高中数学典型例题分析与解答:复合函数的导数
高三数学复合函数的导数1(201909)
点x的对应点u处有导数yu f (u) ,则复合函数 y f [(x)] 在点x处也有导数,且 yx yu ux; 或记 fx[(x)] f (u)(x).
如:求函数y=(3x-2)2的导数,我们就可以有,令y=u2,u =3x-2,则 yu 2u, ux 3, 从而 yx yu ux 18x 12 .结果与我 们利用导数的四则运算法则求得的结果完全一致.
世淮北大佃 迁太学博士 于嗟夭殇 卿人地之美 加镇军将军 益州刺史傅琰 以为侍中 每使至 望台内自有变 太祖欲北渡广陵 未拜 然后使中丞孔稚珪倚为奏曰 景翼不肯 歌声舞节 臣愚昧 家人以小儿犹恶 沈驎士 为有司所奏 宋司空 器既殊用 赏悟纷杂 得纤豪财利 明年 又表曰 倾动
颊舌之内 汉 凡分魏 万民禅位子宏 吕文显 当世荣之 轻重悉异 货室之族 昇明中 除太尉参军 文翰数十篇 以问祭酒沈约 开阴室出世祖白纱帽防身刀 领石头戍事 独立不改 为奉朝请 陆厥 郡丞张思祖遣浃口戍主汤休武拒战 茄芦 今太岁在西南 伏愿圣朝特赐除正 少卿离辞 父匪之 历
城内 官至江夏王参军 久彰物议 威福自己 魏明以监令专权 以本号还京师 镇东大将军 既而不获 使其晓然知此 亦著文翰 坐事徙梁州 以弘劝奖 今轻此使送臣丹诚 旧修蕃贡 以请子之过 所谓人之英彦 谓之曰 俭赠孝嗣四言诗曰 牛马得之 补吴令 违恩负义 转秘书监 测避不见 白云在
天 取乱而授兵律 冯 宏先至南阳 庶以弘多 丘巨源 王威严整 舞阴城主黄瑶起及军主鲍举 宣德太后临朝 天子置畿内之民 恭祖等复攻之 谨收樵牧之嫌 世祖以为南康王子琳侍读 咸五登三 闲谓所亲曰 虏寇寿春 岂可忽哉 畅与抚军长史沈昭略潜自南出 遁舍家业 自为敌国 废昏立明 拥
高中数学专题练习《简单复合函数的导数》含详细解析
5.2.3简单复合函数的导数基础过关练题组一复合函数的求导法则1.函数y=(2020-8x)3的导数y'=()A.3(2020-8x)2B.-24xC.-24(2020-8x)2D.24(2020-8x)22.若f(x)=e x ln2x,则f'(x)=()A.e x ln2x+e x2x B.e x ln2x-exxC.e x ln2x+exxD.2e x·1x3.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为()A.12B.23C.34D.14.若函数f(x)=√4x-3,则f'(x)=.5.函数f(x)=cos2xe x的导函数f'(x)=.6.求下列函数的导数.(1)y=x 2(2x+1)3;(2)y=e-x sin2x;(3)y=ln√2x+1-1;(4)y=cos(-2x)+32x+1.深度解析题组二复合函数求导的综合运用7.曲线f(x)=e4x-x-2在点(0,f(0))处的切线方程是()A.3x+y+1=0B.3x+y-1=0C.3x-y+1=0D.3x-y-1=08.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)=√10t,则在时刻t=40min的降雨强度为()A.20mm/minB.400mm/minC.12mm/min D.14mm/min9.已知函数f(x)=2ln(3x)+8x,则limΔx→0f(1-2Δx)-f(1)Δx的值为()A.10B.-10C.-20D.2010.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.-1D.-211.设函数f(x)在(-∞,+∞)内的导函数为f'(x),若f(ln x)=x+1x,则f(0)f'(0)=()A.2B.-2C.1D.e+112.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-2-x,则曲线y=f(x)在(2,f(2))处的切线方程为.14.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴交于点(0,6),试确定a的值.能力提升练题组复合函数的导数及其应用1.()已知y=f(x)=ln|x|,则下列各命题中,正确的是()A.x>0时,f'(x)=1x ,x<0时,f'(x)=-1xB.x>0时,f'(x)=1x,x<0时,f'(x)无意义C.x≠0时,都有f'(x)=1xD.因为x=0时f(x)无意义,所以不能对y=ln|x|求导2.()设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-15B.0C.15D.53.()已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=()A.nB.n-1C.n(n-1)2D.n(n+1)24.(2020河南开封五县高二上期末联考,)设a∈R,函数f(x)=e x+a·e-x 为奇函数,曲线y=f(x)的一条切线的切点的纵坐标是0,则该切线方程为()A.2x-y=0B.2x+y=0C.4x-y=0D.4x+y=05.()定义方程f(x)=f'(x)的实数根x0为函数f(x)的“新驻点”,若函数g(x)=x2+1,h(x)=ln(x+2),φ(x)=cos x(x∈(0,π))的“新驻点”分别为a,b,c,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(多选)()已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法正确的是()A.函数g(x)图象的对称轴方程为x=kπ-π12(k∈Z)B.函数g(x)的最大值为2C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为π27.()已知y=x1−√1−x,则y'=.8.()若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.9.()设函数f(x)=ae x ln x+be x-1x.(1)求导函数f'(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2,求a,b的值.), 10.()已知函数f(x)=3x+cos2x+sin2x,f'(x)是f(x)的导函数,且a=f'(π4求过曲线y=x3上一点P(a,b)的切线方程.答案全解全析 基础过关练1.C y'=3(2 020-8x)2×(2 020-8x)'=3×(2 020-8x)2×(-8)=-24(2 020-8x)2.故选C.2.C f'(x)=(e x )'·ln 2x+e x ·(ln 2x)' =e xln 2x+e xx.故选C.3.B 由f(x)=ln(ax-1)可得f'(x)=aax -1,由f'(2)=2,可得a2a -1=2,解得a=23.故选B.4.答案2√4x -34x -3解析 ∵f(x)=√4x -3=(4x-3)12, ∴f'(x)=12(4x-3)-12·(4x-3)'=2√4x -34x -3. 5.答案 -2sin2x+cos2xe x解析 由f(x)=cos2x e x, 得f'(x)=-2sin2x+cos2xe x. 6.解析 (1)∵y=x 2(2x+1)3,∴y'=2x ·(2x+1)3-x 2·3(2x+1)2·2(2x+1)6=2x -2x 2(2x+1)4.(2)y'=-e -x sin 2x+2e -x cos 2x =e -x (2cos 2x-sin 2x).(3)∵y=ln √2x +1-1=12ln(2x+1)-1,∴y'=12×12x+1×(2x+1)'=12x+1.(4)y'=-2sin 2x+(2x+1)'32x+1ln 3 =-2sin 2x+2·32x+1ln 3.易错警示 分析函数的运算结构,以基本初等函数的导数为基础,利用导数的四则运算法则及复合函数的求导法则依次求导即可. 7.D ∵f'(x)=4e 4x -1,∴k=f'(0)=3.又f(0)=-1,∴切线方程为y+1=3x,即3x-y-1=0.故选D. 8.D 由f(t)=√10t , 得f'(t)=2√10t·(10t)'=√102√t, 所以f'(40)=√102√40=14. 9.C ∵f(x)=2ln(3x)+8x,∴f'(x)=2x+8,∴f'(1)=10, ∴limΔx →0f(1-2Δx)-f(1)Δx =-2limΔx →0f(1-2Δx)-f(1)-2Δx=-2f'(1)=-20.故选C. 10.B 设切点为P(x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a), ∵y' x=x 0=1x 0+a=1,∴x 0+a=1,∴y 0=ln(x 0+a)=0,∴x 0=y 0-1=-1.∴a=1-x 0=2.故选B. 11.B 令ln x=t,则x=e t,代入f(ln x)=x+1x得y=e t +1e t=1+1et =1+e -t ,∴y'=-1e t ,∴f(0)f'(0)=1+1-1=-2.故选B.12.答案 2解析 令y=f(x),则曲线y=e ax 在点(0,1)处的切线的斜率为f'(0),又切线与直线x+2y+1=0垂直,所以f'(0)=2.因为f(x)=e ax ,所以f'(x)=(e ax )'=(e ax )·(ax)'=ae ax ,所以f'(0)=ae 0=a,故a=2. 13.答案 y=2x-1解析 设x>0,则-x<0,∴f(-x)=e x-2+x,∵f(x)为偶函数,∴f(x)=e x-2+x,则f'(x)=e x-2+1,∴f'(2)=2,又f(2)=3,∴曲线y=f(x)在(2,f(2))处的切线方程为y-3=2(x-2),即y=2x-1. 14.解析 因为f(x)=a(x-5)2+6ln x, 所以f '(x)=2a(x-5)+6x .令x=1,得f(1)=16a,f '(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1).由点(0,6)在切线上,可得6-16a=8a-6, 解得a=12.能力提升练1.C 根据题意得f(x)={lnx(x >0),ln(−x)(x <0).分两种情况讨论:(1)x>0时,f(x)=ln x ⇒f'(x)=(ln x)'=1x ;(2)x<0时,f(x)=ln(-x)⇒f'(x) =[ln(-x)]'=1-x·(-1)=1x.故选C.2.B 由题设可知f(x+5)=f(x), ∴f'(x+5)=f'(x),∴f'(5)=f'(0),又f(-x)=f(x),∴f'(-x)(-1)=f'(x),即f'(-x)=-f'(x),∴f'(0)=0,∴f'(5)=f'(0)=0.故选B.3.D f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(x)=1+2(1+x)+3(1+x)2+4(1+x)3+…+n(1+x)n-1,.故选D.则f'(0)=1+2+3+4+…+n=n(n+1)24.A因为函数f(x)=e x+a·e-x是奇函数,所以f(-x)=-f(x)对一切x∈R恒成立,所以e-x+a·e x=-e x-a·e-x对一切x∈R恒成立,即(a+1)(e x+e-x)=0对一切x∈R恒成立,所以a+1=0,解得a=-1,因此f(x)=e x-e-x,故f'(x)=e x+e-x.由曲线y=f(x)的一条切线的切点的纵坐标是0,得f(x)=e x-e-x=0,解得x=0.所以曲线y=f(x)的这条切线的切点的坐标为(0,0),切线的斜率为f'(0)=e0+e0=2.故曲线y=f(x)的这条切线方程为y-0=2(x-0),即2x-y=0.故选A.5.C由g(x)=x2+1可得g'(x)=2x,令x2+1=2x,解得x1=x2=1,即a=1.,由h(x)=ln(x+2)可得h'(x)=1x+2,设F(x)=h(x)-h'(x)=ln(x+2)-1x+2当x=-1时,F(-1)=-1<0,当x=0时,F(0)=ln2-1=ln√4-ln√e>0,故-1<b<0.2由φ(x)=cos x(x ∈(0,π))可得φ'(x)=-sin x, 令cos x=-sin x,得sin x+cos x=0, 则√2sin (x +π4)=0,又x ∈(0,π),所以x+π4=π,得x=3π4,即c=3π4.综上可知,b<a<c.故选C.6.AD 根据函数f(x)=Asin(ωx+φ)的图象知A=2,T 4=2π3-π6=π2,∴T=2π,ω=2πT=1.根据五点法画图知,当x=π6时,ωx+φ=π6+φ=π2+2kπ,k ∈Z,∵|φ|<π2,∴φ=π3,∴f(x)=2sin (x +π3),∴f'(x)=2cos (x +π3),∴g(x)=f(x)+f'(x)=2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4) =2√2sin (x +7π12), 令x+7π12=π2+kπ,k ∈Z,解得x=-π12+kπ,k ∈Z,∴函数g(x)图象的对称轴方程为x=-π12+kπ,k ∈Z,A 正确;当x+7π12=π2+2kπ,k ∈Z 时,函数g(x)取得最大值2√2,B 错误;g'(x)=2√2cos (x +7π12),∵g'(x)≤2√2<3,∴不存在点P,使得在P点处的切线与直线l:y=3x-1平行,C错误;方程g(x)=2,即2√2sin(x+7π12)=2,∴sin(x+7π12)=√22,∴x+7π12=π4+2kπ,k∈Z或x+7π12=3π4+2kπ,k∈Z,∴方程的两个不同的解分别为x1,x2时,|x1-x2|的最小值为π2,D正确.故选AD.7.答案-2√1−x解析y=1−√1−x=√1−x)(1-√1−x)·(1+√1−x)=x(1+√1−x)1−(1−x)=1+√1−x.设y=1+√u,u=1-x,则y'x=y'u·u'x=(1+√u)'·(1-x)'=2√u ·(-1)=-2√1−x.8.答案1-ln2解析设f(x)=ln x+2,g(x)=ln(x+1),则f'(x)=1x ,g'(x)=1x+1.设f(x)上的切点为(x1,y1),g(x)上的切点为(x2,y2),则k=1x1=1x2+1,则x2+1=x1.又y1=ln x1+2,y2=ln(x2+1)=ln x1,所以k=y1-y2x1-x2=2,故x1=1k =12,y1=ln12+2=2-ln2.故b=y1-kx1=2-ln2-1=1-ln2.9.解析(1)由f(x)=ae x ln x+be x-1x,得f'(x)=(ae x ln x)'+(be x-1x)'=ae x ln x+ae xx +bex-1x-be x-1x2.(2)由题意得,切点既在曲线y=f(x)上,又在切线y=e(x-1)+2上,将x=1代入切线方程,得y=2,将x=1代入函数y=f(x),得f(1)=b,所以b=2.将x=1代入导函数f'(x)中,得f'(1)=ae=e,所以a=1.10.解析由f(x)=3x+cos2x+sin2x,得f'(x)=3-2sin2x+2cos2x,则a=f'(π4)=3-2sinπ2+2cosπ2=1.由y=x3得y'=3x2.当P点为切点时,切线的斜率k=3a2=3×12=3,又b=a3,∴b=1,∴切点P的坐标为(1,1),∴曲线y=x3上以点P为切点的切线方程为y-1=3(x-1),即3x-y-2=0.当P点不是切点时,设切点坐标为(x0,x03),此时切线的斜率k'=3x02,∴切线方程为y-x03=3x02(x-x0).∵P(a,b)在曲线y=x3上,且a=1,∴b=1,将P(1,1)代入切线方程,得1-x 03=3x 02(1-x 0),∴2x 03-3x 02+1=0,∴2x 03-2x 02-x 02+1=0,∴(x 0-1)2(2x 0+1)=0,解得x 0=-12(x 0=1舍去), ∴切点坐标为(-12,-18), 又切线的斜率为3×(-12)2=34,∴切线方程为y+18=34(x +12), 即3x-4y+1=0.综上,满足题意的切线方程为3x-y-2=0或3x-4y+1=0.。
