《方差与标准差》教案
方差和标准差.3方差和标准差
3.3方差和标准差教学设计一、教学目标1、了解方差,标准差公式的产生过程2、熟练掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析总体方差二、教学重点方差、标准差的概念、计算及其运用三、教学难点方差概念的理解和应用四、教材分析《方差与标准差》这节课是选自浙教版八年级上第三章第三节,是在学生学会用平均数,中位数,众数来表示数据集中程度的统计量后的另一种反映数据离散程度的统计量。
是对数据进行分析的另一重要指标。
这节课是七年纪上册“数据与图表”内容的延续,在数据与图表中是着重用图表的形式来反映数据的特征和变化。
而本章则是用统计量来反映数据的特征和变化。
学好本节课,不仅为进一步学好数据分析打好基础,而且在日常生活和实际生产中有着广泛的应用。
计算方差、标准差时,首先要求平均数,因此,求方差、标准差也是求平均数的练习和巩固的过程。
但平均数与方差的最本质的区别是:平均数是反映一组数据的集中程度的统计量而方差是反映一组数据的离散程度的统计量。
五、学情分析根据我自己对所带两个班级学生的了解,他们在分析,推导能力上不是特别强,所以本节的内容我准备按课本的要求来,不做较大的改变,不要求学生解决复杂或生僻的问题。
对于八年级的学生要根据实际选择统计量,并通过数据分析作出判断或预测。
不仅需要学生有教高的综合分析能力,而且要有较丰富的生活实践经验,对于这个年龄段的学生来说,是比较薄弱的。
因此,我在教学中会把握好教学要求,给学生留有充分的时间思考和小组讨论,用集体的智慧来解决难题。
在这堂新课中,我放较大的比重在公式的产生上,既公式的推导过程。
因为中考不允许学生使用计算器,所以在数据的选择上要便于计算,不允许学生使用计算器。
六、教学过程 (一)情景引入 学生观看射击比赛视频提问:一年一度的比赛又要开始了,所有的学员都这么优秀选谁? 设计意图:1、通过视频吸引学生的注意力,让学生的注意力集中到课堂上 2、每个学员都很优秀有自己的特点,所以我们要有一个合理的选拔 标准,从而引出了本堂课的学习内容 (二)合作学习甲、乙两人的测试成绩统计如下:(1)分别算出甲、乙两人的平均成绩. (2)根据这两人的成绩,再画出折线统计图.(3)现要从甲、乙两人中挑选一人参加比赛,你认为挑选哪一位比较适宜?为什么?提问:1、哪组数据围绕其平均数波动较大,波动大反映了什么? 2、谁射击成绩比较稳定?设计意图:1、1,2两个小题学生根据自己现有的知识能够解决,通过给出两个 问题,引导学生仔细观察折线图,因为折线图能够直观反应两人成24 68 成绩(环)10 0 1 2 3 4 5绩水平的高低以及稳定性。
北师大版数学八年级上册《方差与标准差》教学设计1
北师大版数学八年级上册《方差与标准差》教学设计1一. 教材分析《方差与标准差》是北师大版数学八年级上册的一章内容。
本章主要介绍了方差和标准差的概念、计算方法以及它们在实际问题中的应用。
通过本章的学习,学生能够理解方差和标准差的含义,掌握它们的计算方法,并能够运用方差和标准差来描述数据的波动情况。
二. 学情分析学生在学习本章内容之前,已经学习了数据的收集、整理和描述的基本方法,包括平均数、中位数、众数等。
学生对于数据的波动情况有一定的了解,但是可能对于方差和标准差的概念以及计算方法还不够熟悉。
因此,在教学过程中,需要引导学生通过实际问题来理解方差和标准差的概念,并通过练习来掌握它们的计算方法。
三. 教学目标1.理解方差和标准差的概念,掌握它们的计算方法。
2.能够运用方差和标准差来描述数据的波动情况。
3.培养学生的数据分析能力和解决问题的能力。
四. 教学重难点1.方差和标准差的概念的理解。
2.方差和标准差的计算方法的掌握。
五. 教学方法1.采用问题驱动的教学方法,通过实际问题来引导学生学习方差和标准差的概念和计算方法。
2.使用多媒体教学辅助工具,如PPT等,来进行教学演示和讲解。
3.通过课堂练习和课后作业,巩固学生对方差和标准差的理解和计算方法的掌握。
六. 教学准备1.PPT教学演示文稿。
2.实际问题案例和练习题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题来导入本节课的内容。
例如,给出一个班级学生的身高数据,让学生观察数据的波动情况。
引导学生思考如何描述这种波动情况,从而引入方差和标准差的概念。
2.呈现(15分钟)通过PPT演示文稿,介绍方差和标准差的概念、计算方法以及它们在实际问题中的应用。
讲解方差的定义和计算公式,以及标准差的定义和计算公式。
通过示例来演示如何计算一组数据的方差和标准差。
3.操练(15分钟)让学生分组进行练习,每组选择一组数据,计算其方差和标准差。
教师巡回指导,解答学生的问题。
《标准差与方差》数学教案设计
《标准差与方差》数学教案设计一、教学目标1.理解方差的定义和性质,掌握方差的意义和应用。
2.学会计算数据的方差和标准差。
3.培养学生运用统计方法解决实际问题的能力。
二、教学重点与难点1.重点:方差和标准差的定义及计算方法。
2.难点:方差的意义和在实际问题中的应用。
三、教学准备1.教学课件或黑板。
2.数据表格、计算器等教学工具。
四、教学过程一、导入新课(1)引导学生回顾平均数的定义和计算方法。
(2)提出问题:平均数能否完全反映一组数据的特征?为什么?(3)引导学生思考,为引入方差和标准差的概念做铺垫。
二、新课讲解1.讲解方差的定义和性质(1)通过实际例子,让学生感受数据波动的大小。
(2)引导学生理解方差是衡量数据波动程度的统计量。
(3)讲解方差的计算公式和性质。
2.讲解标准差的定义和性质(1)介绍标准差是方差的平方根,用于衡量数据的离散程度。
(2)讲解标准差的计算公式和性质。
3.讲解方差和标准差的意义(1)通过实际例子,让学生感受方差和标准差在数据分析中的作用。
(2)引导学生理解方差和标准差在描述数据分布特征方面的重要性。
三、案例分析1.分析案例一:某班学生的数学成绩(1)给出学绩的数据表格。
(2)引导学生计算平均数、方差和标准差。
(3)让学生讨论:哪个统计量更能反映这组数据的特征?2.分析案例二:某地区气温变化(1)给出某地区气温变化的数据表格。
(2)引导学生计算平均数、方差和标准差。
(3)让学生讨论:如何利用方差和标准差分析气温变化的规律?四、巩固练习1.学生独立完成课后练习题。
2.教师对学生的答案进行点评和讲解。
