边缘保留的像噪声滤除方法

合集下载

opencvsharp 去除噪点的方法

opencvsharp 去除噪点的方法

一、概述现代图像处理技术已经得到了广泛的应用,而去除噪点是图像处理中非常重要的一环。

在使用opencvsharp进行图像处理时,去除噪点是一个常见的需求。

本文将介绍几种常用的opencvsharp去除噪点的方法,希望能够对大家在图像处理中有所帮助。

二、高斯模糊高斯模糊是一种常见的去噪方法,在opencvsharp中也有相关的API 可以实现高斯模糊。

通过调整高斯模糊的核大小,可以有效地去除图像中的噪点,使图像更加清晰。

三、中值滤波中值滤波是一种非常有效的去噪方法,尤其适用于椒盐噪声。

在opencvsharp中,可以使用medianBlur函数来实现中值滤波。

通过选择合适的滤波器尺寸,可以有效地去除图像中的噪点,还原图像的细节信息。

四、均值滤波均值滤波是一种简单但有效的去噪方法。

在opencvsharp中,可以使用blur函数来实现均值滤波。

通过调整滤波器的大小,可以平滑图像并去除噪点。

五、边缘保留滤波边缘保留滤波是一种比较先进的去噪方法,可以在去除噪点的同时保留图像的边缘信息。

在opencvsharp中,可以用stylization函数实现边缘保留滤波。

这种方法适用于对图像进行艺术化处理的场景。

六、小波变换去噪小波变换是一种基于频域的去噪方法,在opencvsharp中也提供了相关的API。

通过小波变换,可以将图像表示为不同频率的小波系数,然后去除低频的噪声成分,最终重构出更清晰的图像。

七、总结去除噪点是图像处理中非常重要的一步,而opencvsharp提供了多种去噪的方法,可以根据具体的需求选择合适的方法。

本文介绍了几种常用的去噪方法,并希望能够对大家在图像处理中有所帮助。

希望读者可以根据实际的场景和需求,选择合适的方法,对图像进行去噪处理,获得更加清晰的图像结果。

八、基于机器学习的去噪方法除了传统的图像处理方法,基于机器学习的去噪方法在近年来得到了广泛的关注和应用。

opencvsharp也提供了相关的机器学习算法,可以用于图像去噪。

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。

它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。

在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。

一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。

它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。

2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。

它通过改变图像的直方图来增强图像的细节和对比度。

3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。

它能够通过平滑图像来改善图像的质量,同时保持图像的细节。

4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。

它可以通过增加图像的边缘强度来突出图像的边缘。

5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。

它可以通过提取图像的不同频率分量来增强图像的细节和对比度。

二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。

然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。

2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。

相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。

3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。

它能够通过消除噪声的高频分量来降低图像的噪声水平。

4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。