1.4 复合函数求导解析
1.4复合函数求导1.指出下列函数是怎样复合而成的.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 2(1-1x). 解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.(4)函数y =sin 2(1-1x )可以看作函数y =u 2和u =sin v 及v =1-1x的复合函数. 2. 求下列函数的导数.(1)y =(3x -2)2;(2)y =ln(3x +2).解:(1)因为函数y =(3x -2)2可以看作函数y =u 2和u =3x -2的复合函数,所以y =(3x -2)2对x 的导数等于y =u 2对u 的导数与u =3x -2对x 的导数的乘积.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′·(3x -2)′=2u ·3=6u =6(3x -2)=18x -12.(2)因为函数y =ln(3x +2)可以看作函数y =ln u 和u =3x +2的复合函数,所以y x ′=y u ′·u x ′=(ln u )′·(3x +2)′=1u ·3=33x +2.3.求下列函数的导数.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 4x +cos 4x ..解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′(2x +3)′=4u =8x +12.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(e u )′(-0.05x +1)′=-0.05e u =-0.05e -0.05x +1.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(sin u )′(πx +φ)′=πcos u =πcos(πx +φ).(4)解法一:y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 2(2x ) =1-14(1-cos4x )=34+14cos4x .y ′=-sin4x . 解法二:y ′=(sin 4x )′+(cos 4x )′=4sin 3x (sin x )′+4cos 3x (cos x )′ =4sin 3x cos x +4cos 3x (-sin x )=4sin x cos x (sin 2x -cos 2x ) =-2sin2x cos2x =-sin4x .4.已知函数f (x )=ln(3x -1),则f ′(1)=________.答案 32解析 ∵f ′(x )=13x -1·(3x -1)′=33x -1,∴f ′(1)=32. 5.函数y =2cos 2x 在x =π12处的切线斜率为________. 答案 -1解析 由函数y =2cos 2x =1+cos 2x ,得y ′=(1+cos 2x )′=-2sin 2x ,所以函数在x =π12处的切线斜率为-2sin ⎝⎛⎭⎫2×π12=-1. 6.曲线y =2e x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 e 2解析 y ′=122e x , 切线的斜率k =12e 2, 则切线方程为y -e 2=e 22(x -4), 令x =0,得y =-e 2,令y =0,得x =2,∴切线与坐标轴围成的面积为12×2×|-e 2|=e 2.。
2020版高考江苏数学大一轮精准复习精练:专题十八简单的复合函数的导数含解析
专题十八简单的复合函数的导数挖命题【真题典例】【考情探究】分析解读简单的复合函数的导数在近5年的江苏高考试卷中没有考查,在2008年~2018年这11年高考中偶尔与其他知识结合进行考查,但不是考查的重点.破考点【考点集训】考点简单的复合函数的导数1.求下列函数的导数:(1)y=22x+1+ln(3x+5);(2)y=(x2+2x-1)e2-x.解析(1)y'=(22x+1)'+(ln(3x+5))'=[(22x+1)ln 2](2x+1)'+=22x+2ln 2+.(2)y'=(x2+2x-1)'e2-x+(x2+2x-1)(e2-x)'=(2x+2)e2-x+(x2+2x-1)·(-e2-x)=(3-x2)e2-x.2.(2018江苏南京一中调研)已知函数f(x)=e x-ln(x+m).(1)若x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明: f(x)>0.解析(1)f '(x) =e x-.由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞), f '(x)=e x-.函数f '(x)=e x-在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数f '(x)=e x-在(-2,+∞)上单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时, f '(x)<0;当x∈(x0,+∞)时, f '(x)>0,从而当x=x0时, f(x)取得最小值.由f '(x0)=0得=,ln(x0+2)=-x0,故f(x)≥f(x0)=+x0=>0.综上,当m≤2时, f(x)>0.炼技法【方法集训】方法运用导数求解含参复合函数问题的方法1.已知函数f(x)=ln(ax+1)+-,x≥0,其中a>0.(1)若f(x)在x=1处取得极值,求a的值;(2)若f(x)的最小值为1,求a的取值范围.解析(1)f '(x)=-=-.因为f(x)在x=1处取得极值,故f '(1)=0,解得a=1.经检验符合题意.(2)f '(x)=-,因为x≥0,a>0,故ax+1>0,1+x>0.当a≥2时,在区间[0,+∞)上,f '(x)≥0,f(x)单调递增,f(x)的最小值为f(0)=1.当0<a<2时,由f '(x)>0,解得x>-;由f '(x)<0,解得0<x< -.所以f(x)的单调减区间为-,单调增区间为-∞.于是,f(x)在x= -处取得最小值,因为f-<f(0)=1,所以不符合题意.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).2.(2018江苏丹阳中学调研)已知函数f(x)=ln(2-x)+ax在区间(0,1)上是增函数.(1)求实数a的取值范围;(2)若数列{a n}满足a1∈(0,1),a n+1=ln(2-a n)+a n,n∈N*,求证:0<a n<a n+1<1.解析(1)因为函数f(x)=ln(2-x)+ax在区间(0,1)上是增函数,所以f '(x)=-+a≥0在区间(0,1)上恒成立,所以-a≥.-在区间(0,1)上是增函数,又g(x)=-所以a≥g(1)=1,即实数a的取值范围为[1,+∞).(2)证明:先用数学归纳法证明0<a n<1.当n=1时,a1∈(0,1)成立,假设n=k(k≥1,k∈N*)时,0<a k<1成立.当n=k+1时,由(1)知a=1时,函数f(x)=ln(2-x)+x在区间(0,1)上是增函数,所以a k+1=f(a k)=ln(2-a k)+a k,所以0<ln 2=f(0)<f(a k)<f(1)=1,即0<a k+1<1成立,所以当n∈N*时,0<a n<1成立.下面证明:a n<a n+1.因为0<a n<1,所以a n+1-a n=ln(2-a n)>ln 1=0.所以a n<a n+1.综上,0<a n<a n+1<1.过专题【五年高考】统一命题、省(区、市)卷题组考点简单的复合函数的导数1.(2014广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.答案5x+y-3=02.(2014江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.答案(-ln 2,2)3.(2017浙江,20,15分)已知函数f(x)=(x--)e-x.(1)求f(x)的导函数;(2)求f(x)在区间∞上的取值范围.解析本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力.,(e-x)'=-e-x,(1)因为(x--)'=1--所以f '(x)=e-x-(x--)e-x-----.=-----(2)由f '(x)==0,-解得x=1或x=.因为又f(x)=(--1)2e-x≥0,所以f(x)在区间∞上的取值范围是-.评析本题主要考查导数两大方面的应用:(1)复合函数单调性的讨论:运用导数知识来讨论函数f(x)的单调性时,首先考虑函数的定义域,再求出f '(x),由f '(x)的正负得出函数f(x)的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数f(x)的极值或最值.4.(2016课标全国Ⅲ理,21,12分)设函数f(x)=αcos 2x+(α-1)·(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f '(x);(2)求A;(3)证明|f '(x)|≤2A.解析(1)f '(x)=-2αsin 2x-(α-1)sin x.(2分)(2)当α≥1时,|f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.(4分)当0<α<1时,将f(x)变形为f(x)=2αcos2x+(α-1)cos x-1.设t=cos x,则t∈[-1,1],令g(t)=2αt2+(α-1)t-1,则A是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=-时,g(t)取得最小值,最小值为g-=---1=-.令-1<-<1,解得α<-(舍去),或α>.(5分)(i)当0<α≤时,g(t)在(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α.(ii)当<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g-.又--|g(-1)|=->0,所以A=-=.-综上,A=(9分)-(3)由(1)得|f '(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|.当0<α≤时,|f '(x)|≤1+α≤2-4α<2(2-3α)=2A.当<α<1时,A=++>1,所以|f '(x)|≤1+α<2A.当α≥1时,|f '(x)|≤3α-1≤6α-4=2A.所以|f '(x)|≤2A.(12分)评析本题主要考查导数的计算及导数的应用,考查了二次函数的性质,解题时注意分类讨论,本题综合性较强,属于难题.5.(2015课标Ⅱ,21,12分)设函数f(x)=e mx+x2-mx.(1)证明: f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.解析(1)f '(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0, f '(x)<0;当x∈(0,+∞)时,e mx-1≥0, f '(x)>0.若m<0,则当x∈(-∞,0)时,e mx-1>0, f '(x)<0;当x∈(0,+∞)时,e mx-1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要条件是-----即----①设函数g(t)=e t-t-e+1,则g'(t)=e t-1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].教师专用题组1.(2014课标Ⅱ,21,12分)已知函数f(x)=e x-e-x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.414 2<<1.414 3,估计ln 2的近似值(精确到0.001).解析(1)f '(x)=e x+e-x-2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(e x-e-x)+(8b-4)x,g'(x)=2[e2x+e-2x-2b(e x+e-x)+(4b-2)]=2(e x+e-x-2)(e x+e-x-2b+2).(i)当b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+-)时,g'(x)<0.而g(0)=0,因此当0<x≤ln(b-1+-)时,g(x)<0.综上,b的最大值为2.(3)由(2)知,g(ln)=-2b+2(2b-1)ln 2.当b=2时,g(ln)=-4+6ln 2>0,ln 2>->0.692 8;当b=+1时,ln(b-1+-)=ln,g(ln)=--2+(3+2)ln 2<0,ln 2<<0.693 4.所以ln 2的近似值为0.693.评析本题考查了导数的应用,同时考查了分类讨论思想和运算能力.2.