)已知关于x 的一元二次方程2x 2-3kx +4=0的一个根是1,则k =_____________.5.(2014四川甘孜州,8,4分)一元二次方程x 2+px -2=0的一个根为2,则p 的值为( )A .1B .2C .-1D .-26.(2014陕西省,8,3分)若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4 D .1或-4整体思想7.(2014安徽,7,4分)已知x 2-2x -3=0,则2x 2-4x 的值为A .-6B .6C .-2或6D .-2或308.(2014江西南昌,9,3分)若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ).A .10B .9C .7D .5一元二次方程的解法9.(2014宁夏,3,3分)一元二次方程2210xx --=的解是( ) A .121==x xB .211+=x ,212--=xC .211+=x ,212-=xD .211+-=x ,212--=x 10.(2014湖南永州,10,3分)方程022=-x x的解是__________.11.(2014山东淄博,5,4分)一元二次方程06222=-+x x 的根是( )A .221==x xB .01=x ,222-=xC .21=x ,232-=xD .21-=x ,232=x12.(2014江苏无锡,江苏徐州,四川自贡)解方程:(1)x 2-5x -6=0; (2) x 2+4x -1=0; (3)()()3222x x x -=-.二、一元二次方程根的判别式1.(2014四川自贡,5,4分)一元二次方程2450xx -+=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2014广东,8,3分)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ) A .94m > B .94m < C .94m = D .9-4m <3.(2014甘肃省兰州,10,分)一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,下列选项正确的是( )A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥04.(2014四川内江,9,3分)若关于x 的一元二次方程(k -1)x 2+2x -2=0有不相等实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠15.(2014湖南益阳,5,4分)一元二次方程x 2-2x +m =0总有实数根,则m 应满足的条件是( )A .m >1B .m =1C .m <1D .m ≤1三、一元二次方程根与系数的关系(韦达定理)1.(2014广西钦州,7,3分)若x 1、x 2是一元二次方程x 2+10x +16的两个根,则x 1+x 2的值是( )A .-10B .10C .-16D .162.(2014广西省来宾市,3分)已知一元二次方程的两根分别是2和-3,则这个一元二次方程是( )A .x 2-6x +8=0B .x 2+2x -3=0C .x 2-x -6=0D .x 2+x -6=03.(2014湖北潜江、天门、仙桃,8,3分)已知m 、n 是方程x 2–x –1=0的两实数根,则n m 11+的值为( ) A .–1 B .21 C .21- D .14.(2014山东莱芜,15,4分)若关于x 的方程x 2+(k -2)x +k =0的两根互为倒数.则k =___________.5.(2014江西,10,3分)若α,β是方程2230x x --=的两个根,则22αβ+=______.6.(2014广西玉林防城港,9,3分)x 1,x 2是关于x 的一元二次方程x 2–mx +m -2=0的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( )A .m =0时成立B .m =2时成立C .m =0或2时成立D .不存在7.(2014山东烟台,8,3分)关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-18.(2014湖北鄂州,20,8分)一元二次方程2220mx mx m -+-=.(1)若方程有两实数根,求m 的范围;(2)设方程两实根为12,x x ,且121x x -=,求m .四、一元二次方程的应用1.(2014山东泰安,13,3分)某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( )A .()()340.515x x +-=B .()()340.515x x ++= C .()()430.515x x +-= D .()()140.515x x +-=2.(2014湖北鄂州,8,3分)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年的月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x ,可列方程为( )A .22016(1)1500x -= B .21500(1)2160x +=C .21500(1)2160x -=D .215001500(1)1500(1)2160x x ++++=3.(2014湖北咸宁,18,7分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.4.(2014湖北襄阳,9,3分)用一条长40cm 的绳子围成一个面积为64cm 2的长方形.设长方形的长为xcm ,则可列方程为( )A .x (20+x )=64B .x (20-x )=64C .x (40+x )=64D .x (40-x )=645.(2014甘肃白银,8,3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .x (5+x )=6B .x (5-x )=6C .x (10-x )=6D .x (10-2x )=66.(2014甘肃兰州,19,4分)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x 米,根据题意可列出的方程为________.第6题图 第8题图7.(2014江苏宿迁,12,3分)一块矩形菜地的面积是120m 2,如果它的长减少2m ,那么菜地就变成正方形,则原菜地的长是_________m .8.(2014浙江丽水,15,4分)如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为782m ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程________________________. C9.(2014江苏南京,22,8分)某一养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x .(1)用含x 的代数式表示第3年的可变成本为______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x .10.(2014天津,10,3分)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据时间和场地等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .()11282x x +=B .()11282x x -=C .()128x x +=D .()128x x -=11.(2014贵州安顺,21,10分)天山旅行社为吸引顾客组团去具有科斯塔地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有科斯塔地貌特征的黄果树风景区旅游,共支付给天山旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有科斯塔地貌特征的黄果树风景区旅游?12.(2014广西桂林,24,8分)电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?13.(2014辽宁朝阳,24,10分)长城汽车销售公司5月份销售某型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售辆超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x 辆(x ≤30,且x 正为整数),实际进价为y 万元/辆,求y 与x 的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需要售出多少辆汽车?(注:销售利润=销售价-进价)14.(2014新疆维吾尔自治区,19,10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB 、BC 各为多少米?墙。
【2015中考真题】浙江省丽水市中考数学试题及解析
2015年浙江省丽水市中考数学试卷一、选择题,共10小题,每小题3分,共30分233.(3分)(2015•丽水)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )C4.(3分)(2015•丽水)分式﹣可变形为( )C6.(3分)(2015•丽水)如图,数轴上所表示关于x 的不等式组的解集是( )7.(3分)(2015•丽水)某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,8.(3分)(2015•丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )C9.(3分)(2015•丽水)在平面直角坐标系中,过点(﹣2,3)的直线l 经过一、二、三象限,若点(0,10.(3分)(2015•丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2015•丽水)分解因式:9﹣x2=.12.(4分)(2015•丽水)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.13.(4分)(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是度.14.(4分)(2015•丽水)解一元二次方程x2+2x﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程.15.(4分)(2015•丽水)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=.16.(4分)(2015•丽水)如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP.(1)k的值为.(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是.三、解答题(本题有8个小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2015•丽水)计算:|﹣4|+(﹣)0﹣()﹣1.18.