它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。

三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。

图像处理中的图像去噪方法对比与分析

图像处理中的图像去噪方法对比与分析

图像处理中的图像去噪方法对比与分析图像处理是一门涉及数字图像处理和计算机视觉的跨学科领域。

去噪是图像处理中一个重要的任务,它的目的是减少或消除图像中的噪声,提高图像的质量和清晰度。

在图像处理中,有许多不同的去噪方法可供选择。

本文将对其中几种常见的图像去噪方法进行对比与分析。

首先是均值滤波器,它是最简单的去噪方法之一。

均值滤波器通过计算像素周围邻域的像素值的平均值来降低图像中的噪声。

它的优点是简单易懂,计算速度快,但它的效果可能不够理想,因为它会导致图像模糊。

接下来是中值滤波器,它是一种非线性滤波器。

中值滤波器通过对像素周围邻域的像素值进行排序,并选取中间值来替代当前像素的值。

它的优点是可以有效地去除椒盐噪声和激光点噪声等噪声类型,而且不会对图像的边缘和细节造成太大的损失。

然而,中值滤波器也有一些缺点,例如无法去除高斯噪声和处理大面积的噪声。

另一种常见的去噪方法是小波去噪。

小波去噪利用小波变换的多尺度分解特性,将图像分解为不同尺度的频带,然后根据频带的能量分布进行噪声和信号的分离,再对分离后的频带进行阈值处理和重构。

小波去噪的优点是可以提供较好的去噪效果,并且能够保留边缘和细节。

然而,小波去噪的计算复杂度较高,处理大尺寸的图像会耗费较多的时间。

另外,还有一种常见的图像去噪方法是非局部均值去噪(Non-local Means Denoising,NLM)。

NLM方法基于图像的纹理特征,通过计算像素周围的相似度来降噪。

它的优点是可以保持图像的纹理和细节,并且可以处理各种类型的噪声。

然而,NLM方法的计算复杂度较高,对于大尺寸的图像来说可能会耗费较多的时间。

最后,自适应滤波器也是一种常见的图像去噪方法。

自适应滤波器根据图像的局部特性来调整滤波器的参数,以达到更好的去噪效果。

它的优点是可以根据图像的特点进行自适应调整,并且可以有效地去除噪声和保留细节。

然而,自适应滤波器也存在一些缺点,例如可能会对图像的边缘造成一定的模糊。

遥感数字图像处理-第7章 图像去噪声

遥感数字图像处理-第7章 图像去噪声
从噪声的概率密度函数来看,图像噪声主要有高斯噪声、 瑞利噪声、伽玛噪声、指数分布噪声、均匀分布噪声、脉 冲噪声等。
3
二、空间域去噪声
由于噪声像元的灰度值常与周边像元的灰度值不协调, 表现为极高或极低,因此可利用局部窗口的灰度值统计 特性(如均值、中值)来去除噪声。
空间域去噪声是利用待处理像元邻域窗口内的像元进行 均值、中值或其他运算得到新的灰度值,并将其赋给待 处理像元,通过对整幅图中值滤波、边缘保持平滑滤波和数学形态学去噪声等。
6
三、变换域去噪声
3.其他变换
主成分变换、最小噪声分离变换和独立成分变换去噪声主要用 于多波段数据,其去噪声的原理基本相同,即图像通过变换,噪 声主要集中在后面几个分量,选择前面噪声较少的分量进行反向 变换即可实现对图像的去噪声处理。
这里只简单介绍一下主成分变换去噪声的过程,最小噪声 分离变换和独立成分变换去噪声的过程类似。
第7章
图像去噪声
图像去噪声
一、常见噪声类型及其识别 二、空间域去噪声 三、变换域去噪声 难点:傅里叶变换和小波变换去噪声原理 重点:空间域和变换域去噪声方法
2
一、常见噪声类型及其识别
遥感数字图像成像过程中,受到外部环境和内部系统等因 素干扰会产生噪声,我们将其分为内部噪声和外部噪声。
噪声具有随机性,可以被认为是由概率密度函数(PDF) 表示的随机变量,通常采用噪声分量灰度值的统计特性( 如均值、方差等)进行描述。
7
4
三、变换域去噪声
1.傅里叶变换
中心化的频谱图像
5
三、变换域去噪声
2.小波变换 利用傅里叶变换去噪声,带宽选得过宽,达不到去噪的目
的;选得过窄,噪声虽然滤去得多,但同时信号的高频部 分也损失了,不但带宽内的信噪比得不到改善,某些突变 点的信息也可能被模糊掉了。 在信号的低频部分,小波对频率的分辨率较高,而对时间 的分辨率较低;在高频部分,则恰好相反。它能自适应地 依据信号的变化而自行变化。 小波变换去噪的基本思路就是利用小波变换把含噪信号分 解到多尺度中,然后在每一尺度下把属于噪声的小波系数 抑制或去除,保留并增强属于信号的小波系数,最后重构 出小波消噪后的信号。