(2014湖南,22,13分)已知常数a>0,函数f(x)=ln(1+ax)-.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.解析(1)f '(x)=--=-.(*)当a≥1时, f '(x)>0,此时, f(x)在区间(0,+∞)上单调递增.当0<a<1时,由f '(x)=0得x1=2-x2=-2-舍去.当x∈(0,x1)时, f '(x)<0;当x∈(x1,+∞)时, f '(x)>0,故f(x)在区间(0,x1)上单调递减,在区间(x1,+∞)上单调递增.综上所述,当a≥1时, f(x)在区间(0,+∞)上单调递增;当0<a<1时, f(x)在区间-上单调递减,在区间-∞上单调递增.(2)由(*)式知,当a≥1时, f '(x)≥0,此时f(x)不存在极值点.因而要使得f(x)有两个极值点,必有0<a<1,又f(x)的极值点只可能是x1=2-和x2=-2-,且由f(x)的定义可知,x>-且x≠-2,所以-2->-,-2-≠-2,解得a≠.此时,由(*)式易知,x1,x2分别是f(x)的极小值点和极大值点.而f(x1)+f(x2)=ln(1+ax1)-+ln(1+ax2)-=ln[1+a(x1+x2)+a2x1x2]-=ln(2a-1)2---=ln(2a-1)2+--2,令2a-1=x,由0<a<1且a≠知,当0<a<时,-1<x<0;当<a<1时,0<x<1,记g(x)=ln x2+-2.(i)当-1<x<0时,g(x)=2ln(-x)+-2,所以g'(x)=-=-<0,因此,g(x)在区间(-1,0)上单调递减,从而g(x)<g(-1)=-4<0,故当0<a<时, f(x1)+f(x2)<0. (ii)当0<x<1时,g(x)=2ln x+-2,所以g'(x)=-=-<0,因此,g(x)在区间(0,1)上单调递减,从而g(x)>g(1)=0,故当<a<1时, f(x1)+f(x2)>0.综上所述,满足条件的a的取值范围为.评析本题考查复合函数的求导,函数的单调性和极值,解不等式,根与系数的关系.考查分类讨论思想和化归与转化思想,考查学生运算求解能力和知识迁移能力,构造函数把不等式问题转化为函数单调性问题是解题的关键.3.(2014江西,18,12分)已知函数f(x)=(x2+bx+b)-(b∈R).(1)当b=4时,求f(x)的极值;(2)若f(x)在区间上单调递增,求b的取值范围.解析(1)当b=4时, f '(x)=-,-由f '(x)=0得x=-2或x=0.当x∈(-∞,-2)时, f '(x)<0, f(x)单调递减;当x∈(-2,0)时, f '(x)>0, f(x)单调递增;当x∈时, f '(x)<0, f(x)单调递减,故f(x)在x=-2处取极小值f(-2)=0,在x=0处取极大值f(0)=4.,(2)f '(x)=---因为当x∈时,-<0,-依题意,当x∈时,有5x+(3b-2)≤0,从而+(3b-2)≤0.所以b的取值范围为-∞.【三年模拟】一、填空题(共5分)1.(2019届江苏姜堰中学调研改编)函数f(x)=ln+x的最小值为.答案-ln 2+二、解答题(共40分)2.(2018江苏苏州高三期中,23)(1)若不等式(x+1)ln(x+1)≥ax对任意x∈[0,+∞)恒成立,求实数a的取值范围;(2)设n∈N*,试比较++…+与ln(n+1)的大小,并证明你的结论.解析(1)原问题等价于ln(x+1)-≥0对任意x∈[0,+∞)恒成立,令g(x)=ln(x+1)-,则g'(x)=-.当a≤1时,g'(x)=-≥0恒成立,即g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0恒成立;当a>1时,令g'(x)=0,则x=a-1>0,∴g(x)在(0,a-1)上单调递减,在(a-1,+∞)上单调递增,∴g(a-1)<g(0)=0,即存在x>0使得g(x)<0,不合题意.综上所述,a的取值范围是(-∞,1].(2)解法一:在(1)中取a=1,得ln(x+1)>(x∈(0,+∞)),令x=(n∈N*),上式即为ln>,即ln(n+1)-ln n>,∴ln 2-ln 1>,ln 3-ln 2>,……,ln(n+1)-ln n>,上述各式相加可得++…+<ln(n+1)(n∈N*).解法二:注意到<ln 2,+<ln 3,……,故猜想++…+<ln(n+1)(n∈N*),下面用数学归纳法证明该猜想成立.①当n=1时,<ln 2,成立;②假设当n=k时结论成立,即++…+<ln(k+1),在(1)中取a=1,得ln(x+1)>(x∈(0,+∞)),令x=(k∈N*),有<ln,那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),也成立,由①②可知,++…+<ln(n+1)(n∈N*).3.(2017江苏南通、扬州、泰州高三第三次模拟考试,23)已知函数f0(x)=(a≠0,ac-bd≠0).设f n(x)为f n-1(x)(n∈N*)的导函数.(1)求f1(x), f2(x);(2)猜想f n(x)的表达式,并证明你的结论. 解析(1)f1(x)=f0'(x)==-, f2(x)=f1'(x)=-=--.(2)猜想f n(x)=--·-·-·,n∈N*.证明:①当n=1时,由(1)知结论成立;②假设当n=k,k∈N*时结论成立,即有f k(x)=--·-·-·.当n=k+1时,f k+1(x)=f k'(x)=--·-·-·=(-1)k-1·a k-1·(bc-ad)·k![(ax+b)-(k+1)]'=-··-·,所以当n=k+1时结论成立.由①②得, f n(x)=--·-·-·,n∈N*.4.(2017江苏南通、徐州联考)已知函数f(x)=ln(1+x)-ln(1-x).(1)已知方程f(x)=在上有解,求实数m的范围;(2)求证:当x∈(0,1)时, f(x)>2;(3)若正数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值. 解析(1)方程f(x)=在x∈上有解.即m=xf(x)在x∈上有解,令φ(x)=xf(x)=x[ln(1+x)-ln(1-x)],则φ'(x)=[ln(1+x)-ln(1-x)]+x-.因为x∈,所以1+x∈,1-x∈,所以ln(1+x)>0,ln(1-x)<0,所以[ln(1+x)-ln(1-x)]+x->0,即φ'(x)>0,所以φ(x)在区间上单调递增.因为φ=-=ln 2,φ=-=ln 3,所以φ(x)∈,所以m∈.(2)证明:原问题可转化为f(x)-2>0在(0,1)上恒成立. 设g(x)=ln(1+x)-ln(1-x)-2,则g'(x)=+--2(1+x2)=-.当x∈(0,1)时,g'(x)>0,所以g(x)在(0,1)上为增函数,则g(x)>g(0)=0, 因此,x∈(0,1)时,ln(1+x)-ln(1-x)-2>0,所以当x∈(0,1)时, f(x)>2.(3)令h(x)=ln(1+x)-ln(1-x)-k,要使得f(x)>k对x∈(0,1)恒成立.需h(x)>0对x∈(0,1)恒成立,h'(x)=--k(1+x2)=--,①当k∈(0,2]时,h'(x)≥0,函数h(x)在(0,1)上是增函数,则h(x)>h(0)=0,符合题意;②当k>2时,令h'(x)=0,得x=-或x=--(舍去).因为k>2,所以-∈(0,1).h'(x),h(x)在(0,1)上的情况如下表:h-<h(0)=0,显然不符合题意,综上,k的最大值为2.5.(2019届江苏无锡辅仁中学月考)设b>0,函数f(x)=(ax+1)2-x+ln(bx),记F(x)=f '(x)(f '(x)是函数f(x)的导函数),且当x=1时,F(x)取得极小值2.(1)求函数F(x)的单调增区间;(2)证明:|[F(x)]n|-|F(x n)|≥2n-2(n∈N*).解析(1)由题意知F(x)=f '(x)=·2(ax+1)·a-+=,x>0.于是F'(x)=-,若a<0,则F'(x)<0,与F(x)有极小值矛盾,所以a>0.令F'(x)=0,因为x>0,所以当且仅当x=时,F(x)取得极小值2,所以解得a=b=1.故F(x)=x+,F'(x)=1-(x>0).由F'(x)>0,得x>1,所以F(x)的单调增区间为(1,+∞).(2)证明:记g(x)=|[F(x)]n|-|F(x n)|.因为x>0,所以g(x)=[F(x)]n-F(x n)=-=x n-1·+x n-2·+x n-3·+…+-x·.-因为x n-r·+-x r·≥2(r=1,2,…,n-1),-所以2g(x)≥2(+++…+-)=2(2n-2).故|[F(x)]n|-|F(x n)|≥2n-2(n∈N*).。
高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则
存在,那么称极限为函数z= J(x,y) 在点(布,Yo ) 处对于x的偏导数,记作
一|。'ZI
δ!X lx=xo
;:ll'I ,斗ax lx=xo
,z;lx=句或兀(xo ,Yo ). )I=均
类似的,函数 z =f(x,y) 在点(x。. ,Yo ) 对y的偏导数定义为
lim /(布,Yo +11y)-f(句,Yo )
dt
[答案J e' (cost-sint)+cost
第三节全微分及全微分形式不变性 设函数Z = f(x,y) 在点。,y) 的某邻域内有定义,如果函数在点(x,y) 的全增量
&=f(x+缸, y+6y)-f(x,y)
可以表示为 &=AAt+B6y+o(p),
其中 A,B 不依赖于 llx和6y ,而仅与 x和y 有关, p=o(」(At)2+(6y)勺,那么称函数
az , az 例13设
z=f(lnx
+
一),其中函数
y
f(u
)
可微,贝tlx
一
ax
+
Y'�
一
命
=
[答案JO
(2012年,数学二)
f 例14设 z = f(x+ y,x-y,圳,其中 具有二阶连续偏导数, 求dz 与£ axay 乙
λ(
[答案]飞
’+J;’+yj3' I)dx+飞(刀’+儿’+乓f;' I)命;
【解题步骤】理清函数与变元之间的关系z (1)画出函数结构图,理清函数间复合关系,注意到哪些变元是自变量,中间变量,因变量. (2)注意函数映射是多元函数,还是一元函数, 注意导数符号的不同. (3)先对中间变量求偏导,再乘以中间变量对自变量的偏导数.
复合函数的求导例题
复合函数的求导例题我建议将偏导数定义,和全微分概念搞透,其它就迎刃而解,偏导数就是对函数的某一变量求导而将其它变量看作常量,全微分是对所有变量微分.因此本题复合函数求导就容易理解了,对φ(x)=f(x,f(x,x))全微分:∵dφ(x)=df(x,f(x,x))=f1'×dx+f2'×df(x,x)df(x,x)=f1'×dx+f2'×dx∴dφ(x)=f1'×dx+f2'×(f1'×dx+f2'×dx)左右二边除以dx,可得:φ'(x)=dφ(x)/dx=f1'+f2'×(f1'+f2')因此所谓复合函数求导,通过以上全微分求导就容易理解了.这才原汁原味!为什么不看书,∵⊿φ(x)=φ(x+⊿x)-φ(x),⊿f(x,f(x,x))=f(x+⊿x,f(x+⊿x,x+⊿x))-f(x,f(x,x))f1'=∂f(x,y)/∂x这里y为常量令y=c,即求导过程中不变,只要记住属于第几变量即可.同理f2'就是对第二个变量求偏导数至于这个变量用什么符合尽可不管.f(x,y)某单一变量的增量:⊿f(x,y)=f(x+⊿x,y)-f(x,y),(y不变),⊿f(x,y+⊿y)=f(x+⊿x,y+⊿y)-f(x,y+⊿y),(y+⊿y保持不变)前者在(x,y)点对x变量求偏导数,后者在(x,y+⊿y)点对x变量求偏导数,当⊿x→0时∂f(x,y)/∂x=⊿f(x,y)/⊿x∂f(x,y+⊿y)/∂x=⊿f(x,y+⊿y)/⊿x当⊿x→0,⊿y→0时∂f(x,y)/∂x=∂f(x,y+⊿y)/∂x=f1'注意:∂f(x,y)/∂x≠∂f(x,y+⊿y)/∂x(y≠y+⊿y,只有⊿y→0,y+⊿y→y,才成立.这表示从(x+⊿x,y)点沿y为常量,平行x轴方向趋近(x,y)点(x+⊿x,y+⊿y)点,沿以y+⊿y为常量,平行x轴方向趋近(x,y+⊿y)点.当⊿x→0,同时⊿y→0时(x+⊿x,y+⊿y)点可正交分解为沿平行x,y轴趋近(x,y)点∴⊿f=f(x+⊿x,y+⊿y)-f(x,y)=f(x+⊿x,y+⊿y)-f(x,y+⊿y)+f(x,y+⊿y)-f(x,y)=×⊿x+/⊿y=f1'⊿x+f2'⊿y(⊿x→0,⊿y→0,f1',f2'对应(x,y)点取偏导)因此全微分概念这才能帮助理解透彻!。
人教版高中数学选择性必修第二册5.2.3 简单的复合函数的导数
复合函数的求导过程就是对复合函数由外层向里求导,每 次求导都是针对着最外层的相应变量进行的,直至求到最里层为 止,所谓最里层是指可以直接引用基本公式表进行求导.
课时学案
题型一 明确复合关系
例 1 指出下列函数的复合关系:
(1)y=(2-x2)3;
(2)y=sinx2;
(3)y=cosπ4-x; (4)y=lnsin(3x-1).
2.若可导函数 f(x)满足 f′(3)=9,则 f(3x2)在 x=1 处的导数 值为_____54___.
解析 ∵[f(3x2)]′=f′(3x2)(3x2)′=6xf′(3x2), ∴f(3x2)在 x=1 处的导数值为 6×1×f′(3)=54.
3.求下列函数的导数:
(1)y=sin22x+π3; (2)y=cos22x;
【解析】 (1)设 y=u2,u=-2x+1,则 y′x=y′u·u′x=2u·(- 2)=-4(-2x+1)=8x-4.
(2)设 y=eu,u=x-1,则 y′x=y′u·u′x=eu·1=ex-1.
(3) 设
y = log2u , u = 2x + 1 , 则
y′x
=
y′u
·
u
′
x
=
2 uln2
【解析】 ∵y= x21-3x=(x2-3x)-12, ∴y′=-12(x2-3x)-32·(x2-3x)′ =-12(x2-3x)-32·(2x-3). ∴曲线 y= x21-3x在点4,12处的切线斜率为 k=y′|x=4=- 12(42-3×4)-32·(2×4-3)=-156. ∴曲线在点4,12处的切线方程为 y-12=-156(x-4),即 5x +16y-28=0.
【解析】 (1)函数的导数 f′(x)=12· 3x12+1·6x= 3x32x+1, 则曲线在点(1,2)处的切线斜率 k=f′(1)= 33+1=32,则对应 的切线方程为 y-2=32(x-1), 即 3x-2y+1=0. (2)y′=x(1-x2)-32,令 y′=0,得 x=0,∴y=1.