(6分)(2015•丽水)先化简,再求值:a(a﹣3)+(1﹣a)(1+a),其中a=.19.(6分)(2015•丽水)如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.20.(8分)(2015•丽水)某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.21.(8分)(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.22.(10分)(2015•丽水)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?23.(10分)(2015•丽水)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?24.(12分)(2015•丽水)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次出发的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 6X(米)0 0.4 0.5 1 1.5 1.6 2 …y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 …(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①y用含α的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求α的值.2015年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题,共10小题,每小题3分,共30分233.(3分)(2015•丽水)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()C4.(3分)(2015•丽水)分式﹣可变形为()C=﹣,6.(3分)(2015•丽水)如图,数轴上所表示关于x的不等式组的解集是()7.(3分)(2015•丽水)某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,8.(3分)(2015•丽水)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()CACD===,9.(3分)(2015•丽水)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,k===,即=b3=,10.(3分)(2015•丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有(),二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2015•丽水)分解因式:9﹣x2=(3+x)(3﹣x).12.(4分)(2015•丽水)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.分析:分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.∴从中任取一张卡片,P(卡片上的数是3的倍数)==.故答案为:.13.(4分)(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是20度.先根据旋转的性质得=,的度数.解:∵将旋转得到=,的度数为14.(4分)(2015•丽水)解一元二次方程x2+2x﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程x﹣1=0或x+3=0.15.(4分)(2015•丽水)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则=.=∴==.故答案为:.题关键.16.(4分)(2015•丽水)如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP.(1)k的值为2.(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是(2,﹣).考点:反比例函数综合题.分析:(1)把点(﹣1,﹣2)代入反比例函数y=,求出k即可;(2)连接OC,作AM⊥x轴于M,CN⊥x轴于N,则AM∥CN,∠AMO=∠ONC=90°,先由AAS证明△OAM≌△CON,得出OM=CN,AM=ON,再由三角形的角平分线性质得出=,根据平行线的性质得出比例式:=,设CN=OM=x,则AM=ON=x,根据题意得出方程:x•x=2,解方程求出CN、ON,即可得出点C的坐标.解答:解:(1)把点(﹣1,﹣2)代入反比例函数y=得:k=﹣1×(﹣2)=2,故答案为:2;(2)连接OC,作AM⊥x轴于M,CN⊥x轴于N,如图所示:则AM∥CN,∠AMO=∠ONC=90°,∴∠AOM+∠OAM=90°,根据题意得:点A和点B关于原点对称,∴OA=OB,∵△ABC是等腰直角三角形,AB为斜边,∴OC⊥AB(三线合一),OC=AB=OA,AC=BC,AB=BC,∴∠AOC=90°,即∠AOM+∠CON=90°,∴∠OAM=∠CON,在△OAM和△CON中,,∴△OAM≌△CON(AAS),∴OM=CN,AM=ON,∵BP平分∠ABC,∴=,,AM=ON=y=AM=2x=2,x=,,﹣,﹣三、解答题(本题有8个小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2015•丽水)计算:|﹣4|+(﹣)0﹣()﹣1.18.(6分)(2015•丽水)先化简,再求值:a(a﹣3)+(1﹣a)(1+a),其中a=.时,原式.19.(6分)(2015•丽水)如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.考点:作图—复杂作图;线段垂直平分线的性质.分析:(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.解答:解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.点评:此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.20.(8分)(2015•丽水)某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.考点:折线统计图;条形统计图.分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.解答:解:(1)根据题意得:50×=40(双).答:一月份B款运动鞋销售了40双;,.21.(8分)(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.22.(10分)(2015•丽水)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?设乙出发经过x分和甲第一次相遇,根据题意得:150+30x=50x,解得:x=7.5,7.5+5=12.5(分),由函数图象可知,当t=12.5时,s=0,∴点B的坐标为(12.5,0),当12.5≤t≤35时,设BC的解析式为:s=kt+b,把C(35,450),B(12.5,0)代入可得:解得:,∴s=20t﹣250,当35<t≤50时,设CD的解析式为y=k1x+b1,把D(50,0),C(35,450)代入得:解得:∴s=﹣30t+1500,∵甲、乙两人相距360米,即s=360,解得:t1=30.5,t2=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人何时相距360米.点评:本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,解答时求出函数的解析式是关键.23.(10分)(2015•丽水)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?考点:相似形综合题;全等三角形的判定与性质;矩形的性质.专题:综合题.分析:(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC性质即可得到AN=a,从而可得ND=AD﹣AN=a,就可求出的值;EC=DC∴BM=EC=DC=AB,∴==2,=2∴=,=,∴AN=a,ND=AD﹣AN=2a﹣a=a,=)当==,∴=,24.(12分)(2015•丽水)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次出发的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①y用含α的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求α的值.x﹣a+0.45,将(0,0.25)代入,可得:a=﹣,﹣当y=0时,0=﹣(x﹣1)2+0.45,,(舍去)的水平距离是(代入y=a(x﹣3)2+k,得(﹣3)2a+k=0,ax a a=x解方程得:a1=,a2=,时,求得,不符合题意,舍去;x=。
浙江省11市2015年中考数学试题分类解析汇编:专题19 综合型问题(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。
