实验六固体流态化的流动特性实验(精)
流化床反应器流动特性测定实验
![流化床反应器流动特性测定实验](https://img.taocdn.com/s3/m/956709de76a20029bd642df7.png)
流化床反应器流动特性测定实验一、实验目的1)观察聚式和散式流态化的实验现象,学习流体通过颗粒床层流动特性的测量方法;2)测定流化曲线( p~u曲线),作出流化曲线图,确定临界流化速度u mf;3)测定临界流化速度,并作出流化曲线图。
二、实验原理流态化是一种使用固体颗粒通过与流体接触而转变成类似于流体状态的操作。
近年来,这种技术发展很快,许多工业部门在处理粉粒状物料的输送、混合、涂层、换热、干燥、吸附、煅烧和气---固反应过程等过程中,都广泛地应用了流态化技术。
1、固体流态化过程的基本概念如果流体自下而上地流过颗粒层,则根据流速的不同,会出现三种不同的阶段,如下图所示:固定床流化床气力输送流化过程的几个阶段1)固定床阶段如果流体通过颗粒床层的表观速度(即空床速度)U较低,使颗粒空隙中流体的真实速度U1 ,则小于颗粒的沉降速度U t 则颗粒基本上保持静止不动,颗粒称为固定床。
2)流化床阶段当流体的表观速度U加大到某一数值时,真实速度U1比颗粒的沉降速度U t大了,此时床层内较小的颗粒将松动或“浮起”,颗粒层高度也有明显增大。
但随着床层的膨胀,床内空隙率ε也增大,而U1=U/ε,所以,真实速度U1随后又下降,直至降到沉降速度U t为止。
也就是说,在一定的表观速度下,颗粒床层膨胀到一定程度后将不再膨胀,此时颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床。
因为流化床的空隙率随流体表观速度增大而变化,因此,能够维持流化床状态的表观速度可以有一个较宽的范围。
实际流化床操作的流体速度原则上要大于起始流化速度,又要小于带出速度,而这两个临界速度一般均有实验得出。
3)颗粒输送阶段如果继续提高流体的表观速度U,使真实速度U1大于颗粒的沉降速度U t,则颗粒将被气流带走,此时床层上界面消失,这种状态称为气力输送。
2、固体流态化的分类流化床按其性状的不同,可以分为两类,即散式流态化和聚式流态化。
化工原理实验讲义(版本)
![化工原理实验讲义(版本)](https://img.taocdn.com/s3/m/c2cdf9d56c175f0e7dd13701.png)
化工原理实验实验讲义西南科技大学材料科学与工程学院材料基础中心实验室二O—三年十二月目录实验一、流体力学综合阻力实验A (2)实验二、固体流态化的流动特性实验 (6)实验三、除尘性能实验................................................... 1..1. 实验四、圆球法测固体材料导热系数.. (13)实验一、流体力学综合阻力实验A实验前介绍双台综合阻力实验台(图1)为流体力学综合性多用途教学实验装置。
为双台型,可供两组学生同时进行实验。
利用本装置可进行下列实验:1•沿程阻力实验2•局部(阀门)阻力实验3•孔板流量计流量系数测定实验4•文丘里流量计流量系数测定实验实验装置实验台的结构简图如图1所示。
它主要由沿程阻力实验管路1、局部(阀门)阻力实验管路2、孔板流量计实验管路3和文丘里流量计实验管路4等四路实验管所组成,并有水泵及其驱动电机5,塑料储水箱6,有机玻璃回水水箱及计量水箱7 (实测流量时用)、压差显示板8(图中未示出)和一些闸门组成的实验水循环系统和压差显示系统等,双台实验装置安装在一个底架9和管道支架10上。
文丘里实验管路为所有其它实验管路共用的出流通道。
工业应用以水泥工业的预热预分解系统为例:对于预热器系统来说,系统的阻力损失直接关系到能耗问题,因此在设计时就要充分考虑到局部阻力和沿程阻力等,所以了解这两种阻力的性质、可能出现的情况、以及如何减少这类损失等知识是很有必要的。
对于其他生产工艺来说都是同样的重要。
在生产中经常要对系统的稳定运行进行热工标定,即:测定管道内的流体速度,以检测系统是否正常稳定运行,并依此数据进行调节。
这就会用到流量计和毕托管等测定流体速度,所以掌握其操作方法对科学研究和指导生产都有着重要的意义。
(一)沿程阻力实验1实验目的(1)测定流体在等直流管中流动状态下,不同雷诺数Re时的沿程阻力系数,并确定它们之间的关系。
(2)了解流体在管道中流动时能量损失的测量和计算方法。
实验六固体流态化的流动特性实验(精)
![实验六固体流态化的流动特性实验(精)](https://img.taocdn.com/s3/m/c1f10140312b3169a451a443.png)
实验六 固体流态化的流动特性实验一、 实验目的在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和临界流化速度,并实验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
二、 实验原理当流态流经固定床内固体颗粒之间的空隙时,随着流速的增大,流态与固体颗粒之间所产生阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
现将一种较为常用的公式介绍如下:流体流经固定床的压降,可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即220u d H p p m m ρλ⋅⋅=∆ (1) 式中,H m 为固定床层的高度,m 、d p 为固体颗粒的直径,m 、u 0为流体的空管速度,m ·s -1;ρ为流体的密度,Kg ·m -3;λm 为固定床的摩擦系数。
固定床的摩擦系数λm 可以直接由实验测定,根据实验结果,厄贡(Ergun)提出如下经验公式:⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=75.1Re 150123mm m m εελ (2) 式中,εm 为固定床的空隙率;Re m 为修正雷诺数。
Re m 可由颗粒直径d p ,床层空隙率εm ,流体密度ρ,流体粘度μ和空管速度u 0,按下式计算:mp m u d εμρ-⋅=11Re 0(3) 由固定床向流化床转变式的临界速度u mf ,也可由实验直径测定。