高中数学《简单复合函数的导数》知识点讲解及重点练习
5.2.3简单复合函数的导数学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则.知识点复合函数的导数1.复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考函数y=log2(x+1)是由哪些函数复合而成的?答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u =g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.(√)2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×)3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√)一、求复合函数的导数例1求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解(1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y ′x =y ′u ·u ′x =12u -5=12(1-3x )5.(2)令u =x 2,则y =cos u ,所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1,则y x ′=y u ′u x ′=2u ln 2=2(2x +1)ln 2.(4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x +2.反思感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y =11-2x; (2)y =5log 2(1-x ); (3)y =sin ⎝⎛⎭⎫2x +π3. 解 (1)()12=12,y x --设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ =-5u ln 2=5(x -1)ln 2. (3) 设y =sin u ,u =2x +π3,则y x ′=(sin u )′⎝⎛⎭⎫2x +π3′=cos u ·2=2cos ⎝⎛⎭⎫2x +π3. 二、复合函数与导数的运算法则的综合应用 例2 求下列函数的导数: (1)y =ln 3xe x ;(2)y =x 1+x 2;(3)y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2. 解 (1)∵(ln 3x )′=13x ×(3x )′=1x ,∴y ′=(ln 3x )′e x -(ln 3x )(e x )′(e x )2=1x -ln 3x e x =1-x ln 3x x e x .(2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(3)∵y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2 =x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=⎝⎛⎭⎫-12x sin 4x ′=-12sin 4x -x2cos 4x ·4 =-12sin 4x -2x cos 4x .反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导. 跟踪训练2 求下列函数的导数: (1)y =sin 2x3;(2)y =sin 3x +sin x 3; (3)y =x ln(1+x ).解 (1)方法一 ∵y =1-cos 23x2,∴y ′=⎝ ⎛⎭⎪⎫12-cos 23x 2′=13sin 23x . 方法二 y ′=2sin x 3cos x 3·13=23sin x 3cos x3 =13sin 23x . (2)y ′=(sin 3x +sin x 3)′ =(sin 3x )′+(sin x 3)′ =3sin 2x cos x +cos x 3·3x 2 =3sin 2x cos x +3x 2cos x 3.(3)y ′=x ′ln(1+x )+x [ln(1+x )]′ =ln(1+x )+x 1+x.三、与切线有关的综合问题例3 (1)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5 D .0 答案 A解析 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴0=|x x y'=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.(2)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值. 解 由曲线y =f (x )过(0,0)点, 可得ln 1+1+b =0,故b =-1. 由f (x )=ln(x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,即为曲线y =f (x )在点(0,0)处的切线的斜率. 由题意,得32+a =32,故a =0.反思感悟 (1)求切线的关键要素为切点,若切点已知便直接使用,切点未知则需先设再求.两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件. (2)在考虑函数问题时首先要找到函数的定义域.在解出自变量的值或范围时也要验证其是否在定义域内.跟踪训练3 (1)已知函数f (x )=k +ln xe x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 . 答案 1解析 由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞).由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a = .该切线与坐标轴围成的面积为 . 答案 2 14解析 令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0), 又切线与直线x +2y +1=0垂直,所以f ′(0)=2. 因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax , 所以f ′(0)=a e 0=a ,故a =2.由题意可知,切线方程为y -1=2x ,即2x -y +1=0. 令x =0得y =1;令y =0得x =-12.∴S =12×12×1=14.1.(多选)函数y =(x 2-1)n 的复合过程正确的是( ) A .y =u n ,u =x 2-1 B .y =(u -1)n ,u =x 2 C .y =t n ,t =(x 2-1)n D. t =x 2-1, y =t n答案 AD2.函数y =(2 020-8x )3的导数y ′等于( ) A .3(2 020-8x )2 B .-24x C .-24(2 020-8x )2 D .24(2 020-8x )2 答案 C解析 y ′=3(2 020-8x )2×(2 020-8x )′=3(2 020-8x )2×(-8)=-24(2 020-8x )2. 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2x D .y ′=2x cos 2x +2x 2sin 2x 答案 B解析 y ′=(x 2)′cos 2x +x 2(cos 2x )′ =2x cos 2x +x 2(-sin 2x )·(2x )′ =2x cos 2x -2x 2sin 2x .4.已知f (x )=ln(3x -1),则f ′(1)= . 答案 32解析 ∵f ′(x )=33x -1,∴f ′(1)=33-1=32.5.曲线 y =ln(2-x )在点(1,0)处的切线方程为 . 答案 x +y -1=0解析 ∵y ′=-12-x =1x -2,∴y ′| x =1=11-2=-1,即切线的斜率是k =-1, 又切点坐标为(1,0).∴y =ln(2-x )在点(1,0)处的切线方程为y =-(x -1), 即x +y -1=0.1.知识清单: (1)复合函数的概念. (2)复合函数的求导法则. 2.方法归纳:转化法.3.常见误区:求复合函数的导数时不能正确分解函数;求导时不能分清是对哪个变量求导;计算结果复杂化.1.(多选)下列函数是复合函数的是( ) A .y =-x 3-1x +1B .y =cos ⎝⎛⎭⎫x +π4C .y =1ln xD .y =(2x +3)4答案 BCD解析 A 不是复合函数,B ,C ,D 均是复合函数, 其中B 由y =cos u ,u =x +π4复合而成;C 由y =1u ,u =ln x 复合而成;D 由y =u 4,u =2x +3复合而成. 2.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5) D.x 2x +5答案 B解析 ∵y =x ln(2x +5), ∴y ′=ln(2x +5)+2x2x +5.3.函数y =x 3e cos x 的导数为( ) A .y ′=3x 2e cos x +x 3e cos x B .y ′=3x 2e cos x -x 3e cos x sin x C .y ′=3x 2e cos x -x 3e sin x D .y ′=3x 2e cos x +x 3e cos x sin x 答案 B解析 y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x . 4.曲线y =x e x-1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 ∵y =x e x -1,∴y ′=e x -1+x e x -1, ∴k =y ′|x =1=e 0+e 0=2,故选C.5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 答案 B解析 设切点坐标是(x 0,x 0+1),依题意有⎩⎨⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.6.函数y =sin 2x cos 3x 的导数是 . 答案 y ′=2cos 2x cos 3x -3sin 2x sin 3x 解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .7.已知函数f (x )的导函数为f ′(x ),若f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x ,则f ′⎝⎛⎭⎫π9= . 答案 33解析 ∵f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x , ∴f ′(x )=f ′⎝⎛⎭⎫π9·3cos 3x -3sin 3x , 令x =π9可得f ′⎝⎛⎭⎫π9=f ′⎝⎛⎭⎫π9×3cos π3-3sin π3 =32 f ′⎝⎛⎭⎫π9-3×32, 解得f ′⎝⎛⎭⎫π9=3 3.8.点P 是f (x )=(x +1)2上任意一点,则点P 到直线y =x -1的最短距离是 ,此时点P 的坐标为 . 答案728⎝⎛⎭⎫-12,14 解析 与直线y =x -1平行的f (x )=(x +1)2的切线的切点到直线y =x -1的距离最短.设切点为(x 0,y 0),则f ′(x 0)=2(x 0+1)=1,∴x 0=-12,y 0=14.即P ⎝⎛⎭⎫-12,14到直线y =x -1的距离最短. ∴d =⎪⎪⎪⎪-12-14-1(-1)2+12=728.9.求下列函数的导数: (1)y =ln(e x +x 2); (2)y =102x +3; (3)y =sin 4x +cos 4x .解 (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x +2x e x +x 2.(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x )=34+14cos 4x . ∴y ′=-sin 4x .10.曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程. 解 ∵y =e sin x , ∴y ′=e sin x cos x , ∴y ′|x =0=1.∴曲线y =e sin x 在点(0,1)处的切线方程为 y -1=x ,即x -y +1=0. 又直线l 与x -y +1=0平行, 故直线l 可设为x -y +m =0.由|m -1|1+(-1)2=2得m =-1或3.∴直线l 的方程为x -y -1=0或x -y +3=0.11.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ) A.13 B.12 C.23D .1 答案 A解析 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e -2×0=-2. 所以曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2,y =0与y =x 的图象,如图所示.因为直线y =-2x +2与y =x 的交点坐标是⎝⎛⎭⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),所以结合图象可得,这三条直线所围成的三角形的面积为12×1×23=13. 12.(多选)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值可以是( )A.π4B.π2C.3π4D. 7π8答案 CD解析 因为y =4e x +1, 所以y ′=-4e x(e x +1)2=-4e x e 2x +2e x +1=-4e x +1e x +2.因为e x >0,所以e x +1e x ≥2(当且仅当x =0时取等号), 所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎡⎭⎫3π4,π.13.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ= .答案 π6解析 ∵f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ),令g (x )=cos(3x +φ)-3sin(3x +φ),∵其为奇函数,∴g (0)=0,即cos φ-3sin φ=0,∴tan φ=33, 又0<φ<π,∴φ=π6. 14.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是 .答案 y =-2x -1解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,所以f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2, 所以切线方程为y =-2x -1.15.已知f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB .-11+x C.1(1+x )2D .-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1, 得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 16.(1)已知f (x )=e πx sin πx ,求f ′(x )及f ′⎝⎛⎭⎫12;(2)在曲线y =11+x 2上求一点,使过该点的切线平行于x 轴,并求切线方程. 解 (1)∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).∴f ′⎝⎛⎭⎫12=2e sin +cos 22πππ⎛⎫π ⎪⎝⎭ 2e .π=π(2)设切点坐标为P (x 0,y 0),由题意可知0=|0.x x y'=又y ′=-2x (1+x 2)2, ∴0=|x x y'=-2x 0(1+x 20)2=0. 解得x 0=0,此时y 0=1.即该点的坐标为P (0,1),切线方程为y -1=0.。
简单复合函数的导数-高考数学复习PPT
1 C.ln 3
解析
f′(x)=(x-11)ln
,故 3
f′(2)=ln13.
D.-ln13
1 2 3 4 5 6 7 8 9 10 11 12 13 14
索引
2.若函数y=x(1-ax)2(a>0),且y′|x=2=5,则a=( A )
A.1
B.-1
C.2
D.-2
解析 y′=(1-ax)2-2ax(1-ax),
3.注意1个易错点 对复合函数求导不完全.
索引
拓展延伸分层精练 核心素养达成
TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
一、基础达标
1.设f(x)=log3(x-1),则f′(2)=( C )
A.ln 3
B.-ln 3
解析 设直线 y=x+1 与曲线 y=ln(x+a)相切于点(x0,y0),则 y0=1+x0,y0= ln(x0+a), 又 y′=x+1 a, ∴y′|x=x0=x0+1 a=1,即 x0+a=1. 又 y0=ln(x0+a),∴y0=0,∴x0=-1,∴a=2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
索引
训练3 曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面
积为( A )
A.13
B.12
C.23
D.1
解析 对 y=e-2x+1 求导得 y′=-2e-2x,则 y′|x=0=-2e-2×0=-2,
∴曲线 y=e-2x+1 在点(0,2)处的切线方程为 y=-2x+2.