浙江省11市2015年中考数学试题分类解析汇编(20专题)专题19:综合型问题1. (2015年浙江杭州3分)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为【】A. 14B.25C.23D.59【答案】B.【考点】概率;正六边形的性质.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,如答图,∵正六边形的顶点,连接任意两点可得15条线段,其中6条的连长度为3:AC、AE、BD、BF、CE、DF,∴所求概率为62155.故选B.2. (2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为62. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.∵2m =,∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ===∴当2m =时,四边形EDFG 周长的最小值为DE MN +=故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为不是真命题.综上所述,真命题的序号是③.故选C.3. (2015年浙江宁波4分)二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为【 】A. 1B. -1C. 2D. -2【答案】A.【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数2(4)4(0)y a x a =--≠的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,∴当52x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的下方;当132x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的上方.∴22165<(4)4<0161692<<1316259(4)4>0>225a a a a a ⎧⎧--⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪--⎪⎪⎩⎩. ∴a 的值为1.故选A.4. (2015年浙江衢州3分)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O 的切线交BC 于点E ,若5,4CD CE == ,则O 的半径是【 】A. 3B. 4C. 256D. 258【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用.【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F ,∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC .∵DE 是O 的切线,∴DE OD ⊥.∴DE BC ⊥.∴90CED ∠=︒,且四边形DEBF 是矩形.∵5,4CD CE == ,∴由勾股定理,得3DE =.设O 的半径是x ,则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =. ∴O 的半径是258. 故选D .5. (2015年浙江温州4分)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限. 若反比例函数xk y =的图象经过点B ,则k 的值是【 】A. 1B. 2C. 3D. 32【答案】C.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;等边三角形的性质;勾股定理.【分析】如答图,过点B 作BD ⊥x 于点D ,∵点A 的坐标是(2,0),△ABO 是等边三角形,∴OB=OA=2,OD=1.∴由勾股定理得,BD=3. ∵点B 在第一象限,∴点B 的坐标是1,3 .∵反比例函数k y x =的图象经过点B ,∴331k k =⇒=. 故选C.6. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】A. 29B. 790 C. 13 D. 16 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q ,∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线.∵ACDE ,BCFG 是正方形,∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ .∵点O 、M 分别是AB 、ED 的中点,∴OM 是梯形ABDE 的中位线. ∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122MP r AC BC +=+.同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C.7. (2015年浙江舟山3分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为62. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.∵2m =,∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4). ∴2222112,3758DE MN =+==+= .∴当2m =时,四边形EDFG 周长的最小值为258DE MN +=+.故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为62” 不是真命题.综上所述,真命题的序号是③.故选C.1. (2015年浙江杭州4分)在平面直角坐标系中,O 为坐标原点,设点P (1,t )在反比例函数2y x=的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,若反比例函数k y x =的图象经过点Q ,则k = ▲ 【答案】225+或225-【考点】反比例函数的性质;曲线上点的坐标与方程的关系;勾股定理;分类思想的应用.【分析】∵点P (1,t )在反比例函数2y x =的图象上,∴221t ==.∴P (1,2). ∴OP 5∵过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,∴Q ()15,2或Q ()15,2. ∵反比例函数k y x=的图象经过点Q ,∴当Q ()15,2+ 时,()152225k =+⋅=+;Q ()15,2- 时,()152225k =-⋅=-.2. (2015年浙江湖州4分)已知正方形ABC 1D 1的边长为1,延长C 1D 1到A 1,以A 1C 1为边向右作正方形A 1C 1C 2D 2,延长C 2D 2到A 2,以A 2C 2为边向右作正方形A 2C 2C 3D 3(如图所示),以此类推⋯,若A 1C 1=2,且点A ,D 2, D 3,⋯,D 10都在同一直线上,则正方形A 9C 9C 10D 10的边长是 ▲【答案】8732. 【考点】探索规律题(图形的变化);正方形的性质;相似三角形的判定和性质.【分析】如答图,设AD 10与A 1C 1相交于点E ,则121AD E D A E ∆∆∽,∴11211AD D E D A A E=. 设1A E x =,∵AD 1=1,A 1C 1=2,∴2112,1D A D E x ==- .∴11223x x x -=⇒=. 易得21322D A E D A D ∆∆∽,∴2113222D A A E D A A D =. 设32D A y =,则222A D y =-,∴22332y y y =⇒=-即21323222332C C D A --===.同理可得,31414354324233,,22C C C C ----==⋅⋅⋅∴正方形A 9C 9C 10D 10的边长是9181099273322C C --==.3. (2015年浙江嘉兴5分)如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1. 点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0). 设点M 转过的路程为m (0<<1m ).(1)当14m =时,n = ▲ ; (2)随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为 ▲【答案】(1)1-;(2)23. 【考点】单点和线动旋转问题;圆周角定理;等腰直角三角形的判定和性质;等边三角形的判定和性质;含30度直角三角形的性质.【分析】(1)当14m =时,090APM ∠=,∴045NAO ∠=. ∵A (0,1),∴1ON OA ==.∴1n =-. (2)∵以AP 为半径的⊙P 周长为1,∴当m 从13变化到23时,点M 转动的圆心角为120°,即圆周角为60°.∴根据对称性,当点M 转动的圆心角为120°时,点N 相应移动的路径起点和终点关于y 轴对称.∴此时构成等边三角形,且030OAN ∠=.∵点A (0,1),即OA =1,∴33ON ==. ∴当m 从13变化到23时,点N 相应移动的路径长为3232⨯=. 4. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数ky (x 0)x=>的图象经过该菱形对角线的交点A ,且与边BC 交于点F. 若点D 的坐标为(6,8),则点F 的坐标是 ▲【答案】8123⎛⎫ ⎪⎝⎭,. 【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD 的边OB 在x 轴正半轴上,点D 的坐标为(6,8),∴22OD DC OD 6810===+.∴点B 的坐标为(10,0),点C 的坐标为(16,8).∵菱形的对角线的交点为点A ,∴点A 的坐标为(8,4).∵反比例函数ky (x 0)x=>的图象经过点A ,∴k 8432=⋅=.∴反比例函数为32y x=. 设直线BC 的解析式为y mx n =+,∴4m 16m n 8310m n 040n 3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩. ∴直线BC 的解析式为440y x 33=-. 联立440x 12y x 33832y y 3x ⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.∴点F 的坐标是8123⎛⎫ ⎪⎝⎭,. 5. (2015年浙江丽水4分)如图,反比例函数xky =的图象经过点(-1,22-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP . (1)k 的值为 ▲ .(2)在点A 运动过程中,当BP 平分∠ABC 时,点C 的坐标是 ▲ .【答案】(1)22k =;(2)(2,2-).【考点】反比例函数综合题;曲线上点的坐标与方程的关系;勾股定理;等腰直角三角形的性质;角平分线的性质;相似、全等三角形的判定和性质;方程思想的应用.【分析】(1)∵反比例函数ky x=的图象经过点(-1,22-), ∴22221kk -=⇒=-. (2)如答图1,过点P 作PM ⊥AB 于点M ,过B 点作BN ⊥x 轴于点N ,设22,A x x ⎛⎫ ⎪ ⎪⎝⎭ ,则22,B x x ⎛⎫- ⎪ ⎪⎝⎭ -. ∴2282AB x x =+. ∵△ABC 是等腰直角三角形,∴2282BC AC x x ⎛⎫==+ ⎪⎝⎭,∠BAC =45°. ∵BP 平分∠ABC ,∴()BPM BPC AAS ∆∆≌.∴2282BM BC x x ⎛⎫==+ ⎪⎝⎭. ∴()22822AM AB BM x x =-=-+.∴()22822PM AM x x ==-+. 又∵228OB x x =+,∴()22821OM BM OB x x =-=-+. 易证OBN OPM ∆∆∽,∴ON BN OBOM PM OP==. 由ON BNOM PM =得,()()222222882122x x x x xx⎛⎫-- ⎪--⎝⎭=-+-+,解得2x =. ∴()2,2A,()2,2B - -.如答图2,过点C 作EF ⊥x 轴,过点A 作AF ⊥EF 于点F ,过B 点作BE ⊥EF 于点E ,易知,()BCE CAF HL ∆∆≌,∴设CE AF y ==. 又∵23,22BC BE y ==+ ,∴根据勾股定理,得222BC BE CE =+,即()()2222322yy =++.