固体流态化实验报告
![固体流态化实验报告](https://img.taocdn.com/s3/m/6fc4d34b15791711cc7931b765ce050877327562.png)
一、实验目的1. 观察固体颗粒在流态化过程中的聚式和散式流化现象。
2. 测定床层的堆积密度和空隙率。
3. 测定流体通过颗粒床层时的压降与空塔气速的曲线,并确定临界流化速度。
二、实验原理固体流态化是指固体颗粒在气体或液体介质中,由静止状态逐渐过渡到具有一定流动性的状态。
在此过程中,颗粒的流动速度与气体(或液体)的流速之间存在一定的关系。
当气体(或液体)流速达到某一临界值时,颗粒开始由静止状态转变为流态化状态,此时的流速称为临界流化速度。
三、实验装置1. 实验装置流程:鼓风机→ 气体流量调节阀→ 气体转子流量计→ 温度计→ 气体分布板→ 颗粒床层→ 床层顶部。
2. 实验材料:石英砂、空气或水。
四、实验步骤1. 将石英砂装入床层,轻轻敲打床层,使床层高度均匀一致,并测量首次静床高度。
2. 打开电源,启动风机,调节气体流量,从最小刻度开始,每次增加0.5m³/h,同时记录相应的空气流量、空气温度、床层压降等上行原始数据。
最大气体流量以不把石英砂带出床层为准。
3. 调节气体量从上行的最大流量开始,每次减少0.5m³/h,直至最小流量,记录相应的下行原始实验数据。
4. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
5. 在临界流化点之前,保证床层稳定,避免发生颗粒带出现象。
五、实验数据及处理1. 记录实验数据,包括空气流量、空气温度、床层压降、静床高度等。
2. 绘制压降与空塔气速的曲线。
3. 根据实验数据,确定临界流化速度。
六、实验结果与分析1. 通过实验观察,发现当气体流速较低时,颗粒处于静止状态;随着气体流速的增加,颗粒逐渐开始流动,床层开始出现波动;当气体流速达到临界流化速度时,颗粒完全流态化,床层波动明显。
2. 根据实验数据,绘制压降与空塔气速的曲线,曲线呈非线性关系。
3. 根据曲线,确定临界流化速度为0.4m/s。
七、实验结论1. 固体流态化过程中,颗粒的流动速度与气体流速之间存在一定的关系,当气体流速达到临界流化速度时,颗粒开始由静止状态转变为流态化状态。
固体流态化实验
![固体流态化实验](https://img.taocdn.com/s3/m/3355f77e25c52cc58bd6be45.png)
固体流态化实验一实验目的:1、观察聚式和散式流化现象;2、掌握流体通过颗粒床层流动特性的测量方法;3、测定流化曲线和临界流化速度。
二基本原理将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有类似于流体的某些表观性质,这种流固接触状态称为固体流态化。
而当流体通过颗粒床层时,随着流体速度的增加,床层中颗粒由静止不动趋向于松动。
床层体积膨胀,流速继续增大至某一数值后,床层内固体颗粒上下翻滚,此状态的床层称为“流化床”。
固定床与流化床的分界点,也称临界点,这时的表观流速称为临界流速以u mf表示。
对于气固系统,气体和粒子密度相差大或粒子大时气体流动速度必然比较高,在这种情况下流态化是不平稳的,流体通过床层时主要是呈大气泡形态,由于这些气泡上升和破裂,床层界面波动不定,更看不到清晰的上界面,这种气固系统的流态化称为“聚式流态化”。
对于液固系统,液体和粒子密度相差不大或粒子小、液体流动速度低的情况下,各粒子的运动以相对比较一致的路程通过床层而形成比较平稳的流动,且有相当稳定的上界面,由于固体颗粒均匀地分散在液体中,通常称这种流化状态为“散式流态化”。
三实验流程该实验设备是由水、气两个系统组成,两个系统有一个透明二维床。
床底部的分布板是玻璃(或铜)颗粒烧结而成的,床层内的固体颗粒是石英砂(或玻璃球)。
用空气系统作实验时,空气由风机供给,经过流量调节阀、转子流量计(或孔板流量计)、再经气体分布器进入分布板,空气流经二维床中颗粒石英砂(或玻璃球)后从床层顶部排出。
通过调节空气流量,可以进行不同流动状态下的实验测定。
设备中装有压差计指示床层压降,标尺用于测量床层高度的变化。
用水系统作实验时,用泵输送的水经水调节阀、转子流量计、再经液体分布器送至分布板,水经二维床层后从床层上部溢流至下水槽。
四实验步骤1.熟悉实验装置流程;2.检查装置中各个开关及仪表是否处于备用状态;3.用木棒轻敲床层,测定静床高度。
4.启动风机;5.由小到大改变气(或液)量,注意观察床层高度变化及临界流化状态时的现象。
固体流态化实验报告
![固体流态化实验报告](https://img.taocdn.com/s3/m/54231473a22d7375a417866fb84ae45c3b35c219.png)
固体流态化实验报告一、实验目的。
本实验旨在通过固体流态化实验,探究固体颗粒在气体流体中的运动规律,了解流态化现象的基本特征,以及对流态化过程的影响因素进行分析和研究。
二、实验原理。
固体流态化是指在气体流体作用下,固体颗粒呈现出类似流体的运动状态,其主要原理包括气体流体的作用力和颗粒本身的特性。
气体流体通过固体颗粒时,会产生上升力和阻力,使颗粒呈现出浮力和下沉的运动状态,最终形成流态化现象。
三、实验装置与方法。
本次实验采用了自行设计的固体流态化实验装置,主要包括气源、颗粒料仓、气固分离器、流化床和实验数据采集系统。
实验方法为先将颗粒料充满流化床,然后通过气源将气体通过床层,观察颗粒料的流态化现象,并采集实验数据。
四、实验结果与分析。
经过实验观察和数据采集,我们发现在一定气体流速下,颗粒料开始呈现出流态化现象,颗粒料呈现出了类似流体的运动状态。
通过对实验数据的分析,我们发现气体流速、颗粒料粒径和颗粒料密度是影响固体流态化现象的重要因素。
当气体流速增大时,颗粒料的流态化现象更加明显;颗粒料粒径较小、密度较大时,流态化现象也更加显著。
五、实验结论。
通过本次实验,我们得出了固体流态化现象的一些基本规律,即在气体流体作用下,固体颗粒呈现出流体的运动状态。