五、课堂小结2.强调方差和标准差在数据分析中的应用。
六、作业布置1.学生完成课后作业。
2.教师批改作业,了解学生的学习情况。
七、教学反思1.本节课教学效果如何?哪些地方需要改进?2.学生对方差和标准差的理解是否到位?如何提高学生的理解能力?3.在今后的教学中,如何更好地运用案例教学,提高学生的学习兴趣和积极性?八、教学延伸1.引导学生了解其他统计量(如偏度、峰度等)的定义和作用。
八年级数学下册《21.2.2 方差与标准差》教案 沪科版
《21.2.2 方差与标准差》教学目标:1、了解方差的定义和计算公式。
2. 会用方差计算公式来比较两组数据的波动大小。
教学重点:掌握方差求法,教学难点:理解方差公式,应用方差对数据波动情况的比较、判断。
教学过程:一、情景创设:乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。
结果如下(单位:mm):A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.1)请你算一算它们的平均数和极差。
A厂:平均数____________ 极差__________B厂:平均数____________ 极差__________2)是否由此就断定两厂生产的乒乓球直径同样标准?___________3)你认为哪厂生产的乒乓球的直径与标准的误差更小呢?__ ___ ____ _二、探索活动通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。
试一试,做下列的数学活动:1、计算每个数据与平均数的差2、1)把所有差相加,2)把所有差取绝对值相加,3)把这些差的平方相加.想一想:你认为哪种方法更能明显反映数据的波动情况?二、新知讲授:定义:设有n个数据、…,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作.意义:用来衡量一批数据的波动大小.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.方差的算术平方根,即,并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.三、例题讲解例1已知样本数据101,98,102,100,99,则这个样本的标准差是___________.例2 为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm)甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12, 7,7,9,11请你经过计算后回答如下问题:(1)哪种农作物的10株苗长的比较高?(2)哪种农作物的10株苗长的比较整齐?例3 已知的平均数10,方差3,则的平均数为__________,方差为___________.课堂小结:教学反思:第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
方差与标准差教案
方差与标准差教案一、教学目标知识与技能:1. 理解方差的概念,掌握计算一组数据方差的方法。
2. 理解标准差的概念,掌握计算一组数据标准差的方法。
过程与方法:1. 通过实例分析,引导学生探究方差和标准差的计算方法。
2. 利用数学软件或calculator 计算一组数据的方差和标准差。
情感态度与价值观:1. 培养学生对数据的敏感性,提高学生分析数据、处理数据的能力。
2. 培养学生团队协作精神,提高学生沟通交流能力。
二、教学重点与难点重点:1. 方差的概念及其计算方法。
2. 标准差的概念及其计算方法。
难点:1. 方差、标准差的计算公式的推导。
2. 利用数学软件或calculator 计算一组数据的方差和标准差。
三、教学过程1. 导入:通过一组数据的波动情况,引发学生对数据波动性的思考,进而引入方差和标准差的概念。
2. 新课讲解:讲解方差和标准差的定义、计算方法,并通过实例进行分析。
3. 课堂互动:学生分组讨论,每组选取一组数据,计算其方差和标准差,并交流计算过程中的心得体会。
4. 练习巩固:布置适量练习题,让学生独立完成,检验对方差和标准差的理解和掌握程度。
四、课后作业2. 选择一组数据,计算其方差和标准差,并与同学进行交流。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对方差和标准差的理解和应用能力。
关注学生在课堂上的参与程度,激发学生的学习兴趣,提高教学质量。
六、教学策略与方法1. 采用案例分析法,通过具体实例让学生深入了解方差和标准差的概念及计算方法。
2. 利用数学软件或计算器,让学生亲自动手计算方差和标准差,提高实践操作能力。
3. 采用小组讨论法,培养学生的团队合作精神和沟通能力。
4. 运用对比分析法,引导学生对方差和标准差进行深入理解,并掌握它们之间的关系。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论中的表现。
2.2《方差与标准差》教 案 设 计
今天我们一起来探索这个问题。
学生思考计算
从学生熟悉的生活入手,提出问题,引导学生进入新知识的学习,创造一种探索的情境。
通过动手操作观察能更好地促进学生对数学知识的进一步理解。
2
分
钟
数学活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动:
1画一画
2填一填A厂
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
数据
与平均值差
B厂
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
数据
与平均值差
3算一算
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
4想一想
你认为哪种方法更能明显反映数据的波动情况?
学生动笔
学生每两组展开活动。
10
分
钟
师生交流
揭示新知
(3)为什么要除以数据个数n?(是为了消除数据个数的影响).
5.初步运用
在学生理解了方差概念之后,再回到了引例中,通过计算机床甲、乙两组数据的方差,再根据理论说明哪个机床做得更好?
P46
(二)标准差
1.问题:
方差的单位与愿数据的单位相同吗?应该如何办?