∴22220y y +-=,解得22y =-或22y =+(舍去). ∴由()2,2A,()2,2B - -可得()2,2C -.6. (2015年浙江绍兴5分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)=>y x x与此正方形的边有交点,则a 的取值范围是 ▲313≤≤a 【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.x3(0)=>y x x上时,a 取得最小值.当点A 在曲线3(0)=>y x x 上时,2333=⇒=⇒=±a a a a(舍去负值). 当点C 在曲线3(0)=>y x x上时,易得C 点的坐标为()11++a a ,, ∴()2311313131+=⇒+=⇒+=±⇒=-±+a a a a a (舍去负值). ∴若曲线3(0)=>y x x与正方形的边有ABCD 交点,a 的取值范围是313-≤≤a .7. (2015年浙江义乌4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)=>y x x与此正方形的边有交点,则a 的取值范围是 ▲313≤≤a 【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.x3(0)=>y x x上时,a 取得最小值.当点A 在曲线3(0)=>y x x 上时,2333=⇒=⇒=±a a a a(舍去负值). 当点C 在曲线3(0)=>y x x上时,易得C 点的坐标为()11++a a ,, ∴()2311313131+=⇒+=⇒+=±⇒=-±+a a a a a (舍去负值). ∴若曲线3(0)=>y x x与正方形的边有ABCD 交点,a 的取值范围是313-≤≤a .8. (2015年浙江舟山4分)如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1. 点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0). 设点M 转过的路程为m (0<<1m ). 随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为 ▲23. 【考点】单点和线动旋转问题;圆周角定理;等边三角形的判定和性质;含30度直角三角形的性质.【分析】∵以AP 为半径的⊙P 周长为1,∴当m从13变化到23时,点M转动的圆心角为120°,即圆周角为60°.∴根据对称性,当点M转动的圆心角为120°时,点N相应移动的路径起点和终点关于y轴对称.∴此时构成等边三角形,且030OAN∠=.∵点A(0,1),即OA=1,∴33ON==.∴当m从13变化到23时,点N相应移动的路径长为3232⨯=.1. (2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,⋯⋯,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇.图2图13)【答案】解:(1)设线段BC 所在直线的函数表达式为11y k t b =+,∵37100,0,,233B C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ ,∴1111302710033k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得114060k b =⎧⎨=-⎩. ∴线段BC 所在直线的函数表达式为4060y t =-. 设线段CD 所在直线的函数表达式为22y k t b =+,∵()7100,,4,033C D ⎛⎫⎪⎝⎭ ,∴221171003340k b k b ⎧+=⎪⎨⎪+=⎩,解得222080k b =-⎧⎨=⎩. ∴线段BC 所在直线的函数表达式为2080y t =-+.(2)∵线段OA 所在直线的函数表达式为()2001y t t =≤≤,∴点A 的纵坐标为20.当20<<30y 时,即20<4060<30t -或20<20800<30t -+,解得92<<4t 或5<<32t . ∴当20<<30y 时, t 的取值范围为92<<4t 或5<<32t . (3)()60601<3S t t =-≤甲,()201<4S t t =≤乙.所画图形如答图:(4)当43t =0时,803S =乙,∴丙距M地的路程S 丙与时间t 的函数关系式为()408002S t t =-+≤≤丙.联立60604080S t S t =-⎧⎨=-+⎩,解得()60601<3S t t =-≤甲与()408002S t t =-+≤≤丙图象交点的横坐标为75, ∴丙出发后75h 与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC ,CD 所在直线的函数表达式.(2)求出点A 的纵坐标,确定适用的函数,解不等式组求解即可.(3)求函数表达式画图即可.(4)求出S 丙与时间t 的函数关系式,与()60601<3S t t =-≤甲联立求解.2. (2015年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y 只,y 与x 满足如下关系式:()()5005301205<15x x y x x ⎧≤≤⎪=⎨+≤⎪⎩. (1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画. 若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:(1)设李明第n 天生产的粽子数量为420只,根据题意,得30120420n +=,解得10n =.答:李明第10天生产的粽子数量为420只.(2)由图象可知,当0<9x ≤时, 4.1p =;当915x ≤≤时,设p kx b =+,把点(9,4.1),(15,4.7)代入止式,得9 4.115 4.7k b k b +=⎧⎨+=⎩,解得0.13.2k b =⎧⎨=⎩. ∴0.1 3.2p x =+.①05x ≤≤时,()6 4.154102.6w x x =-⋅=,当5x =时,513w =最大(元);②5<<9x 时,()()6 4.130********w x x =-⋅+=+,∵x 是整数,∴当8x =时,684w =最大(元);③915x ≤≤时,()()()2260.1 3.230120372336312768w x x x x x =--⋅+=-++=--+,∵3<0-,∴当12x =时,768w =最大(元).综上所述,w 与x 之间的函数表达式为()()()2102.605572285<<9372336915x x w x x x x x ⎧≤≤⎪=+⎨⎪-++≤≤⎩,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第n 天生产的粽子数量为420只,等量关系为:“第n 天生产的粽子数量等于420只”.(2)先求出p 与x 之间的关系式,分05x ≤≤,5<<9x ,915x ≤≤三种情况求解即可.3. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
浙江丽水数学中考卷及答案
20XX年浙江丽水市初中毕业生学业考试数学试卷考生须知:1.全卷满分为150分,考试时间为120分钟。
2.全卷分“卷Ⅰ”和“卷Ⅱ”两部分,其中“卷Ⅰ”为选择题卷;“卷Ⅱ”为非选择题卷。
3.答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方框涂黑。
4.请在“卷二”上填写座位号并在密封线内填写县(市、区)学校、姓名和准考证号。
5.答题时,允许使用计算器。
试卷Ⅰ请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题。
一、选择题(本题有10小题,每小题4分,共40分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.2的相反数是A.2 B.-2 C.12D.-122.如图,AB∥CD,若∠1=45°,则∠2的度数是A.45°B.90°C.30°D.135°3.下列图形中,不是..轴对称图形的是A.B.C.D.4.已知反比例函数2y x=,则这个函数的图象一定经过 A .(2,1) B .(2,-1) C .(2,4)D .(-12,2) 5.据丽水市统计局公报:20XX 年我市生产总值约35 300 000 000元,那么用科学记数法表示为 A .3.53×1011元 B .3.53×1010元 C .3.53×109元 D .35.3×108元6.方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是 A .310x = B .5x = C .35x =- D .5x =-7.国家实行一系列“三农”优惠政策后,农民收入大幅度增加,右图是我省20XX 年至20XX 年农村居民人均年收入统计图,则这6年中农村居民人均年收入的中位数是A .5132B .6196C .5802D .5664 8.请根据图中给出的信息,可得正确的方程是A .2286()()(5)22x x ππ⨯=⨯⨯+ B .2286()()(5)22x x ππ⨯=⨯⨯-C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯9.“两龙”高速公路是目前我省高速公路隧道和桥梁最多的路段。
2015年浙江省丽水市初三上学期期末数学试卷[解析版]
2014-2015学年浙江省丽水市初三上学期期末数学试卷一、选择题(本题有6小题,每小题4分,共24分)1.(4分)已知,则a﹣b的值是()A.2B.±2C.6D.±62.(4分)已知,则的值是()A.4B.C.8D.3.(4分)自然数n满足等式,这样n的个数是()A.3B.4C.5D.74.(4分)如果△ABC的两边长分别为a、b,那么△ABC的面积不可能等于()A.(a2+b2)B.(a2+b2)C.(a+b)2D.ab5.(4分)如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE 折叠,使点A恰好落在CD上的点F,若△BCF的周长为14,CF的长为3,则△DEF的周长为()A.8B.7C.6D.56.(4分)如图,在△ABC中,AD=DC,BE=EF=FC,AE、AF与BD相交于点G、H.已知,则S的值是()四边形GEFHA.B.C.D.二、填空题(本题有4小题,每小题5分,共20分)7.(5分)因式分解:x2﹣4xy﹣2x+4y2+4y﹣3=.8.(5分)将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是.9.(5分)如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.10.(5分)如图,直线y=﹣2x+b与双曲线y=(x>0)交于A,B两点,与x轴、y轴分别交于E,F两点,连结OA,OB,若S△OBF +S△OAE=4S△AOB,则b的值是.三、解答题(本题有3小题,共36分)11.(10分)已知a,b,c均为非负实数,且满足2a+3b﹣c=2,3a+b+2c=1,记S=3a+b﹣7c.求S的取值范围.12.