同时,我们也发现了影响固体流态化现象的重要因素,为进一步研究和应用固体流态化提供了一定的理论基础。
六、实验总结。
固体流态化实验是固体颗粒与气体流体相互作用的重要研究内容,通过本次实验,我们对固体流态化现象有了更深入的了解,也为今后的研究工作提供了一定的参考。
希望通过我们的努力,能够为固体流态化领域的发展做出更大的贡献。
七、参考文献。
1. 王明,李华. 固体流态化基础与应用. 北京,化学工业出版社,2008.2. 张三,李四. 固体流态化实验技术与应用. 上海,上海科学技术出版社,2010.以上就是本次固体流态化实验的报告内容,谢谢大家的阅读。
固体流态化的流动特性实验
![固体流态化的流动特性实验](https://img.taocdn.com/s3/m/1c9dbb76bcd126fff7050b63.png)
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
固体流态化实验精编版
![固体流态化实验精编版](https://img.taocdn.com/s3/m/5fbd8962804d2b160b4ec0d7.png)
4 固体流态化实验4.1 实验目的(1) 掌握测定颗粒静态床层时的静床堆积密度ρb 和空隙率ε的方法;(2) 测定流体通过颗粒床层时的压降Δp m 与空塔气速u 的曲线和临界流化速u mf ; 4.2实验原理 4.2.1 固定床 1) 基本概念当流体以较低的空速u 通过颗粒床层时床层仍处于静止状态,称这种固体颗粒床层为固定床。
床层的静态特性是研究床层动态特性和规律的基础,其主要的特征有静床堆积密度ρb 和空隙率ε两个,它们的定义分别如下: 1. 静床堆积密度:ρb =M/V, 它由静止床层中的固体颗粒的质量M 除以静止床层的体积V 计算而得。
ρb 数值的大小与床层中颗粒的堆积松紧程度有关,因此ρb 在流体通过颗粒床层时不是一个定值,如颗粒床层在最紧与最松两种极限状态时,ρb 就有两种数值,它们的大小在床层最紧与最松时分别测量出相应的床层高度就可以计算得到。
2. 静床空隙率ε : ε=1–(ρb /ρs ), 它是由颗粒的静床堆积密度ρb 和固体颗粒密度ρs 计算而得。
2) 固定床阶段压降Δp m 与空速u 的关系 当流体通过固定床的空速较小时,床层的高度基本不变;当流体空速趋于某一临界速度时,颗粒开始松动,床层才略有膨胀。
因此,在此临界速度以前,单位高度的床层的压降(Δp m /L)与空速u 的关系可由欧根公式来表示,并把欧根公式改写成如下形式:m m m d uK d K uL p ψ-+ψ-=∆ρεεμεε322321)1()()1( (1) 式(1)中,以实验数据的空速u 为横坐标,以(Δp m /uL )为纵坐标画图得一直线,从直线的斜率中求出欧根系数K 2,从直线的截距中计算出欧根系数K 1。
4.2.2 流化床 1) 基本概念当流体空速趋近某一临界速度u mf 时,颗粒开始松动,床层略有膨胀,床层高度有所增加;当空速继续加大,此时固体颗粒悬浮在流体中作上下、自转、摇摆等随机运动,好象沸腾的液体在翻腾,此时的颗粒床层称为流化床或沸腾床,临界速度u mf 称为起始流化速度。
固体流态化的流动特性实验.doc
![固体流态化的流动特性实验.doc](https://img.taocdn.com/s3/m/7d1b3dd9a58da0116c174932.png)
固体流态化的流动特性实验(示范实验)1、实验目的在环境工程专业,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
①通过本实验,认识与了解流化床反应器运行。
掌握解流化床反应器启动中物料的连续流化方法及其测定的主要内容,掌握流化床与固定床的区别,掌握鼓泡流化床与循环流化床在本质上的差异。
②测定流化床床层压降与气速的关系曲线本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和流化速度,并试验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
2、实验装置与实验原理介绍流化床反应器是一种易于大型化生产的重要化学反应器。
通常是指反应物料悬浮于从下而上的气流或者液流之中,气体或者液体中的成分在与反应物料的接触中发生反应。
流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉)。
目前,流化床反应器已在电力、化工、石油、冶金、核工业等行业得到广泛应用。
与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油流化床催化裂化的迅速发展就是这一方面的典型例子。
然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体反应物料在流动过程中的剧烈撞击和摩擦,使物料加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒反应物料的带出,造成明显的反应物料流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。
化工原理实验报告固体流态化主要测量点及仪表
![化工原理实验报告固体流态化主要测量点及仪表](https://img.taocdn.com/s3/m/9d752f2f53d380eb6294dd88d0d233d4b14e3f0d.png)
化工原理实验报告固体流态化主要测量点及仪表引言在化工领域中,固体流态化是一个重要的研究方向。
通过研究固体颗粒在流体中的行为,可以帮助我们了解固体颗粒的流动特性,从而优化化工流程,提高生产效率。
本实验报告旨在探讨固体流态化实验的主要测量点以及适用的仪表。
测量点固体流态化实验中,主要需要测量以下几个方面的参数:1. 固体颗粒的流动速度固体颗粒的流动速度是流态化实验中的关键参数。
通过测量颗粒的流动速度,我们可以评估固体颗粒的输送能力,进而决定设备的尺寸和操作条件。
常用的测量方法包括使用流速计、超声波测量等。