2.引出新知----标准差概念
在有些情况下,需要用到方差的算术平方根,即
感知
方差
解决学
生疑问
感知
方差
20
分
钟
实际应用
巩固新知
高中数学教案概率分布的方差与标准差
高中数学教案概率分布的方差与标准差高中数学教案:概率分布的方差与标准差概率分布是概率论中的重要概念,用于描述随机事件发生的规律性。
在高中数学课程中,我们需要了解概率分布的方差与标准差,它们是衡量概率分布离散程度的指标。
本教案将详细介绍方差与标准差的计算方法、性质以及在实际问题中的应用。
1. 方差的计算方法方差是用来度量概率分布离散程度的统计量。
对于离散型随机变量X,其方差的计算公式如下:Var(X) = Σ[(Xi - μ)² * P(Xi)]其中,Xi表示随机变量X的取值,μ表示随机变量X的期望值,P(Xi)表示Xi取值的概率。
例如,某班级学生的考试成绩服从离散型随机变量X,其取值为{60, 70, 80, 90, 100},对应的概率分别为{0.1, 0.2, 0.3, 0.2, 0.2}。
求该班级学生考试成绩的方差。
解:首先计算随机变量X的期望值μ:μ = Σ(Xi * P(Xi)) = 60*0.1 + 70*0.2 + 80*0.3 + 90*0.2 + 100*0.2 = 82然后计算方差Var(X):Var(X) = Σ[(Xi - μ)² * P(Xi)] = (60-82)²*0.1 + (70-82)²*0.2 + (80-82)²*0.3 + (90-82)²*0.2 + (100-82)²*0.2 = 1362. 标准差的计算方法标准差是方差的平方根,它衡量了概率分布离散程度相对于期望值的距离。
标准差的计算公式如下:σ = sqrt(Var(X))继续以前述班级学生考试成绩为例,求该班级学生考试成绩的标准差。
解:首先计算方差Var(X):Var(X) = 136然后计算标准差σ:σ = sqrt(Var(X)) = sqrt(136) ≈ 11.663. 方差与标准差的性质方差和标准差具有以下性质:- 方差和标准差都是非负的。
《方差与标准差》说课稿
《3.3方差和标准差》说课稿一、教材分析本节课选自浙教版八年级数学下册第三章第三节,主要内容是方差和标准差。
本节内容是继平均数、中位数、众数之后出现的新统计量,它反应的是一组数据的离散程度,课本从选拔参加射击比赛的人员引入,通过“合作学习”让学生通过画图来判断两组数据的波动情况,形象直观,这样提出方差的概念,让学生比较自然的接授。
课本在本节中安排了一个例子,进行了有关方差的计算,其目的在于让学生能掌握算理和算法,并进一步让学生理解方差这一统计量是反应一组数据的稳定性。
二、学情分析:方差公式:比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
1.首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。
教师在授课过程中可以多举几个生活中的小例子,比如:选择运动员、选择质量稳定的电器等。
学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均水平是不够的。
2.波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。
可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
3.第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量。
构思:教师的“教”体现在创设情景-----组织探究----发现规律----熟练运用学生的“学”体现在通过对现实生活中的具体问题情境的分析和探究,发现了在实际生活应用中需要方差这样新的统计量:反映一组数据与其平均值的离散程度,也就是用来衡量一批数据的波动大小,在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定三、教法分析:情境法----对具体的实际情境进行分析和计算发现方差出现的必要性。
北师大版八年级上册数学6.4.1方差与标准差教案
在今天这节课中,我们学习了方差与标准差的概念及其计算方法。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课部分,我通过提出与日常生活相关的问题来激发学生的兴趣。这种方法在一定程度上确实能吸引学生的注意力,但我觉得还可以进一步优化。例如,可以让学生提前收集一些数据,课上分享他们所关注的数据波动现象,这样既能增强学生的参与感,也能让他们更直观地感受到方差与标准差在实际中的应用。
本节课将结合实际数据和问题情境,帮助学生掌握方差与标准差的概念、计算及应用,培养数据分析能力,为后续学习统计学知识打下基础。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.数据分析观念:通过学习方差与标准差,培养学生分析数据波动性的能力,使他们在实际问题中能够运用统计学方法,合理选择和运用方差、标准差对数据进行描述和分析。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了方差与标准差的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对方差与标准差的理解。我希望大家能够掌握这些பைடு நூலகம்识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
解决方法:教师可以通过图示、例题等多种方式,帮助学生理解方差计算过程中每个步骤的含义,强调平方和平均数的重要性。
(2)标准差的性质:理解标准差与方差之间的关系,掌握标准差的性质。
解决方法:教师可以通过实际案例,让学生观察标准差与方差的变化规律,从而理解它们之间的关系。
(3)在实际问题中应用方差和标准差:学生可能不知道如何将方差和标准差应用于实际问题。
大学统计学方差标准差教案
教学目标:1. 让学生理解方差和标准差的定义及其意义。
2. 掌握计算方差和标准差的方法。
3. 能够运用方差和标准差分析数据的离散程度。
教学重点:1. 方差和标准差的定义。
2. 计算方差和标准差的方法。
教学难点:1. 方差和标准差的实际应用。
教学过程:一、导入1. 教师简要介绍统计学的基本概念,如平均数、中位数、众数等。
2. 引入方差和标准差的概念,提出问题:如何衡量一组数据的离散程度?二、新课讲授1. 方差的定义及计算方法- 定义:方差是一组数据与其平均值之差的平方的平均值。
- 计算公式:\[ \text{方差} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n} \]- 其中,\( x_i \) 表示第 \( i \) 个数据,\( \bar{x} \) 表示平均值,\( n \) 表示数据个数。
2. 标准差的定义及计算方法- 定义:标准差是方差的平方根,它表示数据与平均值之间的平均距离。