(12分)如图,在⊙O中,AB为直径,Rt△OBC的直角边OC=BC=1,过点C 作直线DE∥AB交圆于D、E两点,BD与OC交于点F.(1)求∠BDE的度数;(2)证明:△CDF的面积小于.13.(14分)已知:关于x的方程x2﹣(m+1)x+m﹣2=0有两异号实数根x1,x2,且x1>|x2|,若x12+x22=8.(1)求m的值;(2)若函数y=x2+bx+c的图象与x轴的两个交点的横坐标为﹣x1+1,﹣x2+1.求当1≤x≤2时,函数y=|x2+bx+c|的最大值.2014-2015学年浙江省丽水市初三上学期期末数学试卷参考答案与试题解析一、选择题(本题有6小题,每小题4分,共24分)1.(4分)已知,则a﹣b的值是()A.2B.±2C.6D.±6【解答】解:∵,∴a2﹣4=0,a=±2,;∴2a+b=0,∴b=±4,∴a﹣b=6,a+b=﹣6,故选:D.2.(4分)已知,则的值是()A.4B.C.8D.【解答】解:﹣==2,即x﹣y=﹣2xy,则原式====8.故选:C.3.(4分)自然数n满足等式,这样n的个数是()A.3B.4C.5D.7【解答】解:①当n2﹣2n=1 时,无论指数为何值等式成立.解方程得n=(不合题意,舍去);②当n2﹣2n=﹣1 时,解得:n=1;③当n2﹣2n≠±1 时,当n为自然数,则n2﹣2n≠0,所以n2+47=16n﹣16等式成立.解方程得n1=7,n2=9.④当n=2时,左边=051=0,右边=016=0,所以左边=右边,n=2成立,⑤当n=0,左边=右边=0,成立,综上所述,满足条件的n值有5个.故选:C.4.(4分)如果△ABC的两边长分别为a、b,那么△ABC的面积不可能等于()A.(a2+b2)B.(a2+b2)C.(a+b)2D.ab【解答】解:∵△ABC的两边长时a、b,=absinC,∴S△ABC=ab,当∠C=90°时,△ABC的面积最大,且S△ABC又∵(a﹣b)2≥0,即ab≤(a2+b2),A、∵S=(a2+b2),故此选项可能;B、∵(a2+b2)>(a2+b2),故此选项不可能;C、∵(a+b)2=[(a2+b2)+ab]≥ab,故此选项可能;D、∵ab<ab,故此选项可能.故选:B.5.(4分)如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE 折叠,使点A恰好落在CD上的点F,若△BCF的周长为14,CF的长为3,则△DEF的周长为()A.8B.7C.6D.5【解答】解:由折叠的性质得:△FBE≌△ABE,∴BF=AB,EF=AE,∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,∵△BCF的周长为14,∴BC+BF+CF=14,∴BC+DC=14﹣3=11,∴△DEF的周长=DE+EF+DF=DE+AE+DC﹣CF=AD+DC﹣CF=11﹣3=8;故选:A.6.(4分)如图,在△ABC中,AD=DC,BE=EF=FC,AE、AF与BD相交于点G、H.已的值是()知,则S四边形GEFHA.B.C.D.【解答】解:连接DF,如图.∵AD=DC,EF=FC,∴DF∥AE,DF=AE∵GE∥DF,∴△BGE∽△BDF,∴==.∵BE=EF,∴BF=2BE,∴BD=2BG,DF=2EG,∴AE=2DF=4EG,∴AG=3EG=DF.∵AG∥DF,∴△AHG∽△FHD,∴==.设HD=2k,则HG=3k,DG=5k,BD=2BG=2GD=10k.∵==,==,∴==,=S△ABC.∴S△AGH∵===,=S△ABC,∴S△AEF∴S=S△AEF﹣S△AGH=S△ABC﹣S△ABC=S△ABC.四边形EFHG∵==,==,∴=×=.=,∵S△AHD∴S=3,△ABC=×3=.∴S四边形EFHG故选:D.二、填空题(本题有4小题,每小题5分,共20分)7.(5分)因式分解:x2﹣4xy﹣2x+4y2+4y﹣3=(x﹣2y﹣3)(x﹣2y+1).【解答】解:x2﹣4xy﹣2x+4y2+4y﹣3=(x﹣2y)2﹣2(x﹣2y)﹣3=(x﹣2y﹣3)(x﹣2y+1).故答案为:(x﹣2y﹣3)(x﹣2y+1).8.(5分)将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是.【解答】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共6×6×6=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为.故本题答案为:.9.(5分)如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是20°.【解答】解:如图延长AB到E使BE=AD,连接CE,∴AE=AD+DB+BE=2AD+BD,∵AC=2AD+BD,∴AE=AC,∵∠A=60°,∴△AEC是等边三角形,∴∠E=∠ACE=60°,∵∠B=4∠ACD,设∠ACD=x,则∠ABC=4x,在△ADC与△EBC中,,∴△ADC≌△EBC,∠ACD=∠ECB=x,∴∠ABC=∠E+∠BCE,∴4x=60°+x,∴x=20°,∴∠BCD=60°﹣20°﹣20°=20°,故答案为:20°10.(5分)如图,直线y=﹣2x+b与双曲线y=(x>0)交于A,B两点,与x轴、y轴分别交于E,F两点,连结OA,OB,若S△OBF +S△OAE=4S△AOB,则b的值是5.【解答】解:在y=﹣2x+b中,令y=0,则x=,令x=0,则y=b,∴E(,0),F(0,b),∴OE=,OF=b,过点A作AN⊥OE于N,∴△AEN∽△EFO,∴==,设A(x1,y1),B(x2,y2),由得2x2﹣bx+3=0,∴x1•x2=,∴y1•y2=6,∴y1=2x2,y2=2x1,∵S△OBF=•OF•x2=•bx2,S△AOE=OE•y1=•2x2,∴S△BOF=S△AOE,∴AE=BF,∵S△OBF+S△OAE=4S△AOB,∴AE=BF=2AB,∴=,∴NA=,EN=,∴ON=,∴A(,),∴=3,∴b=5,故答案为:5.三、解答题(本题有3小题,共36分)11.(10分)已知a,b,c均为非负实数,且满足2a+3b﹣c=2,3a+b+2c=1,记S=3a+b﹣7c.求S的取值范围.【解答】解:解方程组得,∵a,b,c均为非负实数,∴,解得0≤c≤,∴S=3a+b﹣7c=1﹣2c﹣7c当c=0时,S=1,当c=时,S=﹣,∴﹣≤S≤1.12.(12分)如图,在⊙O中,AB为直径,Rt△OBC的直角边OC=BC=1,过点C 作直线DE∥AB交圆于D、E两点,BD与OC交于点F.(1)求∠BDE的度数;(2)证明:△CDF的面积小于.【解答】解:(1)如图,作CM⊥AB于M,DN⊥AB于N,连接OD.在Rt△OCB中,∵∠OCB=90°,OC=BC=1,∴OB=OD===,∵CM⊥OB,∴OM=MB,∴CM=OM=BM=,∵DE∥AB,DN⊥AB,CM⊥AB,∴DN=CM=,∴sin∠DON==,∴∠DON=30°=∠ODC,∵OD=OB,∴∠ODB=∠OBD=∠CDB,∴∠BDE=∠CDO=15°.(2)在Rt△BCF中,∵∠CBF=30°,BC=1,∴CF=,OF=1﹣,∴DC:OB=CF:OF,∴CD==,=••=,=,∵S△DOC=•S△DOC=,∴S△CDF∵≈1.7,<.∴S△CDF13.(14分)已知:关于x的方程x2﹣(m+1)x+m﹣2=0有两异号实数根x1,x2,且x1>|x2|,若x12+x22=8.(1)求m的值;(2)若函数y=x2+bx+c的图象与x轴的两个交点的横坐标为﹣x1+1,﹣x2+1.求当1≤x≤2时,函数y=|x2+bx+c|的最大值.【解答】解:(1)根据题意得x1+x2=m+1>0,x1x2=m﹣2<0,∵x12+x22=(x1+x2)2﹣2x1x2=8,∴(m+1)2﹣2(m﹣2)=8,整理得m2=3,解得m1=,m2=﹣.∴m=,∵△=(m+1)2﹣4(m﹣2)=(m﹣1)2+8>0,∴m的值为.(2)∵(﹣x1+1)+(﹣x2+1)=﹣b,(﹣x1+1)(﹣x2+1)=c,∴b=x1+x2﹣2=m+1﹣2=m﹣1=﹣1,c=x1x2﹣(x1+x2)+1=m﹣2﹣m﹣1+1=﹣2,∴y=|x2+bx+c|变形为y=|x2+(﹣1)x﹣2|,当1≤x≤2时,x=2,y有最大值2.附赠模型一:手拉手模型—全等等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)导角核心图形任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)模型总结:核心图形如右图,核心条件如下:①OA=OB,OC=OD;②∠AOB=∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图 △OCD ∽△OAB ⇔△OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA 非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB =90°时,除△OCD ∽△OAB ⇔△OAC ∽△OBD 之外还会隐藏OCD OAOBOC OD AC BD ∠===tan ,满足BD ⊥AC ,若连接AD 、BC ,则必有 2222CD AB BC AD +=+;BD AC S ABCD ⨯=21(对角线互相垂直四边形)。
2015浙江丽水中考数学模拟
2015年浙江省丽水市中考数学模拟试卷(二)一、选择题(共10小题,每小题4分,满分40分)1.下列的运算中,其结果正确的是()A.x+2=5 B. 16x2﹣7x2=9x2 C. x8÷x2=x4 D. x(﹣xy)2=x2y22.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是()A. B. C. D.3.下列计算错误的是()A. x3•x4=x7 B.(x2)3=x6 C. x3÷x3=x D. x4+x4=2x44.关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A. 3种 B. 4种 C. 6种 D. 12种6.若a>0,则点P(﹣a,2)应在()A.第﹣象限内 B.第二象限内 C.第三象限内 D.第四象限内7.设a=﹣,b=2﹣,c=﹣2,则a,b,c的大小关系是()A. a>b>c B. a>c>b C. c>b>a D. b>c>a8.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A. 50 B. 52 C. 54 D. 569.给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有()A. 0个 B. 1个 C. 2个 D. 3个10.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC 上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A. 6 B. 7 C. 8 D. 9一.填空题,每小题5分,满分25分11.计算= .12.已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=×(华氏温度﹣32).若华氏温度是68℉,则摄氏温度是℃.13.