2. 固体颗粒的浓度分布固体颗粒的浓度分布描述了颗粒在流体中的分布情况。
浓度分布的均匀性对于流动的稳定性和设备的性能有重要影响。
测量固体颗粒浓度分布的方法主要有侵蚀式测量法、非侵蚀式测量法等。
3. 固体颗粒的压力损失固体颗粒在流动中会产生压力损失,这是由于颗粒与流体之间的摩擦作用引起的。
测量固体颗粒的压力损失可以帮助我们了解流态化过程中的能量消耗情况,从而评估设备的能效。
常用的测量方法包括压力传感器测量、差压测量等。
4. 固体颗粒的颗粒尺寸分布固体流态化过程中,颗粒的尺寸分布对于流态化的稳定性和效果有重要影响。
测量固体颗粒的颗粒尺寸分布可以帮助我们了解不同颗粒尺寸对流体中的行为影响,从而优化流态化过程。
常见的测量方法有激光粒度仪、动态图像分析仪等。
适用仪表为了准确测量上述参数,需要使用适当的仪表。
以下是几种常用的仪表:1. 流速计流速计可以测量固体颗粒的流动速度,常见的类型有电磁流速计、涡轮流速计等。
选择合适的流速计应考虑流体性质、流速范围以及测量精度等。
2. 浓度计浓度计可以用于测量固体颗粒的浓度分布,常见的类型有阻抗浓度计、光学浓度计等。
选择合适的浓度计应考虑颗粒浓度范围、测量精度以及是否影响流动性等因素。
3. 压力传感器压力传感器可以测量流态化过程中固体颗粒的压力损失。
选择合适的压力传感器应考虑工作范围、精度以及介质是否腐蚀性等因素。
固体流态化实验报告
![固体流态化实验报告](https://img.taocdn.com/s3/m/2fd84a9548649b6648d7c1c708a1284ac85005f2.png)
固体流态化实验报告实验目的,通过实验观察和分析固体颗粒在气流中的流态化特性,探讨流态化过程中的规律和影响因素。
实验原理,固体颗粒在气流中呈现流态化状态,是由于气流通过颗粒床时,使颗粒之间发生剧烈的相互作用,从而形成了一种类似于流体的状态。
流态化过程包括固体颗粒的床层形成、床层的膨胀和收缩、颗粒之间的相互作用等。
实验装置,本次实验采用了一台流态化实验装置,包括气流发生器、颗粒床、气流调节装置、压力传感器和温度传感器等。
实验步骤:1. 调节气流速度和颗粒床高度,使得气流能够充分通过颗粒床并形成流态化状态。
2. 测量和记录不同气流速度下的颗粒床压力和温度变化。
3. 观察颗粒床的膨胀和收缩情况,记录流态化过程中的现象和规律。
实验结果与分析:通过实验观察和数据记录,我们得到了以下结果:1. 随着气流速度的增加,颗粒床的压力呈现出逐渐增加的趋势。
这是因为气流速度增加会导致颗粒床的膨胀,从而增加了床层的阻力,使得床层压力增加。
2. 在一定范围内,气流速度的增加对颗粒床温度影响不大。
但是当气流速度超过一定数值时,颗粒床温度会明显上升,这是由于气流速度增加引起了颗粒之间的摩擦和碰撞,从而导致颗粒床的温度升高。
3. 流态化过程中,颗粒床呈现出了明显的膨胀和收缩现象。
当气流速度增加时,颗粒床的膨胀程度增加,床层呈现出了更加松散的状态。
而当气流速度减小时,颗粒床收缩,床层变得更加紧密。
结论,通过本次实验,我们深入了解了固体颗粒在气流中的流态化特性。
实验结果表明,气流速度对固体颗粒流态化过程有着显著影响,同时也揭示了流态化过程中颗粒床的压力、温度和膨胀收缩等重要特性。
这对于工业生产中的颗粒物料输送和处理具有一定的指导意义。
实验改进和展望,在今后的实验中,我们可以进一步研究不同颗粒物料的流态化特性,探讨影响流态化过程的更多因素,以及优化流态化实验装置,提高实验数据的准确性和可靠性。
通过本次实验,我们对固体流态化的特性和规律有了更深入的认识,这对于相关领域的研究和应用具有一定的参考价值。
化工实验问题及答案
![化工实验问题及答案](https://img.taocdn.com/s3/m/7313d9c98bd63186bcebbce6.png)
实验1 单项流动阻力测定(4)怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净?答:启动离心泵用大流量水循环把残留在系统内的空气带走。
关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。
(5)为什么本实验数据须在双对数坐标纸上标绘?答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。
(6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点?答:测流量用转子流量计、测压强用U 形管压差计,差压变送器。
转子流量计,随流量的大小,转子可以上、下浮动。
U 形管压差计结构简单,使用方便、经济。
差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。
(10)使用直流数字电压表时应注意些什么?答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。
如果有波动,取平均值实验3 恒压过滤参数的测定⑴过滤中,为什么要让过滤介质平行于液面?答:防止空气进入漏斗,影响真空抽滤。
⑹ 启动真空泵前,为什么先要打开放空阀7?关闭旋塞4及放液阀10?答:打开放空阀是为了排除系统中的空气,关闭旋塞4及放液阀10,防止提前抽滤,及把空气从放液阀抽入。
当抽滤开始滤液瓶中有液体时,不提前关闭放液阀,液体会流光。
⑺ 怎样用放空阀调节系统内的真空度?旋塞顺时针旋转,是开还是关?系统内的真空度变大还是变小?答:旋塞顺时针旋转 ,关闭出口阀,系统内真空度变大。
⑻ 要降低真空表读数时,采取什么措施?答:打开放空阀至全开,真空表读数就可降低。
⑽ 停止抽滤后,可否先放出计量瓶中的滤液,然后反冲?为什么?答:不能先放滤液,滤液放出后,系统容积增大,压强变小,反冲速度减慢。
⑾ 计算时,为什么要考虑系统内的存液量?答:系统存液量在零刻度以下,我们是从零刻度开始记时,在记时前,抽滤已经开始,当然应该考虑系统内的存液量。
化工原理实验思考题
![化工原理实验思考题](https://img.taocdn.com/s3/m/89a21411c281e53a5902ff05.png)
实验四?
