2017初中数学模拟试题4及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考密押卷(一)
数学
满分:120分考试时间:120分钟
题号一二三总分阅卷人
得分
第Ⅰ卷(选择题,共30分)
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.在:0,﹣2,1,这四个数中,最小的数是()
A.0 B.﹣2 C.1 D.
2.将如图Rt△ABC绕直角边AC旋转一周,所得几何体的左视图是()
A.B.C.D.
3.下列运算中,计算正确的是()
A.2a•3a=6a B.(3a2)3=27a6
C.a4÷a2=2a D.(a+b)2=a2+ab+b2
4.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()
A.73°B.56°C.68°D.146°
5.如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值范
围在数轴上表示为()
A.B.C.
D.
6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()
A.0个B.1个C.2个D.3个
7.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()
A.k<5 B.k<5,且k≠1C.k≤5,且k≠1D.k>5
8.不等式>﹣1的正整数解的个数是()
A.1个B.2个C.3个D.4个
9.如图,是半径为1的圆弧,∠AOC等于45°,D是上的一动点,则四边形AODC 的面积S的取值范围是()
A.B.
C.D.
10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()
A.1个B.2个C.3个D.4个
第Ⅱ卷(非选择题,共90分)
二、填空题(共4小题,每小题3分,计12分)
11.因式分解:a3﹣ab2=.
12.请从下面两个小题中任选一个作答,若多选,则按第一题计分。
A.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.
B.69︒≈(精确到0.01).
13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.
14.如果点P在坐标轴上,以P为圆心,为半径的圆与直线y=﹣x+2相切于C点,则过点C的双曲线的K是.
三、解答题(共11小题,计78分.解答应写出过程)
15.(本题满分5分)
(1)计算:(+1)0﹣2﹣1﹣tan45°+|﹣|
(2)解二元一次方程组:.
16.(本题满分5分)
先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.
17.(本题满分5分)
如图,某大学有A、B、C三栋教学楼,A、B在校内的主干道上,C在校内支路的末端.为了方便教学和管理,现计划修建一栋办公楼P,使办公室到公路AB、BC的距离相等,且到B、C两栋教学楼的距离也相等,请在图中作出办公楼P的位置(要求:尺规作图,不写已知、求作、作法和结论,保留作图痕迹,在所作图中标出P的位置).
18.(本题满分5分)
初中生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).
请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图①补充完整;
(3)根据抽样调查结果,请你估计该区近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?
19.(本题满分7分)
如图,A、C、F、B在同一直线上,AC=BF,AE=BD,且AE∥BD.求证:EF∥CD.
20.(本题满分7分)
如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C 的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
21.(本题满分7分)
2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:
(1)求图中a的值;
(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.
①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?
22.(本题满分7分)
小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人再次成为同班同学的概率.
23.(本题满分8分)
如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.
24.(本题满分10分)
如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方图形上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.