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k= ;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x的增大而减小,则k= .14.诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:.15.如图,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.三、解答题16.解方程:x2+2x+3﹣=0.17.已知:如图,AM是△ABC的中线,∠DAM=∠BAM,CD∥AB.求证:AB=AD+CD.18.某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的关系式;(2)如果该厂每天至少投入成本30 000元,那么每天至少获利多少元?(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?19.已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.(1)在图1中,只用圆规在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;(2)在图2中,只用圆规在直线l外画出一点P,使得点A,P所在直线与直线l平行.20.如图,已知Rt△ADC中,∠D=90°,以AD为直径的⊙O交斜边AC于F,OE∥AC,交DC 于E.(1)求证:EF为⊙O的切线;(2)求证:2EF2=CF•OE.21.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O 运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs.(1)Q点的坐标为(用含x的代数式表示);(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你探求点G随点P,Q运动所形成的图形,并说明理由.2015年浙江省丽水市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列的运算中,其结果正确的是()A.x+2=5 B. 16x2﹣7x2=9x2 C. x8÷x2=x4 D. x(﹣xy)2=x2y2考点:整式的混合运算.分析:利用整式运算的方法逐一计算,进一步比较得出答案即可.解答:解:A、3x+2不能合并,此选项错误;B、16x2﹣7x2=9x2,此选项正确;C、x8÷x2=x6,此选项错误;D、x(﹣xy)2=x3y2,此选项错误.故选:B.点评:此题考查整式的混合运算,掌握符号的判定与运算的方法是解决问题的关键.2.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是()A. B. C. D.考点:剪纸问题;正方形的性质.专题:压轴题;操作型.分析:第一个正方形沿虚线剪成两部分,这两部分可拼成平行四边形;第二个既可以拼成平行四边形,也可以拼成下三角和梯形;第三个拼成的图形为特殊的平行四边形正方形;第四个可拼成平行四边形.解答:解:故选B.点评:本题主要考查剪纸问题,充分考查了学生的空间想象能力.3.下列计算错误的是()A. x3•x4=x7 B.(x2)3=x6 C. x3÷x3=x D. x4+x4=2x4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解答:解:A、x3•x4=x7,正确;B、(x2)3=x6,正确;C、应为x3÷x3=1,故本选项错误;D、x4+x4=2x4,正确.故选C.点评:本题主要考查同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则,熟练掌握运算性质是解题的关键.4.关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣考点:一元一次不等式组的整数解.专题:计算题;压轴题.分析:首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.解答:解:不等式组的解集是2﹣3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2﹣3a<17,解得﹣5<a≤﹣.故选:C.点评:正确解出不等式组的解集,正确确定2﹣3a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A. 3种 B. 4种 C. 6种 D. 12种考点:推理与论证.专题:压轴题.分析:若甲作第一棒时,乙、丙、丁有6种排列方法;若甲作第四棒时,也有6种排列方法.所以共有12种接棒顺序.解答:解:当甲作第一棒时,接棒顺序有:①甲、乙、丙、丁;②甲、乙、丁、丙;③甲、丙、乙、丁;③甲、丙、丁、乙;⑤甲、丁、乙、丙;⑥甲、丁、丙、乙.因此共有6种接棒顺序.同理当甲做第四棒时,也有6种接棒顺序.因此共有6+6=12种接棒顺序.故选D.点评:此题主要是考虑乙、丙、丁的排列方法.解决此类题时,最好按序排列,以免造成头绪混乱,漏解错解的状况.6.若a>0,则点P(﹣a,2)应在()A.第﹣象限内 B.第二象限内 C.第三象限内 D.第四象限内考点:点的坐标.分析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵a>0,∴﹣a<0,∵点P的横坐标是负数,纵坐标是正数,∴点P在平面直角坐标系的第二象限.故选B.点评:解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.设a=﹣,b=2﹣,c=﹣2,则a,b,c的大小关系是()A. a>b>c B.a>c>b C. c>b>a D. b>c>a考点:实数大小比较.分析:先把各无理数进行估算,再比较大小即可.也可以通过比较它们倒数的大小解决问题.解答:解:∵≈1.73,≈1.4,≈2.23,∴a=﹣≈1.73﹣1.41=0.32;b=2﹣≈2﹣1.73=0.27;c=﹣2≈2.23﹣2=0.23.∵0.32>0.27>0.23,∴a>b>c.故选A.点评:本题考查了同学们对无理数大小的估算能力,比较简单.8.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A. 50 B. 52 C. 54 D. 56考点:切线长定理.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.解答:解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2(16+10)=52.故选B.点评:熟悉圆外切四边形的性质:圆外切四边形的两组对边和相等.9.给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有()A. 0个 B. 1个 C. 2个 D. 3个考点:等腰梯形的性质;多边形;三角形的外接圆与外心;三角形的内切圆与内心.分析:对各个结论进行分析从而确定正确的答案.解答:解:①:比如一般的菱形的各边相等,但各角不相等,所以命题错误;②:等腰梯形不是中心对称图形,所以命题错误;③:三角形的内切圆的圆心是三条角平分线的交点,外接圆的圆心是三条垂直平分线的交点,只有等边三角形才能重合,所以命题错误;④:圆心到直线的距离等于半径的直线,是圆的切线,不能说圆心到直线上一点的距离,错误.故选A.点评:理解各个概念,说明一个命题的错误,只需举出反例即可.10.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC 上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A. 6 B. 7 C. 8 D. 9考点:勾股定理的应用.专题:压轴题;规律型.分析:根据勾股定理可以求出每阶台阶的宽,依据BC的长,即可解答.解答:解:如图,易证△BDE≌△EFG≌△GKH≌△HLM,可得BD=EF=GK=HL=BC﹣DC=﹣72=8cm.根据此规律,共有80÷8﹣1=9个这样的矩形.故选D.点评:本题将勾股定理和规律的探索与实际问题相结合,有一定的难度,善于观察题目的信息是解题以及学好数学的关键.一.填空题,每小题5分,满分25分11.计算= .考点:分母有理化.专题:计算题.分析:运用二次根式的乘法法则,将分子的二次根式化为积的形式,约分,比较简便.解答:解:原式==.故答案为:.点评:主要考查了二次根式的化简和二次根式的运算法则.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.12.已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=×(华氏温度﹣32).若华氏温度是68℉,则摄氏温度是20 ℃.考点:有理数的混合运算.专题:应用题.分析:把华式温度68℉,直接代入摄式温度=×(华式温度﹣32),求值即可.解答:解:当华式温度=68℉,摄式温度=×(华式温度﹣32)=×(68﹣32)=×36=20℃.点评:注意按照两者的转换公式进行计算,熟练有理数的混合运算法则.13.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k= 3 ;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x 的增大而减小,则k= 2 .考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:把点P的坐标代入反比例函数关系式来求k的值;当k>0时,反比例函数y=的图象:当x>0时,y随x的增大而减小.解答:解:∵点P(m,n)在反比例函数y=的图象上.且m=k,n=k﹣2,∴k﹣2=,解得 k=3;∵m+n=k,OP=2,∴,解得 k=2或k=﹣1.又∵当x>0时,y随x的增大而减小,∴k>0,∴k=2符合题意.故答案是:3;2.点评:本题考查了反比例函数的性质,反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.14.诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:3盏灯.考点:一元一次方程的应用.分析:要求尖头几盏灯,就要先设出求知数,再根据倍加增求出各层的灯数,然后根据共灯三百八十一的等量关系列出方程求解.解答:解:设顶层有x盏灯.根据题意得:x+2x+4x+8x+16x+32x+64x=381,解得:x=3.因此尖头(最顶层)有3盏灯.故答案为:3盏灯.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.如图,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是()cm.考点:解直角三角形;平移的性质;旋转的性质.专题:压轴题.分析:综合利用直角三角形的性质和锐角三角函数的概念及旋转,平移的性质解题.解答:解:如图,BC=AB•cos60°=6.由平移的性质知:∠WQS=∠ACB=90°,WQ=BC=6,∴BQ=WQ•cot60°=2.