1.实验中冷流体和蒸汽的流向,对传热效果有何影响??
无影响。因为Q=αA△tm,不论冷流体和蒸汽是迸流还是逆流流动,由?
于蒸汽的温度不变,故△tm不变,而α和A不受冷流体和蒸汽的流向的影响,?所以传热效果不变。?
2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么?措施??
不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器?必须设置排气口,以排除不冷凝气体。?
3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷?凝水??
冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速?率。在外管最低处设置排水口,及时排走冷凝水。?
4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k
接近于哪种流体的?
壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系?
数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温?度。而总传热系数K接近于空气侧的对流传热系数?
5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响??
基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r?和△t?
实验六??精馏?
1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关??
答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。?
流态化实验报告
![流态化实验报告](https://img.taocdn.com/s3/m/803bb789185f312b3169a45177232f60ddcce7d6.png)
一、实验目的1. 观察并理解固体流态化现象。
2. 测定床层的堆积密度和空隙率。
3. 研究流体通过颗粒床层时的压降与空塔气速的关系,并确定临界流化速度。
4. 了解流化床流动特性的差异,如聚式流化和散式流化。
5. 掌握流化床流动特性的实验研究方法。
二、实验原理固体流态化是指流体通过固体颗粒床层时,在一定的流速范围内,固体颗粒能够悬浮在流体中自由运动,表现出类似流体的性质。
当流速低于某一临界值时,颗粒呈静止状态,称为固定床;当流速超过临界值时,颗粒开始运动,床层呈现流态化状态。
流态化实验主要研究以下关系:1. 床层的堆积密度和空隙率:通过测定床层高度和床层体积,计算堆积密度和空隙率。
2. 压降与空塔气速的关系:通过测定流体通过床层时的压降和空塔气速,绘制流化曲线,确定临界流化速度。
3. 流化床流动特性的差异:观察聚式流化和散式流化的现象,分析其差异。
三、实验装置与材料1. 实验装置:流化床实验装置,包括气体流量计、压差计、温度计、气体分布板、石英砂床层等。
2. 实验材料:石英砂颗粒,空气或水。
四、实验步骤1. 准备实验装置,检查各部件是否正常。
2. 将石英砂颗粒倒入床层,调整床层高度,测量床层体积和首次静床高度。
3. 打开电源,启动风机,调节气体流量,从最小刻度开始,逐步增加流量,同时记录空气流量、空气温度、床层压降等上行原始数据。
4. 继续调节气体流量,从上行的最大流量开始,逐步减少流量,直至最小流量,记录相应的下行原始数据。
5. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
6. 重复以上步骤,进行多次实验,确保数据的准确性。
五、实验结果与分析1. 床层的堆积密度和空隙率:通过测量床层体积和首次静床高度,计算堆积密度和空隙率。
结果显示,床层的堆积密度约为1.5 g/cm³,空隙率约为0.45。
2. 压降与空塔气速的关系:通过绘制流化曲线,确定临界流化速度。
结果显示,临界流化速度约为0.6 m/s。
固体流态化实验报告
![固体流态化实验报告](https://img.taocdn.com/s3/m/0997c2674a35eefdc8d376eeaeaad1f3469311d9.png)
固体流态化实验报告固体流态化实验报告引言:固体流态化是一种研究固体颗粒在流体中的行为和性质的实验方法。
通过对颗粒在不同条件下的流动行为进行观察和分析,可以得出一些关于固体流态化的重要结论。
本文将介绍我所参与的一项固体流态化实验,并对实验结果进行分析和讨论。
实验目的:研究固体颗粒在不同条件下的流动行为,探索固体流态化的规律和特性。
实验装置和方法:实验装置主要由一个透明的圆柱形容器、一台电动搅拌器和一种固体颗粒组成。
我们选用了玻璃珠作为固体颗粒,因其形状规则且易于观察。
实验过程中,我们固定了容器的倾斜角度,并通过调节搅拌器的转速来改变固体颗粒与流体之间的相互作用力。
实验结果:通过观察实验过程中固体颗粒的运动情况,我们得出了以下几个重要的实验结果。
1. 倾斜角度对流态化的影响:我们发现,在容器倾斜角度较小的情况下,固体颗粒的流动呈现出一定的规律性,颗粒相对较为集中。
而当倾斜角度增大时,颗粒开始出现堆积和堵塞现象,流动性明显下降。
这表明,倾斜角度对固体流态化的发生和维持起着重要的作用。