- 计算公式:\[ \text{标准差} = \sqrt{\frac{\sum_{i=1}^{n}(x_i -\bar{x})^2}{n}} \]三、课堂练习1. 教师给出几个示例数据,要求学生计算其方差和标准差。
2. 学生分组讨论,互相交流计算过程和结果。
四、案例分析1. 教师选取实际案例,引导学生运用方差和标准差分析数据的离散程度。
2. 学生分析案例,总结方差和标准差在实际应用中的意义。
五、课堂总结1. 教师总结本节课的主要内容,强调方差和标准差在统计学中的重要性。
2. 学生回顾本节课所学知识,提出自己的疑问。
六、课后作业1. 完成课后习题,巩固所学知识。
2. 查阅相关资料,了解方差和标准差在其他领域的应用。
教学反思:1. 本节课通过讲解、练习和案例分析,使学生掌握了方差和标准差的定义、计算方法及其应用。
2. 教师应注重引导学生运用所学知识分析实际问题,提高学生的实际应用能力。
苏教版数学高一苏教版必修3教案2.3.2方差与标准差
2.3.2方差与标准差整体设计教材分析“方差与标准差”这节课在上节课平均数的基础上,从实例“有甲、乙两种钢筋,检查它们的抗拉强度”中平均数不是反映总体质量、水平的唯一特征数,在平均值相差不大的情况下,数据的稳定程度可以作为评价对象质量高低的又一重要因素,从而说明引入方差、标准差的必要性,同时使学生养成从多个角度看问题的习惯,锻炼了学生的创造性思维.为了让学生充分体会“稳定性”的意义,教材中用数轴表示两组数据,形象地表现出数据的“聚散”程度,并用极差反映数据的稳定性.当两组数据的极差相差不大时,就不适宜用极差来表示稳定性,这时可用“方差与标准差”作为比较数据稳定性的特征数.初中已学过方差概念,现在的教学不能停留在原有的水平上,要将用方差刻画数据的稳定程度的理由讲清楚,充分揭示用方差作为比较数据稳定性水平的特征数的思维过程.通过方差的单位与原数据的单位的比较,通过实际问题的分析,让学生了解到用方差反映稳定性水平的不足之处是与原数据单位不一致,且平方后可能夸大偏差的程度等,从而引入“标准差”的概念,这一过程应让学生在形成问题和解决问题的过程中加以探索.三维目标1.通过对具体案例的分析掌握样本数据的平均数、方差与标准差的基本概念和计算方法,培养学生分析问题和解决问题的能力,激发学生探究数学问题的兴趣和动机.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,形成对数据处理过程进行初步评价的意识.3.引导学生对一些生活中实际问题的学习, 进一步培养学生的数学素养和增强学生的数学应用意识及认真、耐心、细致的学习态度和学习习惯.4.渗透数学来源于实践,反过来又作用于实践的观点.重点难点教学重点:1.通过实例理解样本数据方差与标准差的意义和作用,学会计算数据的样本方差与标准差.2.根据方差与标准差对事件进行科学的决策,形成对数据处理过程进行初步评价的意识.教学难点:1.方差与标准差的计算方法及运算的准确性.2.用样本的基本数字特征估计总体的基本数字特征,从中进一步理解统计的基本思想.课时安排1课时教学过程导入新课平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断.某地区的统计报表显示,此地区的年平均家庭收入是10万元,给人的印象是这个地区的家庭收入普遍比较高.但是,如果这个平均数是从200户贫困家庭和20户极富有的家庭收入计算出来的,那么它就既不能代表贫困家庭的年收入,也不能代表极富有家庭的年收入.因为这个平均数掩盖了一些极端情况.而这些极端情况显然是不能被忽视的.因此,只有平均数还难以概括样本数据的实际情况.举例:有甲、乙两种钢筋,现从中各抽取一个样本(如下表)检查他们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?两种钢筋的平均数都是125,那么,它们有没有什么差异呢?推进新课作出图形,作直观比较:直观上看,还是有差异的.乙的强度比较分散,甲的强度相对集中.因此,我们还需要从另外的角度来考察这两组数据.例如,在作统计图、表时提到过的极差甲的强度极差=135-110=25,乙的强度极差=145-100=45.它在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息,显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.新知探究1.方差(variance)的概念:考察样本数据的分散程度的大小,最常用的统计量是方差,一般用s 2表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.结合上节课有关离差的讨论可知,离差越小,稳定性就越高. 因此,通常用如下公式计算方差:∑=-=ni i x x n s 122)(1. 因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,因此将其算术平方根∑=-=ni i x x n s 12)(1 作为样本的标准差(standard deviation ),分别简称样本方差、样本标准差.2.计算样本数据x 1,x 2,…,x n 的标准差的算法是:S1 算出样本数据的平均数x ;S2 算出每个样本数据与样本平均数的差x i -x(i=1,2,…,n);S3 算出S2中x i -x(i=1,2,…,n)的平方;S4 算出S3中n 个平方数的平均数;S5 算出S4中平均数的算术平方根,即为样本标准差.关于方差、标准差的一点说明:(1)方差、标准差是用来描述样本数据的离散程度的,它反映了各个样本数据聚集于样本平均数周围的程度.方差与标准差越小,表明各个样本数据在样本平均数的周围越集中;反之,方差标准差越大,表明各个样本数据在样本平均数的周围越分散.(2)在实际应用中,方差与标准差常被理解为稳定性.例如在上面的比较两种钢筋的抗拉强度时,方差与标准差越小意味着该产品的质量越稳定;在描述成绩时,方差与标准差越小,说明成绩越稳定.(3)学生思考“标准差的取值范围是什么?标准差为0的样本数据有什么特点?”由标准差的定义容易得出标准差是非负的;标准差为0意味着所有的样本数据都相等的特性,且与样本平均数也相等,可以构造一个样本容量为2的样本:x 1,x 2(x 1<x 2),这样可以体会出两个样本数据分散程度与样本标准差应用示例例1 根据下列四组样本数据,说明它们的异同点.(1) 555555555;(2) 444555666;(3) 334456677;(4) 222258888.分析:从数据的数字特征出发.解:四组数据的平均数都是5.0,标准差分别是0.00,0.82,1.49,2.83.虽然它们有相同的平均数,但是它们有不同的标准差,说明数据的分散程度是不一样的.点评:样本的方差、标准差能说明数据的分散程度.例2 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.分析:巩固求方差和标准差的方法.解:甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02,乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.点评:1.本题若仅由x甲=x乙,易产生这两种水稻的产量一样稳定的错觉.这表明在实际问题中,仅靠期望值(即平均数)不能完全反映问题,还要研究其偏离平均值的离散程度(及方差或标准差):标准差大说明取值分散性大,标准差小说明取值分散性小或者说取值比较稳定、集中.2.要对“根据这组数据估计…”的统计意义作必要的说明:第一,统计研究是以一定的样本为依据的,对于确定的样本得到确定的统计结果;第二,统计结果具有随机性,选择不同的样本可能得到不同的统计结果.最后还可让学生思考除了品种的优劣,影响水稻产量还有哪些因素?根据一组数据得到的结果是否可靠?这些问题的提出会激发学生对统计学理论的兴趣.例3 为了保护学生的视力,教室内的日光灯在使用了一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.分析:用每一个区间内的组中值作为相应日光灯的使用寿命,再求平均使用寿命.解:各组中值分别为165.5,195.5,225.5,255.5,285.5,315.5,345.5,375.5,由此算165.5×1%+195.5×11%+225.5×18%+255.5×20%+285.5×25%+315.5×16%+345.5×7%+375.5×2%=268.4≈268(天).这些组中值的方差为1001×[1×(165.5-268.4)2+11×(195.5-268.4)2+18×(225.5-268.4)2+20×(255.5-268.4)2+ 25×(285.5-268.4)2+16×(315.5-268.4)2+7×(345.5-268.4)2+2×(375.5-268.4)2]=2 128.60(天2), 故所求的标准差约为6.2128≈46(天).答:估计这种日光灯的平均寿命约为268天,标准差约为46天.点评:此例的目的是:掌握连续性随机变量的平均值和标准差的一种估计方法,即组中值估计法.因为前一节例3已介绍了连续性随机变量的平均值的估计方法,所以处理此例时应让学生回忆前例并主动探索解决问题的方法.例4 容量是40的样本中各数据与30的差的平方和是250,样本标准差是1.5,求样本平均数.分析:根据样本平均数、样本方差、样本标准差的公式解题.解:∵(x 1-30)2+(x 2-30)2+…+(x 40-30)2=250,所以(x 12+x 22+…+x 402)-60(x 1+x 2+…+x 40)+40×302=250.即(x 12+x 22+…+x 402)-60×40x +40×900=250, ①又∵140[(x 1-x )2+(x 2-x )2+…+(x 40-x )2]=1.52=2.25,即(x 12+x 22+…+x 402)-2x(x 1+x 2+…+x 40)+40x 2=90,即(x 12+x 22+…+x 402)-80x 2+40x 2=90,②①-②得40x 2-2 400x+40×900=160, 即x 2-60x +896=0,( x -32)( x -28)=0, 所以,x =32或x =28.点评:理解样本方差的含义,抓住关键点:x 1+x 2+…+x 40=40x ,通过数形结合,结合消元x 1+x 2+…+x 40合理解决问题.例5 已知一组数据的方差是s 2,将这组数据的每个数据都加上10,求所得新数据的方差.分析:利用方差公式解题.解:设原数据:x 1,x 2,…,x n ,平均数是x ,方差是s 2,则新数据为:x 1+10,x 2+10,…,x n +10,平均数为则方差为n 1[(x 1+10-x -10)2+(x 2+10-x -10)2+…+(x n +10-x -10)2] =n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=s 2.变式训练某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现登记有误,某甲得70分却记为40分,某乙50分误记为80分,更正后重新计算得标准差为s 1,则s 与s 1之间的大小关系是( )A.s=s 1B.s<s 1C.s>s 1D.不能确定解析:由题意,平均数不变,所以只要看与平均数的离差的平方的变化情况.因为方差刻画了数据相对于平均值的平均偏离程度.s 中有:(40-70)2+(80-70)2=1 000,s 1中有:(70-70)2+(50-70)2=400所以s>s 1.答案:C点评:由本例及变式可推理归纳方差的性质:(1)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差为a 2s 2;(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1+b,ax 2+b,…,ax n +b 的方差为a 2s 2,特别地,当a=1时,则有x 1+b,x 2+b,…,x n +b 的方差为s 2,这说明将一组数据的每一个数据都减去相同的一个常数,其方差是不变的,即不影响这组数据的波动性;(3)方差刻画了数据相对于平均值的平均偏离程度.对于不同的数据集,当离散程度越大时,方差越大;(4)方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感.知能训练课本本节练习解答:1.甲、乙两个班的样本平均数为160,但甲班的极差为3,乙班的极差为30,故甲班的波动较小.2.已知 s 2=3=81[(k 1-k )2+(k 2-k )2+…+(k 8-k )2], 而 883)...(28)3(2...)3(2)3(2821821⨯-+++=-+-+-k k k k k k =2k -3, s 12=18[(2k 1-6-2k+6)2+(2k 2-6-2k+6)2+…+(2k 8-6-2k+6)2]=4s 2=12.3.甲较稳定.4.甲的平均值为10,方差为0.055;乙的平均值为10,方差为0.105.点评:从练习中再次体会数据的离散程度影响对事件的客观判断,体会从平均数、离散程度的角度对事件作出科学判断的方法.课堂小结1.数据的离散程度影响对事件的客观判断,体会从平均数、离散程度的角度对事件作出科学判断的方法,方差与标准差越小,表明各个样本数据在样本平均数的周围越集中;反之,方差与标准差越大,表明各个样本数据在样本平均数的两边越分散;2.衡量离散程度的常用计算方法——方差与标准差,熟悉用计算器计算方差与标准差的方法,切实掌握相关的计算公式、方法、步骤并对有关数据进行合理解释;3.样本的有效选择对判断有重要影响,知道影响判断、决策的因素是多方面的,在对总体作出判断之前,要充分考虑各种因素,切实体会统计的思想方法;4.样本数据既具有随机性又具有规律性,在很广泛的条件下,简单随机抽样样本的数字特征如众数、中位数、平均数、方差与标准差随样本容量的增加及时稳定于总体相应的数字特征,总体的数字特征是一定的,不存在随机性.