10种常用滤波方法

10种常用滤波方法

10种常用滤波方法
滤波是信号处理领域中常用的技术,用于去除噪声、增强信号的一些特征或改变信号的频谱分布。

在实际应用中,经常使用以下10种常用滤波方法:
1.均值滤波:将像素点周围邻域像素的平均值作为该像素点的新值,适用于去除高斯噪声和椒盐噪声。

2.中值滤波:将像素点周围邻域像素的中值作为该像素点的新值,适用于去除椒盐噪声和激动噪声。

3.高斯滤波:使用高斯核函数对图像进行滤波,通过调整高斯窗口的大小和标准差来控制滤波效果。

适用于去除高斯噪声。

4.双边滤波:通过考虑像素的空间距离和像素值的相似性,对图像进行滤波。

适用于平滑图像的同时保留边缘信息。

5. 锐化滤波:通过滤波操作突出图像中的边缘和细节信息,常用的方法有拉普拉斯滤波和Sobel滤波。

6.中可变值滤波:与中值滤波相似,但适用于非线性信号和背景噪声的去除。

7.分位值滤波:通过对像素值进行分位数计算来对图像进行滤波,可以去除图像中的异常像素。

8.快速傅里叶变换滤波:通过对信号进行傅里叶变换,滤除特定频率的成分,常用于频谱分析和滤波。

9.小波变换滤波:利用小波变换的多尺度分析特性,对信号进行滤波处理,适用于图像去噪和图像压缩。

10.自适应滤波:通过根据信号的局部特征自动调整滤波参数,适用于信号中存在时间和空间变化的情况。

以上是常见的10种滤波方法,每种方法都有不同的适用场景和优缺点。

在实际应用中,选择合适的滤波方法需要根据具体的信号特征和处理需求来确定。

图像处理中的边缘保留滤波算法使用教程

图像处理中的边缘保留滤波算法使用教程

图像处理中的边缘保留滤波算法使用教程在图像处理领域中,边缘保留滤波算法是一种常用的技术,用于在平滑图像的同时保留图像中的边缘信息。

该算法可以广泛应用于图像去噪、边缘检测、图像增强等多个领域。

本文将介绍四个常见的边缘保留滤波算法,并详细讲解它们的原理和使用方法。

1. 高斯滤波高斯滤波是一种线性平滑滤波算法,用于去除图像中的噪声,并平滑图像。

它的原理是利用高斯函数对图像进行卷积操作,通过调整高斯核的大小来控制滤波的强度。

这种算法可以有效地保持图像中的边缘信息,同时去除噪声。

使用高斯滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的高斯核大小和标准差。

3) 对图像进行高斯滤波操作。

4) 输出滤波后的图像。

2. 双边滤波双边滤波是一种非线性平滑滤波算法,与高斯滤波相比,它考虑了像素间的空间距离和像素强度之间的相似性。

这意味着它能够更好地保留图像中的边缘信息,同时减少平滑的效果。

使用双边滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的滤波器参数,包括空间领域核大小、颜色领域核大小和颜色相似性高斯函数的标准差。

3) 对图像进行双边滤波操作。

4) 输出滤波后的图像。

3. 中值滤波中值滤波是一种非线性滤波算法,适用于去除椒盐噪声等混合噪声。

它的原理是将像素点周围的邻域像素进行排序,然后选择中间值作为当前像素的值。

这种方法能够有效地平滑图像,同时保留图像中的边缘信息。

使用中值滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的滤波器窗口大小。

3) 对图像进行中值滤波操作。

4) 输出滤波后的图像。

4. Laplacian滤波Laplacian滤波是一种常用的边缘检测算法,它基于图像的二阶导数运算。

通过对图像进行Laplacian滤波操作,可以提取出图像中的边缘信息。

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较近年来,图像处理被广泛应用于计算机视觉、图像识别等领域。