2. 搅拌速度对流态化的影响:我们通过调节搅拌器的转速来改变固体颗粒与流体之间的相互作用力。
实验结果显示,当搅拌速度较低时,颗粒之间的相互作用力较小,颗粒流动较为顺畅。
而当搅拌速度增大时,颗粒之间的相互作用力增强,颗粒流动性下降。
这说明,搅拌速度对固体流态化的过程和特性有着重要的影响。
3. 颗粒形状对流态化的影响:我们在实验中选用了玻璃珠作为固体颗粒,因其形状规则且易于观察。
然而,我们注意到不同形状的颗粒在流动过程中表现出不同的行为。
例如,球形颗粒的流动性较好,而棱形颗粒则容易堵塞。
这提示我们,颗粒的形状对固体流态化的过程和结果也有着重要的影响。
讨论与结论:通过以上实验结果的观察和分析,我们可以得出一些关于固体流态化的重要结论。
首先,固体流态化是一个复杂的过程,受多种因素的影响。
倾斜角度、搅拌速度和颗粒形状等因素都会对流态化过程和结果产生重要影响。
固体流态化实验_2
![固体流态化实验_2](https://img.taocdn.com/s3/m/7af1ba6eef06eff9aef8941ea76e58fafab045c1.png)
实验十一 固体流态化实验一、实验目的1.观察散式和聚式流态化现象;2.测定液固与气固流态化系统中流体通过固体颗粒床层的压降和流速之间的关系。
二、基本原理流体(液体或气体)自下而上通过一固体颗粒床层, 当流速较低时流体自固体颗粒间隙穿过, 固体颗粒不动;流速加大固体颗粒松动, 流速继续增大至某一数值, 固体颗粒被上升流体推起, 上下左右翻滚, 作不规则运动, 如沸腾状, 此即固体流态化。
液固系统的流态化, 固体颗粒被扰动的程度比较平缓, 液固两相混合均匀, 这种流化状态称为“散式流态化”;气固系统的流态化, 由于气体与固体的密度差较大, 气流推动固体颗粒比较困难, 大部分气体形成气泡穿过床层, 固体颗粒也被成团地推起, 这种流化状态称为“聚式流态化”。
流态化床层的压降可由下式表达:g L P s )1)((ερρ--=∆对于球形颗粒, 起始流化速度(又称临界流速)可由下式表达:μρρg d u s p mf )(00059.02-=以上两式中: L ——床层高度, m ;ρs ——固体颗粒密度, kg/m3;ρ——流体密度, kg/m3;ε——床层空隙率;g——重力加速度, m/s2;dP——固体颗粒平均直径, m;μ——流体粘度, N·s/m2。
由以上两式可知, 影响流化床层和起始流化速度的因素主要为床层高度、流体与颗粒的密度、颗粒空隙率和颗粒尺寸、流体粘度等。
另外可根据佛鲁德准数(判断两种流化状态, (Fr)mf小于1时为散式流态化, 大于1时为聚式流态化。
上述各关系可以通过实验进行验证。
三、实验装置实验装置流程见附图所示, 分液固和气固两种流化床, 均为矩形透明有机玻璃结构, 床层横截面积尺寸为150×20mm, 分布板上放置约1公斤φ575μm玻璃球固体颗粒。
液固系统的水由旋涡式水泵自塑料水箱抽取经转子流量计送入流化床底部, 床层压降由倒置的U型管压差计计量, 流经床层的水由顶部溢流槽流回水箱。
化工原理思考题参考
![化工原理思考题参考](https://img.taocdn.com/s3/m/dca48a0716fc700abb68fca1.png)
实验5 精馏塔的操作和塔效率的测定⑴ 在求理论板数时,本实验为何用图解法,而不用逐板计算法?答:相对挥发度未知,而两相的平衡组成已知。
⑵ 求解q 线方程时,C p ,m ,γm 需用何温度? 答:需用定性温度求解,即:2)(b F t t t +=⑶ 在实验过程中,发生瀑沸的原因是什么?如何防止溶液瀑沸?如何处理?答;① 初始加热速度过快,出现过冷液体和过热液体交汇,釜内料液受热不均匀。
② 在开始阶段要缓慢加热,直到料液沸腾,再缓慢加大加热电压。
③ 出现瀑沸后,先关闭加热电压,让料液回到釜内,续满所需料液,在重新开始加热。
⑷ 取样分析时,应注意什么?答:取样时,塔顶、塔底同步进行。
分析时,要先分析塔顶,后分析塔底,避免塔顶乙醇大量挥发,带来偶然误差。
⑸ 写出本实验开始时的操作步骤。
答:①预热开始后,要及时开启塔顶冷凝器的冷却水,冷却水量要足够大。
②记下室温值,接上电源,按下装置上总电压开关,开始加热。
③缓慢加热,开始升温电压约为40~50伏,加热至釜内料液沸腾,此后每隔5~10min 升电压5V 左右,待每块塔板上均建立液层后,转入正常操作。
当塔身出现壁流或塔顶冷凝器出现第一滴液滴时,开启塔身保温电压,开至150 V ,整个实验过程保持保温电压不变。
④等各块塔板上鼓泡均匀,保持加热电压不变,在全回流情况下稳定操作20min 左右,用注射器在塔顶,塔底同时取样,分别取两到三次样,分析结果。
⑹ 实验过程中,如何判断操作已经稳定,可以取样分析?答:判断操作稳定的条件是:塔顶温度恒定。
温度恒定,则塔顶组成恒定。
⑺ 分析样品时,进料、塔顶、塔底的折光率由高到底如何排列?答:折光率由高到底的顺序是:塔底,进料,塔顶。
⑻ 在操作过程中,如果塔釜分析时取不到样品,是何原因?答:可能的原因是:釜内料液高度不够,没有对取样口形成液封。
⑼ 若分析塔顶馏出液时,折光率持续下降,试分析原因?答:可能的原因是:塔顶没有产品馏出,造成全回流操作。
题库,考试题库,考试试卷与题目-总题库
![题库,考试题库,考试试卷与题目-总题库](https://img.taocdn.com/s3/m/fc5d85a4bb4cf7ec4afed0cb.png)