作业课本习题2.3 3、5、7.设计感想本节课一定要让学生体会平均数反映的是一组数据的平均水平,而方差和标准差则反映了一组数据的波动大小.在实际学习、工作中用得非常多,比如选择运动员参加大型比赛时,要看他以前的每次测试的平均成绩,但成绩的稳定性也非常重要;学习上也是如此,稳定了可以给最后的考试提供稳定心理.用这种与生活的息息相关性激发学生学数学的无限兴趣就是老师最大的收获.习题详解习题2.31. x =301(2×5.1+3×5.2+6×5.3+8×5.4+7×5.5+3×5.6+1×5.7)≈5.39. 该厂这个月的平均日产值约为5.39万元.2.在全部数据中找出最小值4.0和最大值7.4,两者之差为3.4,确定全距为3.5,以组距0.5将区间[4.0,7.5]分成7个组.x =1001(4.25×1+4.75×2+5.25×15+5.75×28+6.25×33+6.75×18+7.25×3)=6.03,估计试验田里麦穗的平均长度约为6.0 cm.3.(1)甲机床次品数的平均值为1.5,乙机床次品数的平均值为1.2,故乙机床次品数的平均值较小;(2)甲的方差为1.65,乙的方差为0.82,故乙机床的生产状况较为稳定.4.估计甲机床平均次品率约为(0×0.7+1×0.1+2×0.1+3×0.1)÷1 000=0.06%,乙机床平均次品率约为(0×0.5+1×0.3+2×0.2+3×0)÷1 000=0.07%,故甲机床的产品质量较好.5.(1)此样本中金属棒的平均长度约为5.99; (2)频率分布表如下:频率直方图如下:(3)6×(1-0.2%)≈5.99,6×(1+0.2%)≈6.01,故合格的金属棒有15根,合格率约为15÷40≈37.5%.6.(1)频率分布表如下:频率分布直方图如下:(2)由组中值估计的总体平均数为(57×5+65×14+73×25+81×11+89×5)×601=72.6,约73次. 实际总体平均数约为72,误差约为1.7.施了新化肥的土地的平均每块土地产量为20.52 kg ,未施新化肥的土地平均每块土地产量为17.36 kg ,且施了新化肥的土地产量的方差约为83.33,未施新化肥的土地产量的方差约为154.88,说明用了新化肥不仅平均产量高,而且产量稳定,故可认为新化肥取得了成功.。
方差与标准差
方差与标准差【教学目标】一、知识目标1.明白得极差、方差与标准差的概念及应用.2.学会用极差、方差与标准差来处理数据.3.学会用运算器求标准差。
二、能力目标1.学生通过主动摸索与探究,发觉方差运算的合理性.2.培养学生的探究知识的能力.三、情感态度目标学生在经历独立摸索、合作探究与发觉的过程中,初步体验极差、方差与标准差来分析数据,然后作出决策;体验用现代算工具处理数据的作用。
【重点难点】重点:方差运算式的导出过程.难点:方差概念的引入.【教学设想】课型:新授课.教学思路:从复习旧知入手〔平均数、中位数和众数的概念〕-观看导图-研究用什么数据来表示数据高低起伏的变化大小-得出极差、方差和标准差的概念-导出方差的运算式—利用运算器或运算机求标准差。
【课时安排】4课时。
【教学设计】第一课时【本课目标】1.明白得极差的概念及应用.2.明确极差是刻画数据离散程度的一个统计量.3.能够举出一些利用极差进行比较的例子.【教学过程】1.情境导入播放多媒体—教材中的导图〝你喜爱住在哪个都市?〞〔或用投影幻灯片或由教学挂图展现〕.观看导图,讨论用什么样的数来反映数据的高低起伏的变化大小比较合适2、课前热身刻画数据平均水平的统计量有哪些,它们有什么作用?举例说明。
3、合作探究〔1〕整体感知从观看导图、复习旧知入手,引导学生自主探究,明白得极差的概念及其应用,明确极差是刻画数据离散程度的一个统计量。
〔2〕四边互动互动1:师:用平均数、中位数、众数代表数有什么不同?生:摸索、交流。
明确:通过复习旧知,导入本节课的内容。
互动2:师:在导图中,什么缘故说北京〝四季分明〞而新加坡〝四季温差不大〞。
生:观看,摸索,交流。
明确:通过讨论,学生初步感知:最大值与最小值的差能够用来表示数据高低起伏的变化大小。
出示投影:课本么135页表20.1.1 上海每日最高气温统计表〔单位:℃〕表20.2.1上海每日最高气温统计表(单位:℃)互动3:师:表20.2.1显示的是上海2001年2月下旬和2002年同期的每日最高气温.从表上看,2002年和2001年2月下旬的气温相比,有4天的温度相对高些,有3天的温度相对低些,还有1天的温度相同.我们是否能够由此认为2002年2月下旬的气温比2001年高呢?生:小组交流、发表意见.师:比较两段时刻气温的高低,求平均气温是一种常用的方法.请你运算其平均数。
小学数学教学备课教案方差与标准差的计算
小学数学教学备课教案方差与标准差的计算教案一:方差与标准差的计算一、教学目标:1. 理解方差和标准差的概念。
2. 掌握方差和标准差的计算方法。
3. 能够应用方差和标准差进行数据分析和比较。
二、教学准备:1. 教师:教学课件、黑板、粉笔、电脑等。
2. 学生:学习用书、练习册、计算器等。
三、教学过程:1. 概念讲解方差和标准差是用来描述数据分散程度的指标。
方差是指各个数据与其均值之差的平方的平均值,标准差是方差的算术平方根。
2. 方差的计算方法方差的计算步骤如下:(1)求出数据的平均值;(2)将每个数据与平均值的差求平方;(3)将所有差的平方求和;(4)将差的平方和除以数据个数,即可得到方差。
3. 标准差的计算方法标准差的计算步骤如下:(1)先计算方差;(2)将方差的值开方即可得到标准差。
4. 例题演示(教师可以选择一到两个具体的实例进行演示和讲解,帮助学生理解方差和标准差的计算过程。
)5. 练习(教师可以出几道相关的题目,让学生动手计算方差和标准差,巩固所学内容。
)6. 拓展应用(教师可以引导学生应用所学知识进行数据的分析和比较,例如,给出一些数据集合,让学生计算其方差和标准差,并分析其分散程度和差异性。
)四、教学反思:通过本节课的教学,学生能够理解并掌握方差和标准差的计算方法,能够灵活运用这些知识进行数据的分析和比较。
针对不同的学生情况,可以适当调整教学内容和难度,提供更多的练习机会和拓展应用的题目,以巩固和拓展学生的知识。
九年级上册《方差与标准差》导学案数学教案
九年级上册《方差与标准差》导学案数学教案
标题:九年级上册《方差与标准差》导学案
一、教学目标:
1. 学生能够理解并掌握方差和标准差的概念。
2. 学生能够熟练地计算一组数据的方差和标准差。
3. 学生能够运用方差和标准差来描述数据的离散程度,并能对不同数据集的离散程度进行比较。
二、教学重点难点:
1. 教学重点:方差和标准差的概念及其计算方法。
2. 教学难点:理解和运用方差和标准差描述数据的离散程度。
三、教学过程:
1. 导入新课:
通过实际生活中的例子引入课题,比如学生的考试成绩分布,引出描述数据集中趋势和离散程度的需求。
2. 新课讲解:
(1)介绍平均数作为描述数据集中趋势的一个指标,然后引出描述数据离散程度的需要。