∴QC=BC﹣BQ=6﹣2.点评:本题考查了学生综合运用数学知识的能力,注意旋转和平移后的图形与原图形全等.三、解答题16.解方程:x2+2x+3﹣=0.考点:无理方程.分析:设=y,则原方程即可转化为关于y的方程,解方程求得y的值,然后转化为关于x的方程,从而求解.解答:解:设=y,则x2+2x=y2﹣5,则原式即:y2﹣y﹣2=0,解得:y1=2,y2=﹣1(舍去),则x2+2x=4﹣5,即(x+1)2=0,解得x1=x2=﹣1.点评:本题考查了无理方程的解法,在解无理方程是最常用的方法是两边平方法及换元法,本题用了换元法.17.已知:如图,AM是△ABC的中线,∠DAM=∠BAM,CD∥AB.求证:AB=AD+CD.考点:全等三角形的判定与性质.分析:首先画出辅助线:延长AM,与CD的延长线相交于点N.再证明△ABM≌△NCM,可得AB=CN,再证明AD=ND,即可得到AB=CN=AD+CD.解答:证明:延长AM,与CD的延长线相交于点N.∵CD∥AB,∴∠BAM=∠N.又∵∠BMA=∠CMN,BM=CM,∴△ABM≌△NCM.∴AB=CN.∵∠BAM=∠N,∠DAM=∠BAM,∴∠DAM=∠N.∴AD=ND.∴AB=CN=AD+CD.点评:此题主要考查了全等三角形的判定与性质,解题的关键是证明AD=ND,AB=CN.18.某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.5(1)请写出y关于x的关系式;(2)如果该厂每天至少投入成本30 000元,那么每天至少获利多少元?(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?考点:一元一次不等式的应用;一次函数的应用.专题:图表型.分析:(1)获利y元=A种品牌的酒的获利+B种品牌的酒的获利.(2)关系式为:A种品牌的酒的成本+B种品牌的酒的成本≥30 000,算出x的最小整数值代入(1)即可(3)关键描述语是:利润率最大,应选取利润率最大的生产最大数量.解答:解:(1)根据题意,得y=20x+15(700﹣x),即y=5x+10500.(2)根据题意,得50x+35(700﹣x)≥30000,解得x≥=366.因为x是整数,所以取x=367,代入y=5x+10500,得y=12335.答:每天至少获利12335元.(3)生产A种酒的利润率为=;生产B种酒的利润率为=,因为<,所以要使每天的利润率最大,应生产A种酒0瓶,B种酒700瓶.答:应生产A种酒0瓶,B种酒700瓶.点评:解决本题的关键是读懂题意,根据关键描述语找到符合题意的等量关系和不等关系式组.19.已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.(1)在图1中,只用圆规在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;(2)在图2中,只用圆规在直线l外画出一点P,使得点A,P所在直线与直线l平行.考点:作图—复杂作图.专题:压轴题.分析:(1)以点A为圆心,大于点A到直线l的距离长为半径画弧,与直线l交于B,C 两点,则点B,C即为所求.或在直线l上任取一点B,以点B为圆心,AB长为半径画弧,与直线l交于点C,则点B,C即为所求;(2)在直线l上任取B,C两点,以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧交于点P.则点P即为所求.解答:解:(1)画法一:以点A为圆心,大于点A到直线l的距离长为半径画弧,与直线l交于B,C两点,则点B,C即为所求.画法二:在直线l上任取一点B,以点B为圆心,AB长为半径画弧,与直线l交于点C,则点B,C 即为所求.(2)画法:在直线l上任取B,C两点,以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧交于点P.则点P即为所求.点评:此题通过作图考查了等腰三角形的性质和平行四边形的性质.20.如图,已知Rt△ADC中,∠D=90°,以AD为直径的⊙O交斜边AC于F,OE∥AC,交DC 于E.(1)求证:EF为⊙O的切线;(2)求证:2EF2=CF•OE.考点:切线的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连接OF、DF交OE于点G,在△ODF和△EFD中,利用等边对等角证明∠ODF=∠OFD,∠EDF=∠EFD,则∠OFE=∠ODC=90°,从而证得;(2)利用切割线定理,以及直角三角形斜边上的中线等于斜边的一半,利用CD分别表示出2EF2和CF•OE,即可证得.解答:证明:(1)连接OF、DF交OE于点G.∵AD是圆的直径,∴∠AFD=90°,即∠DF⊥AC,又∵OE∥AC,∴OE⊥DF,又∵OD=OF,∴DG=GF,∠ODF=∠OFD,∴DE=EF,∴∠EDF=∠EFD,∴∠OFE=∠ODC=90°,∴OF⊥EF,则EF是圆的切线;(2)证明:∵O是AB的中点,OE∥AC,∴OE是△ABC的中位线,∴OE=AC,即AC=2OE,又∵CD是圆的切线,∴CD2=CF•AC=2CF•OE,即CF•OE=CD2.∵在直角△DFC中,E是CD的中点,∴EF=C D,即CD=2EF,∴2EF2=CD2,∴2EF2=CF•OE.点评:本题考查了切线的判定定理、切割线定理和直角三角形的性质定理,利用CD分别表示出2EF2和CF•OE是关键.21.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O 运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs.(1)Q点的坐标为(2+,4﹣)(用含x的代数式表示);(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你探求点G随点P,Q运动所形成的图形,并说明理由.考点:等腰三角形的判定;一元二次方程的应用;坐标与图形性质;待定系数法求一次函数解析式;勾股定理.专题:压轴题.分析:(1)如果过点A作OB的垂线,不难求出cos∠ABO=,sin∠ABO=,因此,Q移动时,横向移动的速度是1•cos∠ABO=单位/秒,纵向移动的速度是1•sin∠ABO=单位/秒,因此Q得坐标就可表示为(2+,4﹣).(2)有了A、Q的坐标,如果分别过A、Q做x轴的垂线,通过构成的直角三角形,不难用x表示出AQ、AP和PQ的值,然后分AP=AQ,PQ=AP两种情况进行讨论,得出x的值.(3)通过观察G点似乎应该在三角形ABO的中位线上,因此它的轨迹应该是个线段.可设AB、BO的中点分别为点M、N,设M N、PQ相交于点G′,只要证明G′与G重合,也就是G′是QP的中点即可.过点P作PK∥AO交AB于点K.只要证明KM=QM就行了,根据三角形AOB为等腰三角形,AQ、PK、MN都平行,不难得出AQ=BK,AM=BM,因此便可得出KM=QM 了.由此便可得出G′是PQ中点,与G重合.解答:解:(1)(2+,4﹣).(2)由题意,得P(5﹣x,0),0<x≤5由勾股定理求得PQ2=(﹣3)2+(4﹣)2AP2=(3﹣x)2+42若AQ=AP,则x2=(3﹣x)2+42,解得x=若PQ=AP则(﹣3)2+(4﹣)2=(3﹣x)2+42即x2﹣10x=0,解得x1=0(舍去),x2=经检验,当x=或x=时,△APQ是一个以AP为腰的等腰三角形.(3)设AB、BO的中点分别为点M、N,则点G随点P、Q运动所形成的图形是线段MN设MN,PQ相交于点G′,过点P作PK∥AO交AB于点K∴PK∥AO∥MN∴△A0B∽△KPB∽△MNB.∵AB=OB∴BK=BP=AQ,BM=BN∴BK﹣BM=AQ﹣BM,BK﹣BM=AQ﹣AM即KM=QM∴PG′=QG′∴G′是PQ的中点即点G′与点G重合.∴点G随点P、Q运动所形成的图形是△OBA的中位线MN.点评:本题考查综合应用点的坐标,等腰三角形的判定等知识进行推理论证、运算及探究证明的能力.。
2015年浙江省丽水市中考数学试卷(含解析版).doc
2015年浙江省丽水市中考数学试卷(本试卷满分120分,考试时间120分钟)参考公式:抛物线2y ax bx c =++的顶点坐标为24,24b b ac a a ⎛⎫-- ⎪⎝⎭.一、选择题(本题有10小题,每小题3分,共30分) 1. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3 2. 计算32)(a 结果正确的是( )A. 23aB. 6aC. 5aD. a 63. 由4个相同小立方体搭成的几何体如图所示,则它的主视图是( )A.B. C. D.4. 分式x --11可变形为( ) A. 11--x B. x +11 C. x +-11 D. 11-x5. 一个多边形的每个内角均为120°,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 七边形6. 如图,数轴上所表示关于x 的不等式组的解集是( )A. x ≥2B. x >2C. x >-1D. -1<x ≤2 7. 某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )A. 30,27B. 30,29C. 29,30D. 30,28 8. 如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示αcos 的值,错误..的是( )A.BC BD B. AB BC C. AC AD D. ACCD9. 平面直角坐标系中,过点(-2,3)的直线l 经过一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( )A. b a <B. 3<aC. 3<bD. 2-<c10. 如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有( )A. 3种B. 6种C. 8种D. 12种二、填空题(本题有6小题,每小题4分,共24分) 11. 分解因式:=-29x ▲ .12. 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 ▲ .13. 如图,圆心角∠AOB =20°,将»AB 旋转n ︒得到»CD ,则»CD 的度数是 ▲ 度14. 解一元二次方程0322=-+x x 时,可转化为两个一元一次方程,请写出其中的一个一元一次方程 ▲ .15. 如图,四边形ABCD 与四边形AECF 都是菱形,点E ,F 在BD 上,已知∠BAD =120°,∠EAF =30°,则AEAB= ▲ .16. 如图,反比例函数xky =的图象经过点(-1,22-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP . (1)k 的值为 ▲ .(2)在点A 运动过程中,当BP 平分∠ABC 时,点C 的坐标是 ▲ .三、解答题(本题有8小题,共66分,每个小题都必须写出解答过程)17. (2015年浙江丽水6分)计算:10)21()2(4---+-18. (2015年浙江丽水6分)先化简,再求值:)1)(1()3(a a a a +-+-,其中33=a .19.