《化工原理》考试时间:120分钟 考试总分:100分一、数据来源于总题库(),仅供人个使用。
1、启动离心泵前,为什么必须关闭泵的出口阀门?( )2、作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么?( )3、流量为零时,U 形管两支管液位水平吗?为什么?( )4、怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净?( )姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------5、为什么本实验数据须在双对数坐标纸上标绘?()6、你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点?()7、读转子流量计时应注意什么?为什么?()8、两个转子能同时开启吗?为什么?()9、开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?()10、使用直流数字电压表时应注意些什么?()11、假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?()12、离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么?()13、本实验用水为工作介质做出的λ-Re曲线,对其它流体能否使用?为什么?()14、本实验是测定等径水平直管的流动阻力,若将水平管改为流体自下而上流动的垂直管,从测量两取压点间压差的倒置U型管读数R到ΔPf的计算过程和公式是否与水平管完全相同?为什么?()15、测试时为什么要取同一时刻下的瞬时数据?()16、作λ-Re图时,依点画线用什么工具?点在线的一侧还是两侧?怎样提高做图的精确度?做图最忌讳什么?()17、实验结果讨论中,应讨论什么?()18、为什么启动离心泵前要向泵内注水?如果注水排气后泵仍启动不起来,你认为可能是什么原因?()19、离心泵特性曲线测定过程中[]点不可丢,为什么?()20、启动离心泵时,为什么先要按下功率表分流开关绿色按钮?()21、为什么调节离心泵的出口阀门可调节其流量?这种方法有什么优缺点?是否还有其它方法调节泵的流量?()22、正常工作的离心泵,在其进口管上设置阀门是否合理,为什么?()23、为什么在离心泵进口管下安装底阀?从节能观点看,底阀的装设是否有利?你认为应如何改进?()24、为什么停泵时,要先关闭出口阀,再关闭进口阀?()25、离心泵的特性曲线是否与连结的管路系统有关?()26、为什么流量越大,入口处真空表的读数越大,而出口处压强表的读数越小?()27、离心泵应选择在高效率区操作,你对此如何理解?答()28、离心泵的送液能力为什么可以通过出口阀的调节来改变?往复泵的送液能力是否采用同样的调节方法?为什么?()29、离心泵采用蜗牛形泵壳,叶轮上叶片弯曲方向与叶轮旋转方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 固体流态化的流动特性实验
一、 实验目的
在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类。
近年来,流化床设备得到愈来愈广泛的应用。
固体流态化过程又按其特性分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统的密相流化床属于散式流化床。
本实验的目的,通过实验观察固定床向流化床转变的过程,以及聚式流化床和散式流化床流动特性的差异;实验测定流化曲线和临界流化速度,并实验验证固定床压降和流化床临界流化速度的计算公式。
通过本实验希望能初步掌握流化床流动特性的实验研究方法,加深对流体流经固体颗粒层的流动规律和固体流态化原理的理解。
二、 实验原理
当流态流经固定床内固体颗粒之间的空隙时,随着流速的增大,流态与固体颗粒之间所产生阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
现将一种较为常用的公式介绍如下:
流体流经固定床的压降,可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即
2
20u d H p p m m ρλ⋅⋅=∆ (1) 式中,H m 为固定床层的高度,m 、d p 为固体颗粒的直径,m 、u 0为流体的空管速度,m ·s -1;ρ为流体的密度,Kg ·m -3;λm 为固定床的摩擦系数。
固定床的摩擦系数λm 可以直接由实验测定,根据实验结果,厄贡(Ergun)提出如下经验公式:
⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=75.1Re 150123m
m m m εελ (2) 式中,εm 为固定床的空隙率;Re m 为修正雷诺数。
Re m 可由颗粒直径d p ,床层空隙率εm ,流体密度ρ,流体粘度μ和空管速度u 0,按下式计算:
m
p m u d εμρ-⋅=11Re 0
(3) 由固定床向流化床转变式的临界速度u mf ,也可由实验直径测定。
实验测定不同流速下的床层压降,再降实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图1所示。
ΔP
mf u 0
图1流体流经固定床和流化床时的压力降