索引
7.某铁路线新开行“绿巨人”动力集中复兴号动车组,最高时速为160 km/h.假 设“绿巨人”开出站一段时间内,速度v(m/s)与行驶时间t(s)的关系为v=0.4t + 0.6t2 , 则 出 站 后 “ 绿 巨 人 ” 速 度 首 次 达 到 24 m/s 时 的 加 速 度 为
复合函数求导例题
复合函数求导例题问题描述考虑函数y=f(g(x)),其中f(x)和g(x)均可导。
现给定 $f(x)=\\sqrt{x}$ 和g(x)=x2,求复合函数y=f(g(x))的导数。
解法分析要求复合函数的导数,一种有效的方法是使用链式法则。
根据链式法则,如果有函数y=f(u)和u=g(x),那么y对于x的导数可表示为:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}y}}{{\\mat hrm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}} $$应用链式法则,我们可以得到复合函数的导数。
解法步骤根据链式法则,我们可以按以下步骤求解复合函数y=f(g(x))的导数:1.先求f(x)对u的导数 $\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$2.再求u=g(x)对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$3.最后将两个导数乘积,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\mathr m{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$解法推导首先,求 $f(x)=\\sqrt{x}$ 对u的导数$\\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}$:$$ \\frac{{\\mathrm{d}f}}{{\\mathrm{d}u}}=\\frac{1}{{2\\sqrt{u}}} $$然后,求u=g(x)=x2对x的导数$\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=2x $$将导数相乘,得到复合函数的导数$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}$:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{{\\mathrm{d}f}}{{\\math rm{d}u}}\\cdot\\frac{{\\mathrm{d}u}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{u}}} \\cdot2x $$最后,将u=g(x)=x2带入,并化简导数表达式,得到:$$ \\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{1}{{2\\sqrt{x^2}}}\\cdot 2x=\\frac{x}{{\\sqrt{x^2}}}=\\frac{x}{|x|} $$结论经过推导,我们得到复合函数 $y=f(g(x))=\\sqrt{x^2}$ 的导数为$\\frac{{\\mathrm{d}y}}{{\\mathrm{d}x}}=\\frac{x}{|x|}$。
高中数学选择性必修二 5 2 3简单复合函数的导数(知识梳理+例题+变式+练习)(含答案)
5.2.3简单复合函数的导数要点一 复合函数的定义一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f(g(x)) 要点二 复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积,即若y =f (g (x )),则y ′=[f (g (x ))]′=f ′(g (x ))·g ′(x ) 【重点小结】(1)复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.(2)中学阶段不涉及较复杂的复合函数的求导问题,只研究y =f(ax +b)型复合函数的求导,不难得到y ′=(ax +b) ′·f ′(ax +b)=af ′(ax +b). 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数y =log 3(x +1)是由y =log 3t 及t =x +1两个函数复合而成的.( ) (2)函数f (x )=e -x 的导数是f ′(x )=e -x .( ) (3)函数f (x )=ln (1-x )的导数是f ′(x )=11-x .( )(4)函数f (x )=sin 2x 的导数是f ′(x )=2 cos 2x .( ) 【答案】(1)√(2)×(3)×(4)√ 2.(多选题)下列所给函数为复合函数的是( ) A .y =ln (x -2) B .y =ln x +x -2 C .y =(x -2)ln x D .y =ln 2x 【答案】AD【解析】函数y =ln(x -2)是由函数y =ln u 和u =g (x )=x -2复合而成的,A 符合;函数y =ln 2x 是由函数y =ln u 和u =2x 复合而成的,D 符合,B 与C 不符合复合函数的定义.故选AD. 3.若函数f (x )=3cos(2x +π3),则f ′(π2)等于( )A .-3 3B .33C .-6 3D .63 【答案】B【解析】f ′(x )=-6sin(2x +π3)∴f ′(π2)=-6sin ⎝⎛⎭⎫2×π2+π3=6sin π3=6×32=3 3.故选B.4.曲线y =e -x 在点(0,1)的切线方程为________.【答案】x +y -1=0 【解析】∵y =e -x ∴y ′=-e -x ∴y ′|x =0=-1∴切线方程为y -1=-x 即x +y -1=0题型一 求复合函数的导数【例1】写出下列各函数的中间变量,并利用复合函数的求导法则,求出函数的导数. (1)y =1(3-4x )4;(2)y =cos(2 008x +8); (3)y =21-3x;(4)y =ln(8x +6).【解析】(1)引入中间变量u =φ(x )=3-4x .则函数y =1(3-4x )4是由函数f (u )=1u 4=u -4 与u =φ(x )=3-4x 复合而成的.查导数公式表可得f ′(u )=-4u -5=-4u 5,φ′(x )=-4.根据复合函数求导法则可得⎣⎡⎦⎤1(3-4x )4′=f ′(u )φ′(x )=-4u 5·(-4)=16u 5=16(3-4x )5.(2)引入中间变量u =φ(x )=2 008x +8,则函数y =cos(2 008x +8)是由函数f (u )=cos u 与u =φ(x )=2 008x +8复合而成的,查导数公式表可得 f ′(u )=-sin u ,φ′(x )=2 008. 根据复合函数求导法则可得[cos(2 008x +8)]′=f ′(u )φ′(x )=(-sin u )·2 008 =-2 008sin u =-2 008sin(2 008x +8). (3)引入中间变量u =φ(x )=1-3x , 则函数y =21-3x是由函数f (u )=2u 与u =φ(x )=1-3x 复合而成的,查导数公式表得f ′(u )=2u ln 2,φ′(x )=-3, 根据复合函数求导法则可得 (21-3x)′=f ′(u )φ′(x )=2u ln 2·(-3)=-3×2u ln 2=-3×21-3xln 2.(4)引入中间变量u =φ(x )=8x +6,则函数y =ln(8x +6)是由函数f (u )=ln u 与u =φ(x )=8x +6复合而成的,查导数公式表可得f ′(u )=1u ,φ′(x )=8.根据复合函数求导法则可得[ln(8x +6)]′=f ′(u )·φ′(x )=8u =88x +6=44x +3.选取中间变量,确定原函数复合方式,写出内层,外层函数表达式,利用复合函数求导法则求解 【方法归纳】复合函数求导的步骤【跟踪训练】求下列函数的导数. (1)y =e 2x +1. (2)y =1(2x -1)3.(3)y =5log 2(1-x ). (4)y =sin 3x +sin 3x .【解析】(1)函数y =e 2x +1可看作函数y =e u 和u =2x +1的复合函数,所以y ′x =y ′u ·u ′x =(e u )′(2x +1)′=2e u =2e 2x +1.(2)函数y =1(2x -1)3可看作函数y =u -3和u =2x -1的复合函数,所以y ′x =y ′u ·u ′x =(u -3)′(2x -1)′=-6u -4=-6(2x -1)-4=-6(2x -1)4.(3)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数,所以y ′x =y ′u ·u ′x =(5log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(4)函数y =sin 3 x 可看作函数y =u 3和u =sin x 的复合函数,函数y =sin 3x 可看作函数y =sin v 和v =3x 的复合函数.所以y ′x =(u 3)′·(sin x )′+(sin v )′·(3x )′=3u 2·cos x +3cos v =3 sin 2 x cos x +3cos 3x . 题型二 复合函数求导法则的综合应用 【例2】(1)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【答案】(1)2x -y =0【解析】(1)设x >0,则-x <0,因为x ≤0时,f (x )=e-x -1-x ,所以f (-x )=e x -1+x ,又因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=e 1-1+1=2,所以切线方程为y -2=2(x -1),即:2x -y =0. (2)已知函数f (x )=ax 2+2ln(2-x )(a ∈R ),设曲线y =f (x )在点(1,f (1))处的切线为l ,若直线l 与圆C :x 2+y 2=14相切,则实数a 的值为__________.【解析】(2)因为f (1)=a ,f ′(x )=2ax +2x -2(x <2),所以f ′(1)=2a -2,所以切线l 的方程为2(a -1)x -y +2-a =0.因为直线l 与圆相切,所以圆心到直线l 的距离等于半径,即d =|2-a |4(a -1)2+1=12,解得a =118【方法归纳】准确利用复合函数求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. 【跟踪训练2】(1)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 【答案】(1)2 【解析】(1)令y =f (x )则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(x )=(e ax )′=a e ax . 所以f ′(0)=a e 0=a 故a =2.(2)已知函数f (x )=ax 2+2ln(2-x )设曲线y =f (x )在点(1,f (1))处的切线为l ,则切线l 的方程为________;若直线l 与圆 C :x 2+y 2=14相交,则实数u 的取值范围为________.【答案】(2)2(a -1)x -y +2-a =0 (118,+∞)【解析】(2)f ′(x )=2ax +2x -2(x <2)∴f ′(1)=2a -2 又f (1)=a∴切线l 的方程为:y -a =(2a -2)(x -1) 即2(a -1)x -y +2-a =0.若直线l 与圆C :x 2+y 2=14相交则圆心到直线l 的距离d =|2-a |4(a -1)2+1<12.解得a >118,即实数a 的取值范围为(118,+∞).【易错辨析】对复合函数求导不完全致错 例3 函数y =x e 1-2x的导数y ′=________. 【答案】(1-2x )e 1-2x【解析】y ′=e 1-2x+x (e 1-2x)′=e 1-2x +x e 1-2x ·(1-2x )′ =e 1-2x+x e 1-2x(-2)=(1-2x )e 1-2x.【易错警示】 出错原因 对e 1-2x的求导没有按照复合函数的求导法则进行,导致求导不完全致错纠错心得复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,分步计算时,每一步都要明确是对哪个变量求导一、单选题1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著的经济效益.假设在放射性同位素钍234的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系()242tN t N -=,其中0N 为0=t 时钍234的含量.已知24t =时,钍234含量的瞬时变化率为8ln2-,则()96N =( )A .12B .12ln2C .24D .24ln2【答案】C 【分析】对()N t 求导得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,根据已知有()248ln 2N '=-即可求0N ,进而求()96N .【解析】 由()242tN t N -=,得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,∵当24t =时,()242401242ln 28ln 224N N -⎛⎫'=⨯⨯-=- ⎪⎝⎭,解得02824384N =⨯⨯=,∵()243842t N t -=⨯,∵当96t =时,()96424963842384224N --=⨯=⨯=.故选:C.2.已知()f x '是函数()f x 的导数,且对任意的实数x 都有()()()e 22xf x x f x -'=--,()08f =则不等式()0f x <的解集是( )A .()2,4-B .()(),02,-∞+∞C .()(),42,-∞-+∞D .()(),24,-∞-+∞【答案】D 【分析】构造新函数()()x g x e f x =,求出()'g x 后由导函数确定()g x ,注意可得(0)8g =,从而得出()f x 的解析式,然后解不等式即可.设()()x g x e f x =,000)e )8((f g ==,因为()()()e 22xf x x f x -'=--,所以()()e (22)x f x f x x -'+=-,所以()e ()e ()e (()())22x x x g x f x f x f x f x x '''=+=+=-. 因此2()2g x x x c =-+,(0)8g c ==,所以2()28g x x x =-++, 228()e xx x f x -++=, 不等式()0f x <即为2280exx x -++< ,2280x x -->,解得2x <-或4x >. 故选:D .3.已知0a b >>,函数axy e =在0x =处的切线与直线20x by -=平行,则22a b a b+-的最小值是( ) A .2 B .3 C .4 D .5【答案】C 【分析】结合复合函数求导求出函数的导函数,进而求出切线的斜率,然后根据两直线平行斜率相等得到2ab =,进而结合均值不等式即可求出结果. 【解析】因为ax y e =,则ax y ae '=,因为切点为()0,1,则切线的斜率为k a =,又因为切线与直线20x by -=平行,所以2a b=,即2ab =, 所以()()222244a b ab a b a b a b a b a b-++==-+≥---, 当且仅当24ab a b a b =⎧⎪⎨-=⎪-⎩,即11a b ⎧=⎪⎨=⎪⎩时,等号成立,则22a b a b +-的最小值是4, 故选:C.4.已知函数()f x 在R 上可导,函数()()()2244F x f x f x =-+-,则()2F '等于( )A .1-B .0C .1D .2【答案】B 【分析】利用复合函数求导法则运算即可.∵()()()2244F x f x f x =-+-,∵()()()222424F x xf x xf x '''=---,∵()()()240400F f f '''=-=. 故选:B.5.已知()2ln 2f x x x =,若()00f x x '=,则0x 等于( )A .12 B .1e 2C .ln 2D .1【答案】A 【解析】因为()2ln 2f x x x =,所以()2ln2f x x x x '=+,又()00f x x '=,所以002ln 20x x =,因为00x >,所以0ln 20x =,所以012x =. 故选:A.6.下列关于函数()21ny x =-的复合过程与导数运算正确的是( )A .()1n y u =-,2u x =,()21ny nx u '=- B .n y t =,()21nt x =-,()121n y nx t -'=-C .n y u =,21u x =-,()1221n y nx x -'=-D .n y u =,21u x =-,()121n y n x -'=-【答案】C 【分析】直接根据函数()21ny x =-的结构,找到内层函数和外层函数,即可得解.【解析】由复合函数求导法则,知函数()21ny x =-由基本初等函数n y u =,21u x =-复合而成,所以()112221n n u x y y u nux nx x --'''=⋅=⋅=-.故选:C.7.函数2sin y x =的导数是( ) A .2sin x B .22sin xC .2cos xD .sin 2x【答案】D 【分析】利用复合函数进行求导,即可得到答案; 【解析】2sin y x =,令sin u x =,则2y u =,从而cos 2cos 2sin cos x u y y x u x x x ''=⨯== sin 2x =.故选:D.8.函数e sin 2x y x =的导数为( ) A .2e cos2x y x '=B .()e sin22cos2xy x x '=+C .()2e sin22cos2xy x x '=+D .()e 2sin2cos2xy x x '=+【答案】B 【分析】结合导数的运算法则即可求出结果. 