(2)讲解方差的概念和计算方法,引导学生理解方差反映的是数据相对于平均数的偏离程度。
(3)讲解标准差的概念和计算方法,说明它是方差的平方根,更直观地反映了数据的离散程度。
3. 练习巩固:
设计一些练习题,让学生通过计算实例数据的方差和标准差,加深对方差和标准差的理解。
4. 小结:
总结本节课学习的主要内容,强调方差和标准差在描述数据离散程度中的作用。
5. 作业布置:
布置一些包含计算方差和标准差的题目,让学生在实践中进一步熟悉这两个概念。
四、教学反思:
在教学过程中,要关注学生的学习反馈,及时调整教学策略,以提高教学效果。
方差与标准差-北师大版八年级数学上册教案
方差与标准差-北师大版八年级数学上册教案1. 教学目标•了解方差和标准差的定义及计算方法;•能够运用方差和标准差进行数据分析,评价数据分布的离散程度。
2. 教学重点•方差的定义和计算方法;•标准差的计算方法;•方差和标准差在数据分析中的应用。
3. 教学难点•方差和标准差的应用;•方差和标准差的计算方法。
4. 教学内容及实施方法(1)方差的定义和计算方法•学生通过生活实例,引导学生理解什么是方差和方差的计算方法;•强调方差是对平均数的补充,用公式帮助学生深刻理解。
(2)标准差的计算方法•学生通过生活实例,引导学生理解什么是标准差和标准差的计算方法;•强调标准差在数据分析中的作用,用公式帮助学生深刻理解。
(3)方差和标准差在数据分析中的应用•引导学生分析有多组数据时如何比较其离散程度;•通过课堂小组合作探究数据分布及其分析,运用到实际生活中去。
5. 教学过程(1)引入通过举例子引出方差和标准差的概念,引导学生猜想方差和标准差的含义并加以解释。
(2)探究教师给出一组数据,引导学生用求平均数、方差和标准差的方法进行计算,并利用计算结果进一步解释方差和标准差的含义。
(3)总结教师让学生总结方差和标准差的定义及计算方法,并归纳其应用。
(4)练习教师给出多组数据,让学生自主计算方差和标准差,并进一步分析数据的分散程度。
(5)拓展教师给出实际应用中的数据,让学生自行选择使用方差还是标准差进行数据分析,并给出相应的解释。
6. 教学评价本课程以引导性和探究性为主,通过生活例子引入方差和标准差的定义,并通过实例进行计算和应用分析,使学生对方差和标准差有更深入的理解和应用。
教学过程中,教师注重学生参与度的提高,不断鼓励学生在小组中合作,使得学生在课程中有良好的融合感和创造力,提高学生的思维能力、分析问题的能力和解决问题的能力。
教学结束后,教师可以进行简单的检测或考试,了解学生的掌握情况,及时进行巩固和补充。
方差和标准差教学教案设计
方差和标准差教学教案设计方差和标准差教学教案设计方差和标准差教学设计(一)教学设计思想本节内容一共需要二个课时来学习,第一课时通过观察与思考使学生直观感受甲、乙两人的射击平均成绩不分高低,但射击成绩波动大小不同,从而引出方差和标准差的概念。
在教师引导下学生探究出如何刻画每个数据与平均数的偏差,如何表示所有数据的总偏差。
第二课时提供了三个实际情景,通过对问题的分析和探究,使学生进一步理解方差的意义。
教学目标知识与技能说出刻画数据离散程度的三个量——极差、方差、标准差——的概念,能借助计算器求出相应方差和标准差。
能在具体情境中用方差、标准差刻画一组数据的波动大小,并能解决相应的实际问题。
过程与方法经历数据的收集与整理的过程,根据公式求一组数据的方差和标准差。
情感、态度、价值观体会方差、标准差是反映一组数据波动大小的量,在数据的整理与计算的过程中养成耐心、细致、认真的习惯,学会把知识应用于生活。
教学重难点重点:计算一组数据的方差概念的理解。
难点:对方差的意义理解不透,有些问题弄不清该用方差衡量,还是该用平均数衡量。
解决办法:通过学习明白对于一组数据来说,我们要衡量这组数据的集中趋势,可以通过平均数、众数和中位数这三个统计量来分析。
如果要衡量这组数据中的离散趋势,也就要研究它的波动情况,就需要利用方差或标准差这两个统计量来衡量。
教学方法合作探究,小组讨论教学用具多媒体课时安排2课时教学过程设计第一课时我们常用平均数、中位数来刻画数据的“平均水平”。
但在评价选手的射击水平、机器加工零件的精度、手表的日走时误差时,只用平均数是不够的,有时还需要用一个新的数来刻画一组数据的波动情况。
(一)观察与思考甲、乙两名业余射击选手参加了一次射击比赛,每人各射10发子弹,成绩如下表:将数据用散点图表示,如图26—3。
1.观察图形,从图中能估计甲和乙射击成绩的平均水平吗?2.哪组数据围绕其平均值的波动较大?波动大小反映了什么?3.谁的射击成绩比较稳定?注:观察两名业余射击选手比赛的成绩的散点图,直观感受两人成绩水平的高低及稳定性1.大约都是7环左右。
标准差与方差概念教案:全面解读两个统计学基础知识
标准差与方差概念教学教案:全面解读两个统计学基础知识引言:标准差与方差是统计学的两个基础概念。
它们在统计学的应用中具有重要的作用。
在许多学科中,如自然科学、社会科学和医学等,都需要用到这两个概念。
因此,对于学生而言,了解它们的意义和应用十分必要。
本教案将全面解读标准差和方差的概念以及运用。
目标:1.理解并掌握标准差与方差的定义及表达方式2.理解标准差与方差的意义及其应用3.能够通过实践练习应用标准差与方差1.标准差的概念标准差是对一组数据中变量的分散程度的度量。
它告诉我们有多少数据落在平均值附近。
标准差的单位与原始数据相同。
标准差(SD)的公式如下:SD = √(Σ( xi - μ )² / ( n - 1 ) )其中,xi表示第i个数据,μ表示总体的平均值,n表示数据的数量。
在样本中,除以n-1而不是n,称为样本标准差。
例如,在假设有一个数列:3, 6, 9, 12,在计算标准差时,首先求出平均值为(3+6+9+12)/4 = 7.5。
然后计算方差:(3-7.5)^2 +(6-7.5)^2 + (9-7.5)^2 +(12-7.5)^2 = 90,最后标准差= √(90/3)= 5。
2.方差的概念方差是指一组随机变量在其均值附近分布的平方偏差,它代表一个数据集合中数据偏离其平均值的程度。
中心定理指出,当数据的样本数量越多时,样本均值越趋近于总体均值。
公式:方差的公式如下:σ^2 = Σ( xi - μ )² / n其中,xi表示第i个数据,μ表示总体或样本的平均值,n表示数据的数量。
3.差异与应用标准差与方差是对一组数据中变量的分散程度的度量。
当相对变化量较小时,它们可以用来比较两组数据之间的差异程度。
例如:在一个班级中,对全班学生的某一次考试成绩进行统计,结果如下:75,80,85,90,95。
则平均值为85,如果只从均值考虑,则无法判断这些分数分布的广度。
此时,我们可以通过计算方差和标准差来确定这些数据的分布情况。
公开课教案方差标准差
方差与标准差教学目标:1. 理解方差与标准差的定义及计算方法。
2. 掌握方差与标准差在描述数据波动程度中的应用。
3. 能运用方差与标准差解决实际问题。
教学重点:1. 方差与标准差的定义及计算。
2. 方差与标准差在实际问题中的应用。
教学难点:1. 方差与标准差的计算。