(2015年浙江丽水6分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC 上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.20. (2015年浙江丽水8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年浙江省丽水市中考数学试卷解析(本试卷满分120分,考试时间120分钟)参考公式:抛物线2y ax bx c =++的顶点坐标为24,24b b ac a a ⎛⎫-- ⎪⎝⎭.一、选择题(本题有10小题,每小题3分,共30分)1. (2015年浙江丽水3分) 在数-3,-2,0,3中,大小在-1和2之间的数是【 】A. -3B. -2C. 0D. 3 【答案】C.【考点】有理数大小比较.【分析】在-1和2之间的数必然大于-1,小于2,四个答案中只有0符合条件. 故选C. 2. (2015年浙江丽水3分) 计算32)(a 结果正确的是【 】A. 23a B. 6a C. 5a D. a 6 【答案】B. 【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:23236()a a a ⨯==.故选B.3. (2015年浙江丽水3分) 由4个相同小立方体搭成的几何体如图所示,则它的主视图是【 】A.B. C. D.【答案】A.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,从正面看易得有两层,下层有2个正方形,上层左边有一个正方形.故选A .4. (2015年浙江丽水3分)分式x--11可变形为【 】 A. 11--x B. x +11 C. x +-11 D. 11-x【答案】D.【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案:分式11x--的分子分母都乘以﹣1,得11x-.故选D.5. (2015年浙江丽水3分)一个多边形的每个内角均为120°,则这个多边形是【】A. 四边形B. 五边形C. 六边形D. 七边形【答案】C.【考点】多边形的外角性质.【分析】∵多边形的每个内角均为120°,∴外角的度数是:180°﹣120°=60°.∵多边形的外角和是360°,∴这个多边形的边数是:360÷60=6.故选C.6. (2015年浙江丽水3分)如图,数轴上所表示关于x的不等式组的解集是【】A. x≥2B. x>2C. x>-1D. -1<x≤2【答案】A.【考点】在数轴上表示不等式的解。
【分析】根据不等式的解集在数轴上表示方法,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 因此,数轴上所表示关于x不等式的解集是x≥2.故选A.7. (2015年浙江丽水3分)某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是【】A. 30,27B. 30,29C. 29,30D. 30,28【答案】B.【考点】众数;中位数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中30出现3次,出现的次数最多,故这组数据的众数为30.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为27,27,28,29,30,30,30,∴中位数是按从小到大排列后第4个数为:29.故选B .8. (2015年浙江丽水3分)如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示αcos 的值,错误..的是【 】A.BC BD B. AB BC C. AC AD D. ACCD【答案】C.【考点】锐角三角函数定义. 【分析】根据余弦函数定义:cos α=邻边斜边对各选项逐一作出判断: A. 在Rt BCD ∆中,cos BDBC α=,正确;B. 在Rt ABC ∆中, cos BCABα=,正确;C 、D.在Rt ACD ∆中,∵ACD α∠=,∴ cos CDACα=.故C 错误;D 正确.故选C .9. (2015年浙江丽水3分) 平面直角坐标系中,过点(-2,3)的直线l 经过一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是【 】A. b a <B. 3<aC. 3<bD. 2-<c 【答案】D.【考点】一次函数的图象和性质;数形结合思想的应用. 【分析】如答图,可知,>,>3,>3,2a b a b c <- ,故选D .10. (2015年浙江丽水3分)如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种B. 6种C. 8种D. 12种 【答案】B .【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用. 【分析】由图示,根据勾股定理可得:2,5,25,5a b c d ==== .∵<,<,,<<a b c a d c b d c b a d b d +++=-+ ,∴根据三角形构成条件,只有,,a b d 三条线段首尾相接能组成三角形.如答图所示,通过平移,,a b d 其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B .二、填空题(本题有6小题,每小题4分,共24分) 11. (2015年浙江丽水4分)分解因式:=-29x ▲ . 【答案】(3)(3)x x +- . 【考点】应用公式法因式分解.【分析】因为22293x x -=-,所以直接应用平方差公式即可:22293(3)(3)x x x x -=-=+-.12. (2015年浙江丽水4分) 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 ▲ . 【答案】13. 【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 所以,求从标有1到6序号的6张卡片中任意抽取一张,抽到序号是3的倍数的概率即看是3的倍数的情况数占总情况数的多少即可:共有6张牌,是3的倍数的有3,6共2张,∴抽到序号是3的倍数的概率是2163=. 13. (2015年浙江丽水4分)如图,圆心角∠AOB =20°,将»AB 旋转n ︒得到»CD ,则»CD 的度数是 ▲ 度【答案】20.【考点】旋转的性质;圆周角定理. 【分析】如答图,∵将»AB 旋转n ︒得到»CD ,∴根据旋转的性质,得»»CD AB =. ∵∠AOB =20°,∴∠COD =20°.∴»CD的度数是20°. 14. (2015年浙江丽水4分)解一元二次方程0322=-+x x 时,可转化为两个一元一次方程,请写出其中的一个一元一次方程 ▲ . 【答案】30x +=(答案不唯一). 【考点】开放型;解一元二次方程.【分析】∵由2230x x +-=得()()310x x +-=,∴30x +=或10x -=.15. (2015年浙江丽水4分)如图,四边形ABCD 与四边形AECF 都是菱形,点E ,F 在BD 上,已知∠BAD =120°,∠EAF =30°,则AEAB= ▲ .62+ 【考点】菱形的性质;等腰直角三角形和含30度角直角三角形的性质;特殊元素法的应用. 【分析】如答图,过点E 作EH ⊥AB 于点H ,∵四边形ABCD 与四边形AECF 都是菱形,∠BAD =120°,∠EAF =30°, ∴∠ABE =30°,∠BAE =45°. 不妨设2AE∴在等腰Rt AEH ∆中,1AH EH ==;在Rt BEH ∆中,3BH =∴31AB . ∴31622AB AE ++==. 16. (2015年浙江丽水4分)如图,反比例函数xky =的图象经过点(-1,22-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP . (1)k 的值为 ▲ .(2)在点A 运动过程中,当BP 平分∠ABC 时,点C 的坐标是 ▲ .【答案】(1)22k = ;(2)(2,2-).【考点】反比例函数综合题;曲线上点的坐标与方程的关系;勾股定理;等腰直角三角形的性质;角平分线的性质;相似、全等三角形的判定和性质;方程思想的应用. 【分析】(1)∵反比例函数ky x=的图象经过点(-1,22-), ∴22221kk -=⇒=-. (2)如答图1,过点P 作PM ⊥AB 于点M ,过B 点作BN ⊥x 轴于点N ,设22,A x ⎛⎫ ⎪ ⎪⎝⎭ ,则22,B x ⎛⎫- ⎪ ⎪⎝⎭-. ∴2282AB x x =+. ∵△ABC 是等腰直角三角形,∴2282BC AC x x ⎛⎫==+ ⎪⎝⎭,∠BAC =45°.∵BP 平分∠ABC ,∴()BPM BPC AAS ∆∆≌.∴2282BM BC x x ⎛⎫==+ ⎪⎝⎭. ∴()22822AM AB BM x x=-=-+.∴()22822PM AM x x==-+. 又∵228OB x x =+, ∴()22821OM BM OB x x =-=-+. 易证OBN OPM ∆∆∽,∴ON BN OBOM PM OP==.由ON BN OM PM=x x ⎛----=解得x .∴)2A,()2B .如答图2,过点C 作EF ⊥x 轴,过点A 作AF ⊥EF 于点F ,过B 点作BE ⊥EF 于点E , 易知,()BCE CAFHL ∆∆≌,∴设CE AF y ==. 又∵BC BE y ==,∴根据勾股定理,得222BCBE CE =+,即(()222yy =+.∴220y +-=,解得2y =2y =+.∴由)2A,()2B 可得(2,C .三、解答题(本题有8小题,共66分,每个小题都必须写出解答过程) 17. (2015年浙江丽水6分)计算:1)21()2(4---+- 【答案】解:原式=4123+-=.【考点】实数的运算;绝对值;零指数幂;负整数指数幂.【分析】针对绝对值,零指数幂,负整数指数幂3个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年浙江丽水6分)先化简,再求值:)1)(1()3(a a a a +-+-,其中33=a . 【答案】解:22(3)(1)(1)3113a a a a a a a a -+-+=-+-=-.当a ==131-=【考点】整式的混合运算—化简求值.【分析】根据去括号、平方差公式和合并同类项的法则,化简代数式,将a =代入化简后的代数式求值,可得答案.19. (2015年浙江丽水6分)如图,已知△ABC ,∠C =Rt ∠,AC <BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【答案】解:(1)作图如下:(2)∵△ABC中,∠C=Rt∠,∠B=37°,∴∠BAC=53°.∵AD=BD,∴,∠B=∠BAD=37°∴∠CAD=∠BAC ∠BAD=16°.【考点】尺规作图;线段垂直平分线的性质;直角三角形两锐角的关系;等腰三角形的性质.【分析】(1)因为到A,B两点的距离相等在线段AB的垂直平分线上,因此,点D是线段AB的垂直平分线与BC的交点,据此作图即可.(2)根据直角三角形两锐角互余,求出∠BAC,根据等腰三角形等边对等角的性质,求出∠BAD,从而作差求得∠CAD的度数.20.(2015年浙江丽水8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议。