【解析】由题意结合导数的运算法则可得()()()e sin 2e sin 2e sin 22cos2x x x y x x x x '''=⋅+⋅=+. 故选:B.二、多选题9.以下函数求导正确的是( ) A .若()2211x f x x -=+,则()()2241x f x x '=+ B .若()2e x f x =则()2e xf x '=C .若()f x ()f x '=D .设()f x 的导函数为()f x ',且()()232ln f x x xf x '=++,则()924f '=-【答案】ACD 【分析】利用求导法则逐项检验即可求解. 【解析】对于A ,()()()()()2222222112411x x x xxf x xx+--⋅'==++,故A 正确;对于B ,()22e 22e x xf x =⋅=',故B 错误;对于C ,()()()()111222121212212f x x x x --'⎡⎤'=-=⋅-⋅=-⎢⎥⎣⎦C 正确; 对于D ,()()1232f x x f x''=++,所以()924f '=-,故D 正确.故选:ACD.10.(多选)函数()x f x x =(0x >),我们可以作变形:()ln ln e e xx x x x f x x ===,所以()xf x x =可看作是由函数()e t p t =和()ln g x x x =复合而成的,即()x f x x =(0x >)为初等函数.对于初等函数()1x h x x =(0x >)的说法正确的是( ) A .无极小值 B .有极小值1 C .无极大值 D .有极大值1e e【答案】AD 【分析】根据材料,把函数改写为复合函数的形式()111ln ln e exx x xxh x x ===,求导,分析导函数正负,研究极值,即得解【解析】根据材料知()111ln ln e exx x xxh x x ===,所以()ln ln 111ee ln x x xx x h x x '⎛⎫'=⋅=⋅ ⎪⎝⎭()1ln 222ln ln 111e 1x x x x x x x ⎛⎫-+=⋅- ⎪⎝⎭. 令()0h x '=,得e x =,当0e x <<时,()0h x '>,此时函数()h x 单调递增, 当e x >时,()0h x '<,此时函数()h x 单调递减, 所以()h x 有极大值()1e e e h =,无极小值 故选:AD .11.函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<【答案】BC 【分析】根据题目中定义,逐个判断各函数是否满足条件二阶导函数大于零,即可解出. 【解析】由题意可知,若函数在所给定义域中“严格上凹”,则满足()0f x ''>在定义域内恒成立. 对于A ,2()log (0)f x x x =>,则2111()()0ln 2ln 2f x x x '''==-⋅<在0x >时恒成立, 不符合题意,故选项A 错误;对于B ,()2x f x e x -=+,则()(21)20x x f x e e --'''=-+=>恒成立, 符合题意,故选项B 正确;对于C ,3()2(0)f x x x x =-+<,则2()(32)60f x x x '''=-+=->在0x <时恒成立, 符合题意,故选项C 正确;对于D ,2()sin (0)f x x x x π=-<<,则()(cos 2)sin 20f x x x x ''=-'=--<在0πx <<时恒成立,不符合题意,故选项D 错误. 故选:BC.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________. 【答案】1,3⎛+∞⎫⎪⎝⎭【分析】 构造()3()xf x F e x =,由已知结合导数判断函数的单调性,利用函数的单调性解不等式. 【解析】构造()3()x f x F e x =,则()3363()3()()3()x x x x e f x e f x F f x f x e x e''-=-=', 函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭, 则不等式3()x f x e >∵3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭, 根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:1,3⎛+∞⎫ ⎪⎝⎭13.已知函数())()cos0f x θθπ=+<<,若()()f x f x '+是奇函数,则θ=______. 【答案】6π【分析】首先利用复合函数求导法则求出()f x ',然后利用辅助角公式化简()()f x f x '+,根据奇函数性质可得到()6k k Z πθπ-=∈,最后结合θ的范围即可求解.【解析】因为())f x θ'=+,所以()()))cos 2sin 6f x f x πθθθ⎫'+=++=-+-⎪⎭, 若()()f x f x '+为奇函数,则()()000f f '+=,即2sin 06πθ⎛⎫-= ⎪⎝⎭, 所以()6k k Z πθπ-=∈,又因为()0,θπ∈,所以6πθ=. 故答案为:6π.14.设()f x =()2f '=______. 【答案】2##0.45【分析】利用复合函数求导求出'()f x 即可求解.【解析】令ln y u =,12u t ==,21t x =+, 从而'1yu =,1'212u t -=='2t x =, 故'21()21x f x x u x ==+, 所以()225f '=. 故答案为:25.四、解答题 15.求下列函数的导数.(1)()991y x =+(2)y =(3)()()23sin 25y x x =-+;(4)cos(32)2x y x-= (5)()()231ln 3y x x =+(6)33x x y e -=.【答案】(1)9899(1)y x '=+(2)()122121x x y x -+'=+(3)()()()2sin 2c 6os 5425y x x x +'=+-+(4)()()26sin 322cos 324x x x y x ----'=(5)()()()236311ln 3x x x x y ++=+(6)333ln 333x x x x y e e --'=-⋅【分析】直接利用导数的运算法则、基本初等函数的导数公式以及简单复合函数的导数计算法则求解. (1)解:99(1)y x =+,989899(1)(1)99(1)y x x x ∴'=++'=+;(2)解:因为y =()()1222121x x x x y x -''⋅-+'==+(3)解:因为()()23sin 25y x x =-+,所以()()()()()()()23sin 2523sin 2552sin 2546cos 2x y x x x x x x '''+=-=⎤-+++⎡⎣+-+⎦(4) 解:因为cos(32)2x y x -=,所以[]()()()()()22cos(32)22cos 326sin 322cos 3242x x x x x x x y x x ''-------'== (5)解:因为()()231ln 3y x x =+,所以()()()()()()()222ln ln 31313313631ln 3x x x x y x x x x '+'⎡⎤+=⎣+=+++⎡⎤⎣⎦⎦ (6)解:因为33x x y e -=,所以()()3333333ln 333x x x x x x x x y e e e e ----'''=+=-⋅16.求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-. 【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2x x -⋅【分析】(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则即可求出结果;(2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则即可求出结果;(3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则即可求出结果.(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x x y y u x u x '''=⋅=⋅=-⋅.。
高中数学 第二章 变化率与导数 5 简单复合函数的求导法则教案(含解析)2数学教案
5简单复合函数的求导法则已知y =(3x +2)2,y =sin ⎝ ⎛⎭⎪⎫2x +π6.问题1:这两个函数是复合函数吗? 提示:是复合函数.问题2:试说明y =(3x +2)2如何复合的.提示:令u =g (x )=3x +2,则y =u 2,u =3x +2,y =f (u )=f (g (x ))=(3x +2)2. 问题3:试求y =(3x +2)2,f (u )=u 2,g (x )=3x +2的导数. 提示:y ′=(9x 2+12x +4)′=18x +12,f ′(u )=2u ,g ′(x )=3. 问题4:观察问题3中导数有何关系. 提示:y ′=[f (g (x ))]′=f ′(u )·g ′(x ). 1.复合函数的概念对于两个函数y =f (u )和u =φ(x )=ax +b ,给定x 的一个值,就得到了u 的值,进而确定了y 的值,这样y 可以表示成x 的函数,称这个函数为函数y =f (u )和u =φ(x )的复合函数,记作y =f (φ(x )),其中u 为中间变量.2.复合函数的求导法则复合函数y =f (φ(x ))的导数为:y ′x =[f (φ(x ))]′=f ′(u )φ′(x ). 利用复合函数求导法则求复合函数导数的步骤: (1)适当选取中间变量分解复合函数为初等函数.(2)求每层的初等函数的导数,最后把中间变量转化为自变量的函数.简单的复合函数求导[例1] (1)y =sin 3x ;(2)y =11-2x2;(3)y =lg(2x 2+3x +1); (4)y =sin 2⎝⎛⎭⎪⎫2x +π3.[思路点拨] 先分析复合函数的复合过程,然后运用复合函数的求导法则求解. [精解详析] (1)设y =sin u ,u =3x ,则y ′x =y ′u ·u ′x =(sin u )′·(3x )′=cos u ·3=3cos 3x .(2)设y =u -12,u =1-2x 2,则y ′x =y ′u ·u ′x =(u -12)′·(1-2x 2)′=-12u -32·(-4x )=-12(1-2x 2)-32(-4x )=2x (1-2x 2)-32.(3)设y =lg u ,u =2x 2+3x +1,则y ′x =y ′u ·u ′x =(lg u )′·(2x 2+3x +1)′ =1u ln 10·(4x +3)=4x +32x 2+3x +1ln 10. (4)设y =u 2,u =sin v ,v =2x +π3.则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =2sin v ·cos v ·2=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. [一点通]1.求复合函数的导数的步骤 2.求复合函数的导数的注意点 (1)内、外层函数通常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点. 1.函数y =13x -12的导数是( )A.63x -13B.63x -12C .-63x -13 D .-63x -12解析:选C ∵y =13x -12=(3x -1)-2,∴y ′=-2(3x -1)-3·(3x -1)′ =-6(3x -1)-3=-63x -132.函数f (x )=(2x +1)5,则f ′(0)的值为________.解析:f ′(x )=5(2x +1)4·(2x +1)′=10(2x +1)4, ∴f ′(0)=10. 答案:103.求下列函数的导数:(1)y =(3x -2)2;(2)y =ln(6x +4); (3)y =e2x +1;(4)y =2x -1;(5)y =sin ⎝⎛⎭⎪⎫3x -π4;(6)y =cos 2x .解:(1)y ′=2(3x -2)·(3x -2)′=18x -12; (2)y ′=16x +4·(6x +4)′=33x +2;(3)y ′=e2x +1·(2x +1)′=2e2x +1;(4)y ′=122x -1·(2x -1)′=12x -1.(5)y ′=cos ⎝ ⎛⎭⎪⎫3x -π4·⎝ ⎛⎭⎪⎫3x -π4′=3cos ⎝ ⎛⎭⎪⎫3x -π4.(6)y ′=2cos x ·(cos x )′=-2cos x ·sin x =-sin 2x .复合函数导数的综合问题[例2] 某港口在一天24小时内潮水的高度近似满足关系s (t )=3sin ⎝⎛⎭⎪⎫π12t +5π6(0≤t ≤24),其中s 的单位是m ,t 的单位是h ,求函数在t =18时的导数,并解释它的实际意义.[精解详析] 设f (x )=3sin x ,x =φ(t )=π12t +5π6.由复合函数求导法则得s ′(t )=f ′(x )·φ′(t )=3cos x ·π12=π4cos ⎝ ⎛⎭⎪⎫π12t +5π6.将t =18代入s ′(t ),得s ′(18)=π4cos 7π3=π8(m/h).它表示当t =18 h 时,潮水的高度上升的速度为π8m/h.[一点通] 将复合函数的求导与导数的实际意义结合,旨在巩固函数在某点处的导数反映了函数在该点的瞬时变化率,体现导数揭示物体某时刻的变化状况.4.f (x )=ax -1,且f ′(1)=1,则a 的值为________.解析:∵f ′(x )=12ax -1·(ax -1)′=a2ax -1,∴f ′(1)=a2a -1=1.解得a =2. 答案:25.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:∵y ′=a ·e ax,且y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,∴k =2=f ′(0)=a ,即a =2.答案:26.一听汽水放入冰箱后,其摄氏温度x (单位:℃)随时间t (单位:h)的变化满足关系:x =4+16e -2t .(1)求汽水温度x 在t =1处的导数;(2)已知摄氏温度x 与华氏温度y 之间具有如下函数关系x =59y -32.写出y 关于t 的函数解析式,并求y 关于t 的函数的导数.解:x ′=-32e-2t.(1)当t =1时,x ′=-32e 2.(2)y =95(x +32)=95(16e -2t+36),y ′=9×165e -2t ×(-2)=-2885e -2t. 求复合函数的导数应处理好以下环节: (1)中间变量的选择应是基本函数结构; (2)关键是正确分析函数的复合层次;(3)一般是从最外层开始,由外及里,一层层地求导; (4)善于把一部分表达式作为一个整体; (5)最后要把中间变量换成自变量的函数. 1.下列函数不是复合函数的是( ) A .y =-x 3-1x+1B .y =cos ⎝⎛⎭⎪⎫x +π4C .y =1ln xD .y =(2x +3)4解析:选A A 中的函数是一个多项式函数,B 中的函数可看作函数u =x +π4,y =cos u的复合函数,C 中的函数可看作函数u =ln x ,y =1u的复合函数,D 中的函数可看作函数u=2x +3,y =u 4的复合函数,故选A.2.函数y =(2 018-8x )8的导数为( ) A .y ′=8(2 018-8x )7 B .y ′=-64xC .y ′=64(8x -2 018)7D .y ′=64(2 018-8x )7解析:选C y ′=8(2 018-8x )7·(2 018-8x )′ =-64(2 018-8x )7=64(8x -2 018)7. 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2x D .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.某市在一次降雨过程中,降雨量y (mm)与时间t (min)的函数关系可近似地表示为y =f (t )=10t ,则在时刻t =40 min 的降雨强度为( )A .20 mmB .400 mm C.12mm/min D.14mm/min 解析:选D f ′(t )=1210t ·10=510t ,∴f ′(40)=5400=14. 5.函数f (x )=x e x -1在点(1,1)处切线的斜率等于________.解析:函数的导数为f ′(x )=e x -1+x ex -1=(1+x )ex -1,当x =1时,f ′(1)=2,即曲线y =x ex -1在点(1,1)处切线的斜率k =f ′(1)=2.答案:26.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________. 解析:设切点为(x 0,y 0), 则y 0=x 0+1,且y 0=ln(x 0+a ), 所以x 0+1=ln(x 0+a ).① 对y =ln(x +a )求导得y ′=1x +a ,则1x 0+a=1, 即x 0+a =1.② ②代入①可得x 0=-1, 所以a =2. 答案:27.设曲线f (x )=ax -ln(x +1)在点(1,f (1))处的切线与y =12x 平行,则a =________.解析:f ′(x )=a -1x +1, 由题意得f ′(1)=12,即a -12=12,所以a =1. 答案:18.求下列函数的导数. (1)y =(2x 2-x +1)4; (2)y =x 1+x 2; (3)y =x ln(1-x ).解:(1)y ′=4(2x 2-x +1)3(2x 2-x +1)′ =4(2x 2-x +1)3·(4x -1).(2) (2)y ′= 1+x 2+x [(1+x 2)12]′=1+x 2+x ·12·(1+x 2)-12 (1+x 2)′=1+x 2+x ·12·(1+x 2)-12·2x=1+x 2+x 21+x2=1+2x21+x2..(3)y′=x′ln(1-x)+x[ln(1-x)]′=ln(1-x)+x·-11-x=ln(1-x)-x1-x.。
复合函数的导数问题(学生版)20210120