2. 理解方差与标准差的意义。
教学准备:1. 教学课件。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾平均数的定义及计算方法。
2. 提问:平均数能描述数据的波动程度吗?3. 引导学生思考:如何描述数据的波动程度?二、新课导入(10分钟)1. 介绍方差的定义及计算方法。
2. 举例说明方差在实际问题中的应用。
3. 讲解方差的性质及意义。
三、标准差(10分钟)1. 介绍标准差的定义及计算方法。
2. 举例说明标准差在实际问题中的应用。
3. 讲解标准差与方差的关系。
四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生疑问,给予个别指导。
2. 提问:方差与标准差在实际生活中有哪些应用?3. 引导学生思考:如何运用方差与标准差解决实际问题?教学反思:六、案例分析(10分钟)1. 分析实际案例,让学生运用方差与标准差描述数据的波动程度。
2. 引导学生通过计算方差与标准差,分析数据的波动情况。
3. 讨论:如何根据方差与标准差判断数据的稳定性?七、方差与标准差的局限性(10分钟)1. 讲解方差与标准差的局限性,如受极端值影响等。
2. 引导学生了解其他描述数据波动程度的统计量,如四分位数、极差等。
3. 讨论:在实际应用中如何选择合适的统计量?八、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生疑问,给予个别指导。
九、方差与标准差在实际问题中的应用(10分钟)1. 举例说明方差与标准差在实际问题中的应用,如质量管理、金融分析等。
2. 引导学生思考:如何运用方差与标准差解决实际问题?3. 讨论:方差与标准差在实际问题中的局限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 方差与标准差(教案)
学习目标:
1、了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。
4. 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
学习重、难点
重点:方差产生的必要性和应用方差公式解决实际问题。
掌握其求法,
难点:理解方差公式,应用方差对数据波动情况的比较、判断。
学习过程
一、情景创设:
乒乓球的标准直径为40mm ,质检部门从A 、B 两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。
结果如下(单位:mm ):
A 厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B 厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
(1) 请你算一算它们的平均数和极差。
(2) 是否由此就断定两厂生产的乒乓球直径同样标准?
今天我们一起来探索这个问题。
探索活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。
让我们一起来做下列的数学活动
算一算
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想
你认为哪种方法更能明显反映数据的波动情况?
二、新知讲授:
讲授新知:
(一)方差
定义:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是
2221)()(x x x x --,,…,,
, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x n
x n -++-+-= 来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2s 。
意义:用来衡量一批数据的波动大小
在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定
归纳:(1)研究离散程度可用2S
(2)方差应用更广泛衡量一组数据的波动大小
(3)方差主要应用在平均数相等或接近时
(4)方差大波动大,方差小波动小,一般选波动小的
(二)标准差:
方差的算术平方根,即
并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.
注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三、例题讲解
例1 填空题;
(1)一组数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S .
(2)如果样本方差[]
242322212)2()2()2()2(41-+-+-+-=x x x x S , 那么这个样本的平均数为 .样本容量为 .
(3)已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .
例2 选择题:
(1)样本方差的作用是( )
A 、估计总体的平均水平
B 、表示样本的平均水平
C 、表示总体的波动大小
D 、表示样本的波动大小,从而估计总体的波动大小
(2)一个样本的方差是0,若中位数是a ,那么它的平均数是( )
A 、等于a
B 、不等于 a
C 、大于 a
D 、小于a
(3)已知样本数据101,98,102,100,99,则这个样本的标准差是( )
A 、0
B 、1
C 、2
D 、2
(4)如果给定数组中每一个数都减去同一非零常数,则数据的( )
A 、平均数改变,方差不变
B 、平均数改变,方差改变
C 、平均数不变,方差不变 A 、平均数不变,方差改变
例3 为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm ) 甲:9,10,11,12,7,13,10,8,12,8
乙:8,13,12,11,10,12,7,7,9,11
请你经过计算后回答如下问题:
(1)哪种农作物的10株苗长的比较高?
(2)哪种农作物的10株苗长的比较整齐?
P154例1
分析应注意的问题:题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
1.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式
中需要平均值,这个问题可以使学生明确利用方差计算步骤。
2.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
四、随堂练习
1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩
2.段巍的成绩比金志强的成绩要稳定。
五、小结
1、方差与标准差的公式。
2、方差或标准差越大,数据的波动越大,方差或标准差越小,数据的波动越小。
六、作业
见教学案。