为计算临界流化速度,研究者们也曾提出过各种计算公式,下面介绍的为一种半理论半
经验的公式:当流态化时流体流动对固体颗粒产生的向上作用力,应等于颗粒在流体中的净重力,即
g S H pS s f f ))(1(ρρε--=∆ (4)
式中,S 为床层的横截面积m 2,H f 为床层的高度m ,εf 为床层的空隙率;ρs 为固体颗粒的密度Kg ·m -3,ρ为流体的密度Kg ·m -3,由此可得出流化床压力降的计算公式:
g H p s f f ))(1(ρρε--=∆ (5)
当床层处于由固定床向流化床转变的临界点时,固定床压力降的计算式与流化床的计算式应同时适用。
这时,,H f=H mf ,εf =ε面f ,u 0=u mf 因此联立(1)和(5)两式即可得临界流化速度的计算式:
21,,))(1(21⎥⎦⎤⎢⎣⎡--⋅=ρρρελs f m m f m dp u (6)
若式中固定床的摩擦系数λm 按式(2)计算,则联立(2)和(6)两式即可计算得到临界流化速度。
最后,尚需进一步指出,由实验数据关联得出的固定床压力降和临界流化速度的计算公式,除以上介绍的算式之外,文献中报导的至今已达数十种之多。
但大都不是形式过于复杂,就是应用局限性和误差较大。
一般用实验方法直接测量最为可靠,而这种实验方法又较为简单可行。
流化床的特性参数,除上述外,还有密相流化与稀相流化临界点的带出速度u f 、床层的膨胀比R 和流化数K 等,这些都是设计流化床设备时的重要参数。
流化床的床高H f 与静床层的高度H 0之比,称为膨胀比,即:R = H f / H 0 (7)
流化床实际采用的流化速度u f 与临界流化速度u m,f 之比称为流化数,即:K=u f /u m,f (8) 三、实验装置
本实验装置采用气-固和液-固系统两套设备并列。
设备主体均采用圆柱形的自由床。
图2液固系统的流程图
内分别填充球粒状硅胶和玻璃微珠。
分布器采用筛网和填满玻璃球的圆柱体。
柱顶装有
过滤网,以阻止固体颗粒带出设备外。
床层上均有测压口与压差计相接。
液固系统的流程如图2所示。
水循环水泵或高位稳压水槽,经调节阀和孔板流量计;由
设备底部进入。
水进入设备后,经过分布器分布均匀,由下而上通过颗粒层,最后经顶部过
滤网排入循环水槽。
水流量由调节阀调节,并由孔板流量计的压差计显示读数。
气固系统的流程如图3所示,空气自风机经调节阀和孔板流量计,由设备底部进入,空
气进入设备后,经分布器分布均匀,由上而下通过颗粒层,最后经顶部滤网排空。
空气流量
由调节阀和放空阀联合调节,并由孔板流量计的压力降显示读数。
四、实验方法
本实验可分两步进行:第一步,观察并比较液固系统流化床和气固系统流化床的流动状况;第二步,实验测定空气或水通过固体颗粒测的特性曲线。
在实验开始前,先按流程图检查各阀门开闭情况。
降水调节阀和空气调节阀全部关闭,
1
图3气固系统流程图
1、放空阀;
2、空气调节阀;
3、孔板流量计;
4、孔板流量计的压差计;
5、压差计;
6、滤网;
7、床体;
8、固体颗粒层;
9、分布器。
待循环水泵和风机运转正常后,先徐徐开启水调节阀,使水流量缓慢增大,观察床层的
变化过程;然后再徐徐开启空气调节阀和关小放空阀,联合调节阀改变空气流量,观察床层
的变化过程。
完成第一步实验操作后,先关闭水调节阀,再停泵,继续进行第二步实验操作,若测定
不同空气流速下。
床层的压力降和床层高度。
实验可在流量由小到大,再由大到小反复进行。
实验完毕,先打开放空阀,后关闭调节阀,再停机。
实验过程中应特别注意下列事项:
a)循环水泵和风机的启动和关闭必须严格遵守上述操作步骤。
无论是开机、停机
或调节流量,必须缓慢地开启或关闭阀门,并同时注视压差计中液柱变化情况,
严防压差计中指示液冲入设备。
b) 当流量调节到接近临界点时,阀门调节更需要精心细微,注意床层的变化。
c) 实验完毕,必须将设备内的水排放干净,切莫将杂质混入循环水中,以防堵塞
分布器和滤网。
五、 实验结果整理
1、录实验设备和操作的基本参数
ii. 设备参数
柱体内径:d =φ50 mm
静床层高度:H 0=100 mm
分布器形式:
iii. 固体颗粒基本参数
固体种类:气固系统(硅胶球) 液固系统(玻璃微珠)
颗粒形状:
孔流系数k =0.61 孔流系数k =0.6025
孔板孔径:d =0.003m 孔板孔径:d =0.003m
平均粒径:d p =0.35 mm d p = 1.5 mm
颗粒密度:ρs = 924 Kg ·m -3 ρs = 1937 Kg ·m -3
堆积密度:ρb = 475 Kg ·m -3 ρb = 1160 Kg ·m -3 空隙率(s b s ρρρε-=
):ε= 0.486 ε=0.401 iv. 流体物性数据
流体种类: 空气 水
温 度:Tg = ℃ Tt = ℃
密 度:ρb = Kg ·m -3 ρb = Kg ·m -3
粘 度:μg = Pa ·s μt = Pa ·s
0m,f.0将实验测试定值与计算进行比较,算出相对误差。
4、在双对数坐标纸上标绘固定床阶段的的m em R λ-关系曲线。
将实验测定曲
线与由计算值标绘的曲线进行对照比较。
附:孔板流量计计算流体流速公式 ρεαp F Q ∆⋅⋅=20
其中:Q :体积流量m 3/s ;
α:流体流经孔板的流量系数;
ε:流体膨胀系数;
F 0:孔板孔口横截面积,2004d F π=
;
ΔP :孔板前后的压差;
ρ:被测流体的密度
流体质量流量公式: p F Q ∆⋅⋅=ρεα20 (kg/s )。