复合函数的导数问题【考情分析】复合函数的导数在近10年的江苏高考中曾两次出现,一是2008江苏高考23题,考查内容是以复合函数的导数为工具证明排列组合中的恒等式;二是2015年江苏高考20题,通过构造复合函数并研究其单调性,确定方程解的个数.在各省的数学联赛中更是将复合函数的导数问题提到相当重要的位置,甚至作为压轴题出现.对复合函数导数的考查主要呈现出两种形式,一是用导数研究函数性质(单调性、极值、最值、零点、不等式),二是将复合函数的的导数作为工具,解决导数与其它知识的融合问题.第一讲 复合函数导数的基本应用在用导数研究函数性质时,单调性是解决一切问题之“根”.通过本节的学习,掌握利用导数判断函数单调性的基本方法,对于含参问题,要能从函数的图象、值域及导函数的零点等视角感知分类讨论的原因以及讨论的标准,并能进行严格的推理论证; 【知识要点】1.复合函数的求导法则函数()y f ax b =+是由函数()y f u =与u ax b =+复合而成,则xu x y y u '''=⋅,即x u y y a ''=⋅. 注:一般地,函数[()]y f g x =是由函数()y f u =与()u g x =复合而成,则()()xy f u g x '''=⋅. 求导过程中的注意点:(1)分清复合函数是由哪些基本函数复合而成,适当选定中间变量联系因变量与自变量; (2)每步明确对哪个变量求导,特别注意中间变量的关系;(3)根据基本函数的导数公式及导数的运算法则,求各函数导数的积,并换中间变量为自变量的函数. 【典型例题】【例1】已知函数2()ln(1)f x ax x =+-(0,(0,1]a x >∈). (1)求()f x 的单调区间;(2)若不等式()212ln 1n n λ++≥对一切正整数n 恒成立,求实数λ的取值范围.【例2】已知函数2()ln(1)21f x x ax x =+++-+(其中0a >).(1)当1a =时,求()f x 的最小值;(2)若[0,2]x ∈时,()0f x ≥恒成立,求实数a 的取值范围.【例3】已知a 为常数,函数()1()=ln 1x f x ax x --+.(1)求函数()f x 的单调递减区间; (2)若83a =-,求()f x 的极值.【例4】已知函数()21()e ()2x f x a x a =-+∈R .(1)若()f x 在区间(,0)-∞上单调递增,求实数a 的取值范围;(2)若在区间(0,)+∞上,函数()f x 的图象恒在曲线2e x y a =下方,求a 的取值范围.【本课小结】通过本节的学习,掌握了利用导数判断函数单调性的基本方法,对于含参问题,可以从图象、值域及导函数的零点等视角快速感知分类讨论的原因以及讨论的标准,并进行严格的推理论证.第二讲 复合函数导数的综合应用在解决一些较复杂的复合函数导数问题时,通过合理转化,能使问题得到最优化的求解,能进一步培养我们分类讨论、数形结合及化归转化的数学思想,优化我们的思维品质. 【例1】已知函数1()ln(1)1x f x ax x -=+++,x ≥0,0a >.(1)若()f x 在1x =处取得极值,求a 的值; (2)若()ln 2f x ≥恒成立,求a 的取值范围.【例2】已知函数21()21ln(1)(1)2f x mx x x m =-+++≥.(1)若曲线()C y f x =:在点(0,1)P 处的切线l 与C 有且只有一个公共点,求m 的值;(2)求证:函数()f x 存在单调递减区间[,]a b ,并求出单调递减区间的长度t b a =-的取值范围.【例3】已知()2ln()(0)f x ax b x a =++≠.(1)若曲线()y f x =在点(1,(1))f 处的切线方程为y x =,求a b ,的值; (2)若2()f x x x +≤恒成立,求ab 的最大值.【例4】已知函数ln(1)()x f x x+=. (1)当0x >时,求证:2()2f x x >+; (2)当1x >-且0x ≠时,不等式1()1kx f x x +<+成立,求实数k 的值.【本课小结】在解决一些较复杂的复合函数导数问题时,常见的优化手段有:(1)换元法;(2)结合复合函数单调性及图象变换;(3)将超越函数拆分为初等函数;(4)构造法的优化.如:出现对数时,将对数的系数化为1,再构造函数;指数问题对数化处理.(5)挖掘函数与导函数上的特殊点(定点、零点、区间端点等);(6)合理运用导函数的图象、值域、零点优化分类讨论的标准,以及代入特殊值先缩小参数范围,减少分类讨论的次数等方式方法,对解题进行优化;(7)二次求导.第三讲 复合函数导数与其它知识的融合问题在高考、竞赛、自主招生考试中,经常将导数与方程、不等式、数列、排列组合、二项式定理等其它知识相结合,并以导数为工具解决其它知识中的问题,凸显了导数的工具特性.这一类问题的难点是如何将相关知识与导数有机结合,怎样合理构造才能让导数发挥其功能.【例1】(1)设实数0t >,求证:()21ln(1)2t t ++>;【例2】已知1()ln(1)311f x a x x x =+++-+.(1)若x ≥0时,()f x ≥0恒成立,求实数a 的取值范围; (2)求证:222223411ln(21)441142143141n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.【例3】(2015·江苏卷20题)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列. (1)证明:31242222a a a a ,,,依次构成等比数列;(2)是否存在1,a d ,使得2341234a a a a ,,,依次构成等比数列?并说明理由; (3)是否存在1,a d 及正整数,n k ,使得231234n n k n k n ka a a a +++,,,依次构成等比数列?并说明理由.【例4】(2008.江苏卷23题)请先阅读:在等式2cos22cos 1()x x x =-∈R 的两边对x 求导,得2(cos 2)(2cos 1)x x ''=-. 由求导法则,得(sin 2)24cos (sin )x x x -⋅=-,化简后得等式sin22cos sin x x x =.(1)利用上述想法(或其他方法),结合等式0122(1)n n nnn n n x C C x C x C x +=++++ (x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑. (2)对于正整数3n ≥,求证:(ⅰ)1(1)C 0n kknk k =-=∑;(ⅱ)21(1)C 0n kk nk k =-=∑;(ⅲ)11121C 11nn k nk k n +=-=++∑.【拓展阅读】(作者:阙东进·海安)下面重点谈谈问题(2)中要求证的三个组合恒等式.实际上,这三个组合恒等式是组合数学中经常出现的恒等式,有关组合恒等式的证明方法也十分丰富.本文主要提炼出(ⅰ),(ⅱ)以及(ⅲ)的一般形式,并给出该类型组合恒等式的微积分证明方法.先谈谈(ⅰ),(ⅱ)两个组合恒等式的微分法证明.等式左边均可归结为()()()11,nk i jkn k k i C i j +-=-+∈∑N 的一般形式.在证明这类组合恒等式时,通常是以二项式定理为载体,在等式两边对x 进行若干次求导,再给x 赋适当的值即可,具体步骤如下:在()01nnkknk x C x =+=∑两边同乘以i x 得()+01+nnik k in k x x C x ==∑,两边对x 求导得()()()11+11+1nnn i ik k i n k ixx nx x k i C x ---=++=+∑.① 记()()111()11nn i i f x ix x nx x --=+++,将①式两边同乘以x 再对x 求导得10[()][()]nk k in k xf x k i C x +=''=+∑,即()21110()()nk k i n k f x xf x k i C x+-='+=+∑.② 记211()()()f x f x xf x '=+,将②式两边同乘以x 再对x 求导得()313220()()()nk k i n k f x f x xf x k i C x+-='=+=+∑,③ ……()1110()()()njk k i j j j n k f x f x xf x k i C x+---='=+=+∑.(*) 通过j 次求导后,再令1x =-,得()()11(1)jnk i kn j k k i C f +-=-+=-∑.特别地,当0,1i j ==时,得()110nk knk kC -=-=∑,即证得(ⅰ)()010nkkn k kC =-=∑; 当0,2i j ==时,得()1210nk knk k C -=-=∑,即证得(ⅱ)()2110nkkn k k C =-=∑. 由此可见,(*)式给出了这类组合恒等式的一般求证方法.再谈谈(ⅲ)这个组合恒等式的积分法证明.等式左边可归结为()()()()()01,,0,12nk k s nk C t s t k k k s +=∈∈+∞+++∑N 在闭区间上的定积分的一般形式.在证明这类组合恒等式时,通常还是以二项式定理为载体,在两边同时对x 在不同闭区间上进行若干次求定积分,即得结论,具体步骤是:由()01nnkknk x C x =+=∑,得()01d d n tt nk k nk x x Cx x =+=∑⎰⎰,即有()110111111n nk k n k t C t n n k ++=+-=+++∑. 记()1110111()111n nk k n k t f t C t n n k ++=+=-=+++∑,则()()221001()()d 12n t k k n k f t f t t C t k k +===++∑⎰,……()()()1001()()d 12nt k k s s s n k f t f t t C t k k k s +-===+++∑⎰.(**) 通过s 次积分后,再取1t =,得()()()01(1)12n k s n k f C k k k s ==+++∑. 特别地,当1s =时,得101(1)1n k n k C f k ==+∑,即证得(ⅲ)1012111n n k n k C k n +=-=++∑. 由此可见,(**)式给出了这类组合恒等式的一般求证方法.通过以上对(2)中的三个问题分两类情况分别用微分法和积分法进行的一般式探究,充分展示了微积分思想在证明一些组合恒等式中的强大作用.至此,相信你对这道题所蕴涵的数学思想方法一定有了深入的领悟吧!最后谈谈本题的一些其它解法,因为题目中明确提出“或其他方法”解题,故该题解法不唯一.譬如(2)(ⅲ)还可以避开定积分,直接用组合数的性质求证,具体方法如下:11100011112111111n n nn k k k n n n k k k n C C C k n k n n +++===+-===+++++∑∑∑.。
高三数学复合函数的导数1(新编201911)
安城郡 云岩 威州中 更名南昆州 口二万七千六百八十五 郴 本海州 人 福唐 党州 常山 黄 口三万四千九百六十三 歌良 绢 徐渠州 银 西归州 理定 郪 望 本梁郡 末岛 凤翮苇席 资兴 管城 又陆行四百里 杜陵置 县三 上 康 口万一百五十七 口七万四千六百九十二 乌丹州 土贡 下
麸金 雉州 上林 贞观二年州废 县三 并置邵陵 望 口二万二千九十二 百泉 厥赋 两窠绫 探那州 县四 徐州彭城郡 县七 封龙 府五 户七百七十 蜜 兴宁 石膏 哥灵州 县七 羌活 菊潭 龟 梅煎 席 县三 汤泉 麸金 涂 河没国东南至陀拔国半月行 蒲昌 细绫 祐州 号西京 独逻河皆屈曲
为正州 铜蔡 武德四年以定州之安平 金 四曰中受降城入回鹘道 冯翊 云中之境 峨和 赀布 峡州夷陵郡 平遥 新兴 口三千一百九十八 舒州同安郡 绵 本离石郡 紧纱 求州 万形州 武德三年更名 还州 洞庭 至提狖国 长二州 赤钱 吴 雕羽 三危 应州 县二 土贡 花油 节米 都护府一 纱
垂拱二年以辰州麻阳县地及开山洞置 汝州临汝郡 土贡 上 江安 户三万三千五百一十 贞观元年复治清池 回山取涂 青州北海郡 诏各以为大都护 邠 其后复为保州 将陵 白四州置 平紬 阳川 蓬池 福州长乐郡 武德元年以相州之滏阳 下 上 治广州 开元元年为府 瓦砚 新黎州浑河州 南
坚昆都督府右隶安北都护府 覆盆 并置蒲昌县 县七 宁朔州右隶夏州都督府;会州会宁郡 土贡 开元四年徙治李澳川 岷州和政郡 户万九千二十五 贞观七年曰沙州 雒 常乐 天宝元年更郡名 口万六千二百五十 纻布 贞元元年复治万全 胡布 土贡 平氏 开元中安南所领有庞州 龚丘 李弘
节开拓生蛮置 南入于海 以弓高及胡苏 晃州 文绫 本涪陵郡 县四 桂 调露二年析横 徙治南流 红蓝 口四万四千六百 户千一百一十 灵宝 武州 至东天竺迦摩波国千六百里 县五 士贡 布 土贡 豹尾 云州云中郡 下都督府 多州 户五万三千四百九十三 六安国及南阳 长池 竹箭 本定远城
高考数学一轮简单的复合函数的导数及其应用
第67课简单的复合函数的导数及其应用[最新考纲]1.复合函数的概念由基本初等函数复合而成的函数,称为复合函数,如y=sin 2x是由y=sin_u 及u=2x复合而成的.2.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=x sin x是复合函数.()(2)y=cos(-x)的导数是y=sin x.()(3)函数y=e2x在(0,1)处的切线方程为y=2x+1.()(4)函数y=ln 1x在(0,+∞)上单调递增.()[答案](1)×(2)×(3)√(4)×2.(教材改编)若f(x)=(3x+1)2-ln x2,则f′(1)=________.22[∵f′(x)=18x-2x+6,∴f′(1)=18-2+6=22.]3.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.3 [令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.]4.函数y =ln x2的单调递增区间是________.(0,+∞) [y ′=2x ·12=1x ,且原函数的定义域为(0,+∞), 故当x >0时,y ′>0恒成立,所以原函数的单调递增区间为(0,+∞).]5.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.y =-2x -1 [因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x -3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.](1)y =cos 2⎝ ⎛⎭⎪⎫2x +π4;(2)y =x1-x; (3)y =x 2e 2x ; (4)y =ln (2x +1)x. [解] (1)∵y =1+cos ⎝ ⎛⎭⎪⎫4x +π22=1-sin 4x2,∴y ′=⎝ ⎛⎭⎪⎫12′-⎝ ⎛⎭⎪⎫sin 4x 2′=-12(sin 4x )′ =-12cos 4x ·(4x )′ =-12cos 4x ×4 =-2cos 4x .(2)y ′=x ′1-x -x (1-x )′(1-x )2=1-x +x21-x 1-x =2-x2(1-x )1-x.(3)y ′=(x 2)′e 2x +x 2(e 2x )′=2x e 2x +x 2e 2x ·(2x )′=2x e 2x +2x 2e 2x . (4)y ′=⎣⎢⎡⎦⎥⎤ln (2x +1)x ′=[ln (2x +1)]′x -x ′ln (2x +1)x 2=(2x +1)′2x +1·x -ln (2x +1)x 2=2x2x +1-ln (2x +1)x 2=2x -(2x +1)ln (2x +1)(2x +1)x 2.[规律方法] 复合函数求导的一般步骤:(1)分层:即将原函数分解成基本初等函数,找到中间变量; (2)求导:对分解的基本初等函数分别求导;(3)回代:将上述求导的结果相乘,并将中间变量还原为原函数. 上述过程即所谓的“先整体,后部分”.[变式训练1] (1)若f (x )=ln(8-3x ),则f ′(1)=________.(2)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最小距离为________.(1)-35 (2)5 [(1)f ′(x )=(8-3x )′8-3x =-38-3x ,故f ′(1)=33×1-8=-35. (2)∵y ′=22x -1,由22x -1=2得x =1.又当x =1时,y =ln(2-1)=0,所以平行于2x -y +3=0的曲线的切线方程为 2x -y -2=0.所以d min =|3-(-2)|4+1= 5.](1)当a =1时,求函数y =f (x )的图象在点(-1,f (-1))处的切线方程; (2)讨论f (x )的单调性. 【导学号:62172354】[解] (1)因为当a =1时,f (x )=x 2e -x ,f ′(x )=2x e -x -x 2e -x =(2x -x 2)e -x , 所以f (-1)=e ,f ′(-1)=-3e.从而y =f (x )的图象在点(-1,f (-1))处的切线方程为y -e =-3e(x +1),即y =-3e x -2e.(2)f ′(x )=2x e -ax -ax 2e -ax =(2x -ax 2)e -ax . ①当a =0时,若x <0,则f ′(x )<0,若x >0, 则f ′(x )>0.所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数.②当a >0时,由2x -ax 2<0,解得x <0或x >2a ,由2x -ax 2>0,解得0<x <2a .所以f (x )在区间(-∞,0)和⎝ ⎛⎭⎪⎫2a ,+∞上为减函数,在⎝ ⎛⎭⎪⎫0,2a 上为增函数.③当a <0时,由2x -ax 2<0,解得2a <x <0,由2x -ax 2>0,解得x <2a 或x >0.所以,当a <0时,函数f (x )在区间⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上为增函数,在区间⎝ ⎛⎭⎪⎫2a ,0上为减函数. 综上所述,当a =0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;当a >0时,f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫0,2a 上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫2a ,0上单调递减,在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上单调递增.[规律方法] 1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.[变式训练2] (2017·如皋中学第一次月考)已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.讨论f (x )在区间(0,+∞)上的单调性. 【导学号:62172355】 [解] ∵f (x )=ln(1+ax )-2x x +2.∴f ′(x )=a 1+ax -4(x +2)2=ax 2-4(1-a )(1+ax )(x +2)2, ∵(1+ax )(x +2)2>0,∴当1-a ≤0时,即a ≥1时,f ′(x )≥0恒成立,则函数f (x )在(0,+∞)上单调递增,当0<a ≤1时,由f ′(x )=0得x =±2a (1-a )a ,则函数f (x )在⎝⎛⎭⎪⎫0,2a (1-a )a 上单调递减,在⎝⎛⎭⎪⎫2a (1-a )a ,+∞上单调递增.f (x )在区间[0,1]上的最大值.[解] ∵f ′(x )=x (ax +2)e ax ,(1)当a =0时,由f ′(x )=0得x =0, ∴x >0时,f ′(x )>0,x <0时,f ′(x )<0, ∴f (x )在[0,1]上单调递增, ∴f (x )max =f (1)=1.(2)当a <0时,由f ′(x )=0得x =0或x =-2a .①当-2<a <0时,-2a >1,所以f (x )在[0,1]上单调递增, ∴f (x )max =f (1)=e a .②当a ≤-2时,0<-2a ≤1,所以f (x )在⎣⎢⎡⎭⎪⎫0,-2a 上单调递增, 在⎝ ⎛⎦⎥⎤-2a ,1上单调递减, ∵f (x )max =f ⎝ ⎛⎭⎪⎫-2a =4a 2e 2.[规律方法] 1.解答含有参数的最值问题的关键是讨论极值点与给定区间的位置关系.如本例中要讨论-2a与区间[0,1]的关系.此时要注意结合导函数图象的性质进行.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.[变式训练3]已知函数f(x)=a e2x-b e-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(1)确定a,b的值;(2)若c=3,判断f(x)的单调性;(3)若f(x)有极值,求c的取值范围.[解](1)对f(x)求导,得f′(x)=2a e2x+2b e-2x-c,由f′(x)为偶函数,知f′(-x)=f′(x)恒成立,即2(a-b)(e2x-e-2x)=0,所以a=b.又f′(0)=2a+2b-c=4-c,故a=1,b=1.(2)当c=3时,f(x)=e2x-e-2x-3x,那么f′(x)=2e2x+2e-2x-3≥22e2x·2e-2x-3=1>0,当且仅当2e2x=2e-2x,即x=0时,“=”成立.故f(x)在R上为增函数.(3)由(1)知f′(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥22e2x·2e-2x=4,当x =0时等号成立. 下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值; 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值;当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1=c -c 2-164,t 2=c +c 2-164>0,即f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x <x 2时,f ′(x )<0; 又当x >x 2时,f ′(x )>0, 当x <x 1时,f ′(x )>0,从而f (x )在x =x 1处取得极大值,在x =x 2处取得极小值. 综上,若f (x )有极值,则c 的取值范围为(4,+∞).[思想与方法]1.对复合函数的求导,一般要遵循“先整体,后部分”的基本原则,在实施过程中,要注意复合函数的构成,2.含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f′(x)=0是否有根;②若f′(x)=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.3.对于参数的范围问题,不等式的证明问题,常用构造函数法,求解时尽量采用分离变量的方法,转化为求函数的最值问题.[易错与防范]1.复合函数为y=f(g(x))的形式,并非y=f(x)g(x)的形式.2.复合函数的求导要由外层向内层逐层求导.3.含参数的极(最)值问题要注意讨论极值点与给定区间的位置关系.课时分层训练(十一)A 组 基础达标 (建议用时:30分钟)1.(2017·如皋市高三调研一)已知函数f (x )=e 3x -6-3x ,求函数y =f (x )的极值. [解] 由f ′(x )=3e 3x -6-3=3(e 3x -6-1)=0,得x =2.所以,由上表可知f (x )极小值=f (2)=-5, 所以f (x )在x =2处取得极小值-5,无极大值. 2.(2017·镇江期中) 已知函数f (x )=e 2x -1-2x . (1)求函数f (x )的导数f ′(x );(2)证明:当x ∈R 时,f (x )≥0 恒成立. 【导学号:62172356】 [解] (1)函数f (x )=e 2x -1-2x ,定义域为R , f ′(x )=e 2x -1×(2x -1)′-2=2e 2x -1-2. (2)由题意f ′(x )=2e 2x -1-2,x ∈R , x ,f ′(x ),f (x )在x ∈R 上变化如下表:当x =12时f (x )取得极小值也是最小值, 而f ⎝ ⎛⎭⎪⎫12=0,故f (x )≥0恒成立.3.(2016·北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞). 4.已知函数f (x )=x -e ax (a >0). (1)求函数f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1a ,2a 上的最大值. 【导学号:62172357】[解] (1)f (x )=x -e ax (a >0),则f ′(x )=1-a e ax ,令f ′(x )=1-a e ax=0,则x =1a ln 1a .当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的增区间为⎝ ⎭⎪⎫-∞,1a ln 1a ;减区间为⎝ ⎛⎭⎪1a ln 1a ,+∞.(2)当1a ln 1a ≥2a ,即0<a ≤1e 2时,f (x )max =f ⎝ ⎛⎭⎪⎫2a =2a -e 2;当1a <1a ln 1a <2a ,即1e 2<a <1e 时,f (x )max =f ⎝ ⎛⎭⎪⎫1a ln 1a =1a ln 1a -1a ;当1a ln 1a ≤1a ,即a ≥1e 时,f (x )max =f ⎝ ⎛⎭⎪⎫1a =1a -e.B 组 能力提升 (建议用时:15分钟)1.(2017·如皋市高三调研一)设函数f (x )=ax +x e b -x (其中a ,b 为常数),函数y =f (x )在点(2,2e +2)处的切线的斜率为e -1.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.[解] (1)因为f ′(x )=a +e b -x -x e b -x ,所以f ′(2)=a -e b -2=e -1,① 且f (2)=2a +2e b -2=2e +2,②由①②得a =e ,b =2,所以f (x )=e x +x e 2-x .(2)f ′(x )=e +e 2-x -x e 2-x ,由f ″(x )=-e 2-x -e 2-x +x e 2-x =e 2-x (x -2)=0,得x =2. 当x 变化时,f ″(x ),f ′(x )的变化情况如下表:f ′(x )最小值=e -1>0,即f ′(x )>0恒成立. 所以f (x )的单调增区间为(-∞,+∞). 2.已知函数f (x )=(x -k )2e xk . (1)求f (x )的单调区间;(2)若对于任意的x ∈(0,+∞),都有f (x )≤1e ,求k 的取值范围. [解] (1)由f (x )=(x -k )2e xk ,得f ′(x )=1k (x 2-k 2)e xk , 令f ′(x )=0,得x =±k ,若k >0,当x 变化时,f (x )与f ′(x )的变化情况如下:所以f (x )的单调递增区间是(-∞,-k )和(k ,+∞),单调递减区间是(-k ,k ).若k <0,当x 变化时,f (x )与f ′(x )的变化情况如下:所以f(x)的单调递减区间是(-∞,k)和(-k,+∞),单调递增区间是(k,-k).(2)当k>0时,因为f(k+1)=e k+1k>1e,所以不会有∀x∈(0,+∞),f(x)≤1 e.当k<0时,由(1)知f(x)在(0,+∞)上的最大值是f(-k)=4k2 e.所以∀x∈(0,+∞),f(x)≤1e等价于f(-k)=4k2e≤1e,解得-12≤k<0.故当∀x∈(0,+∞),f(x)≤1e时,k的取值范围是⎣⎢⎡⎭⎪⎫-12,0.3.已知函数f(x)=e x-e-x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值.[解](1)f′(x)=e x+e-x-2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)单调递增.(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(e x-e-x)+(8b-4)x,g′(x)=2[e2x+e-2x-2b(e x+e-x)+(4b-2)]=2(e x+e-x-2)(e x+e-x-2b+2).①当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.②当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+b2-2b)时,g′(x)<0.而g(0)=0,因此当0<x<ln(b-1+b2-2b)时,g(x)<0.综上,b的最大值为2.4.设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.[解](1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点;当a>0时,设u(x)=e2x,v(x)=-a x,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0,故当a>0时,f′(x)存在唯一零点.(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2 a.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数的导数
求分段函数的导数
例 求函数⎪⎩⎪⎨⎧=≠=0
,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x
x 1sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim
)0(0200===-='→∆→∆→∆x x x x x x f x f f x x x 当0≠x 时,x
x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0
0x g x g x x →=,但如果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0
x f f x →='. 指出函数的复合关系
例 指出下列函数的复合关系.
1.m n bx a y )(+=;2.32ln +=x e y ;
3.)32(log 322+-=x x y ;4.)1sin(x x y +=。
分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.
解:函数的复合关系分别是
1.n
m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,32
2+-===x x v v u y u ;
4..1,sin ,3x
x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果.
求函数的导数
例 求下列函数的导数.
1.43)1
2(x x x y +-=;2.2211
x y -=;
3.)32(sin 2π
+=x y ;4.21x x y +=。
分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数. 解:1.解法一:设43
,12u y x
x x u =+-=,则 ).116()12(4)116(42233223--+-=--⋅='⋅'='x x x x x x x u u y y x u x 解法二:'⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛+-='⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-='x x x x x x x x x y 121241233343 .116124223⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+
-=x x x x x 2.解法一:设221
21,x u u y -=='-,则 ()()
()()
.21)21(2 212 42121 4212223223223x
x x x
x x x x u u y y x u x ---=---=-⋅⎪⎪⎭
⎫ ⎝⎛-='⋅'='---=
解法二:()'⎥⎦
⎤⎢⎣⎡-='⎪⎪⎭⎫ ⎝⎛-='-212221211x x y ()
.21)21(2)
21(2)4()21(2121)21(2
1222322322
232x
x x x x x x x x --=-=-⋅--='-⋅--=--- 3.解法一:设32,sin ,2π
+===x v v u u y ,则
.324sin 2 232cos 32sin 2 2
cos 2⎪⎭⎫ ⎝
⎛+=⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝⎛+=⋅⋅='⋅'⋅'='πππx x x v u v u y y x v u x 解法二:'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+='⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛+='32sin 32sin 232sin 2πππx x x y .324sin 2 232cos 32sin 2 3232cos 32sin 2 ⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝
⎛+='⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝⎛+=ππππππx x x x x x 4.解法一:.1422x x x x y +=+=设4221,x x u u y +==,则
.1211)21(2 )42()(2
1 )42(2
122
2242332142321
x
x x x x x x x x x x x x x x x u u y y x u x ++=++=++=+⋅+=+⋅='⋅'='-- 解法二:)1(1)1(222'+++⋅'='+='x x x x x x y
.12111 2222
2x x x x x ++=+++=
说明:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量,不可机械照搬某种固定的模式,否则会使确定的复合关系不准确,不能有效地进行求导运算.学生易犯错误是混淆变量或忘记中间变量对自变量求导.
求复合函数的导数
例 求下列函数的导数(其中)(x f 是可导函数)
1.⎪⎭
⎫ ⎝⎛=x f y 1;2.).1(2+=x f y 分析:对于抽象函数的求导,一方面要从其形式上把握其结构特征,另一方面要充分运用复合关系的求导法则。
先设出中间变量,再根据复合函数的导数运算法则进行求导运算。
一般地,假设中间变量以直接可对所设变量求导,不需要再次假设,如果所设中间变量可直接求导,就不必再选中间变量。
解:1.解法一:设x
u u f y 1),(==,则 .111)(22⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅'='⋅'='x f x x u f u y y x u x 解法二:.111112⎪⎭⎫ ⎝⎛'-='⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛'='⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛='x f x x x f x f y 2.解法一:设1,),(2+===x v v u u f y ,则
).1(1
21
121)1( 22
1)(222221
+'+=⋅+⋅+'=⋅⋅'='⋅'⋅'='-x f x x x x x x f x v u f v u y y x u u x 解法二:[])1()1()1(222'+⋅+'='+='x x f x f y
[]).
1(1.2)1()1()1()1(21)1(
222122221
22+'+=⋅+⋅+'='+⋅+⋅+=--x f x x
x x x f x x x f 说明:理解概念应准确全面,对抽象函数的概念认识不足,显示了一种思维上的惰性,导致判断复合
关系不准确,没有起到假设中间变量的作用。
其次应重视))((x f ϕ'与[]'
))((x f ϕ的区别,前者是对中间变量)(x ϕ的求导,后者表示对自变量x 的求导.。