在图像处理中,平滑滤波是一个常见的操作,它可以去除噪点、边缘保持等。

不同的平滑滤波方法会对图像产生不同的影响,因此选择合适的平滑滤波方法非常重要。

本文将比较五种常见的平滑滤波方法:均值滤波、高斯滤波、中值滤波、双边滤波和小波变换。

一、均值滤波均值滤波是最简单的一种平滑滤波方法,它将图像中每个像素点周围的像素值取平均数,并将平均值赋值给该像素点。

均值滤波可以消除图像的高频噪声,但同时也会损失一些图像的细节信息。

此外,均值滤波对较大的噪声点效果并不理想,很容易使图像产生模糊现象。

二、高斯滤波高斯滤波是一种局部加权平均滤波方法,它可以对图像进行模糊处理,同时保留较多的图像细节信息。

高斯滤波的核心理念是将周围像素的加权平均值作为该像素点的值。

高斯滤波的其中一个优点是可以更好地处理高斯白噪声、椒盐噪声等图像噪声,提高图像质量。

但是,高斯滤波也可能产生一定程度的模糊。

三、中值滤波中值滤波是一种基于统计学原理的平滑滤波方法,它将3×3或者5×5个像素的中间值作为该像素点的值。

中值滤波不会像均值滤波那样对图像像素进行加权平均,因此可以更好地去除图像噪声。

中值滤波常用于处理椒盐噪声、斑点噪声等,它能够减弱噪点的影响,同时保持图像的轮廓、边缘等细节特征。

四、双边滤波双边滤波是一种非线性滤波方法,它在平滑图像的同时,还可以保留图像的细节信息。

双边滤波在处理不同光照条件下的图像、模糊图像、具有强噪音的图像等方面具有较好的效果。

它的核心思想是在像素空间和像素值空间同时进行加权,从而能够更好地保留图像细节信息。

双边滤波的计算速度相对较慢,但是它常被用于实时视频处理等场景。

五、小波变换小波变换是在频域进行滤波的一种方法,它能够分离图像信号的低频和高频成份,对于高频噪点可以进行好的去除。

小波变换可以提取出不同频率的信息,对于保留图像细节来说非常有用。

图像处理中的图像去噪方法与效果评估

图像处理中的图像去噪方法与效果评估

图像处理中的图像去噪方法与效果评估图像去噪是数字图像处理中的一项关键任务,它旨在从图像中去除噪声,使其更清晰、更易于分析和理解。

在图像处理的众多应用中,图像去噪是一个必备的步骤,它可以用于医学图像、卫星图像、摄影图像等领域。

目前,有许多图像去噪方法可供选择,这些方法可以根据去噪原理、去噪效果和计算效率等方面进行分类。

下面将介绍几种常用的图像去噪方法,并对它们的效果进行评估。

1. 统计滤波方法统计滤波是一种基于统计原理的去噪方法,它通过对图像的像素值进行统计分析来判断噪声像素和信号像素,并通过滤波操作来抑制噪声。

常用的统计滤波方法包括中值滤波、高斯滤波和均值滤波。

中值滤波是一种简单有效的统计滤波方法,它通过对图像中的每个像素周围的邻域进行排序,然后取中间值作为该像素的新值。

中值滤波对于椒盐噪声和斑点噪声有较好的去除效果,但对于高斯噪声和高频噪声效果较差。

高斯滤波是一种基于高斯函数的滤波方法,它将像素的值与其周围像素的值进行加权平均,权值由高斯函数确定。

高斯滤波可以有效地平滑图像,并且保持边缘信息,但对于噪声的去除效果较差。

均值滤波是一种简单的滤波方法,它将像素的值与其邻域像素的平均值进行替换,可以有效地降低噪声的影响,但会导致图像模糊。

2. 小波变换方法小波变换是一种多尺度分析方法,可以将图像分解为不同频率的子带,然后根据子带的特征对噪声进行去除。

小波变换方法具有良好的去噪效果和较高的计算效率,在图像压缩、细节增强等应用中得到了广泛的应用。

小波去噪方法通常包括两个步骤:小波分解和阈值处理。

在小波分解阶段,图像被分解为不同频率的子带;在阈值处理阶段,对每个子带的系数进行阈值处理,然后通过逆小波变换将图像重建。

常用的小波去噪方法包括基于软阈值和硬阈值的去噪方法。

软阈值方法将小于某个阈值的系数置零,大于阈值的系数乘以一个缩放因子;硬阈值方法将小于阈值的系数置零,大于等于阈值的系数保持不变。

这两种方法在去除噪声的同时也会对图像细节造成一定的损失。

去除数字图像中乘性噪声的方法评述

去除数字图像中乘性噪声的方法评述

去除数字图像中乘性噪声的方法评述数字图像在获取和传输过程中常常会受到各种各样的噪声的干扰,所以图像去噪和增强一直是图像学术领域众学者的重要研究内容。

数字图像噪声按其影响可分为加性噪声和乘性噪声两大类。

如何去除数字图像所含加性噪声,理论与实践中都发展的相当成熟,然而对于去除乘性噪声还没有一套完善的理论与方法,一般处理是通过某种变换转变将其变为为加性噪声(例如对数变换),由于噪声的复杂性,这种处理方法往往并不能得到理想的结果,特别在强烈的乘性噪声环境下,这种差距尤其明显。

因此必须针对乘性噪声采用不同的方法,否则很难获得满意的处理效果。

本文意在学习国内外同行的研究经验,略加归纳分析,与同学者研讨继续努力之路径。

1图像去噪的基本思想图像去噪是图像复原的一种特例,图像复原是根据退化原理,建立相应的数学模型,从被污染或畸变的图像信号中提取所需要的信息,沿着使图像降质的逆过程恢复图像本来面貌。

实际的复原过程是设计一个滤波器,使其能从降质图像g(x,y)中计算得到真实图像的估值f?(x,y),使其根据预先规定的误差准则,最大程度地接近真实图像f(x,y)。

数字图像噪声按其影响可分为加性噪声和乘性噪声两大类。

一幅图像中相邻像素的灰度之间大多具有很强的相关性,而且图像的大部分能量主要集中在低频区域,只有图像的细节部分的能量处于高频区域中。

因此在图像的传输和处理过程中出现的噪声,主要集中在高频区域内,所以消除噪声的一般方法是衰减高频分量或称低通滤波。

数字图像噪声处理方法大致可分为在空间域处理和在频率域处理。

2乘性噪声模型简介乘性噪声是一种广泛存在于遥感、合成孔径雷达等成像领域的噪声。

乘性噪声降低了图像的画面质量,严重影响图像的分割、分类、目标检测以及其他感兴趣区域的提取。

因此,研究和发展含乘性噪声的图像恢复方法具有重要的理论意义和应用价值。

本文考虑的乘性噪声模型为式中:为观察图像,是原图像,为噪声。

其中噪声的分布是未知的,一般假设是期望为1、方差为的高斯分布或者假设服从Gamma分布。

图像处理中消除噪声的方法

图像处理中消除噪声的方法
会公布其生产的各种胶卷的平均颗粒直径 , 因此只需确定孩粒
噪声的标 准差
11电子嗓声 .
在阻性器件中由于随机热运动而造成的电子噪声是三种
2 典型的消除噪声方法
21均值滤波器 .
均值滤波器是一种消除图像噪声的线性处理方法。这种 方法的基本思想是用几个像素灰度的平均值来代替每个像素
的灰度。其计算公式为:
摘 要
关健词
本文首先讨论了常见的噪声模型, 然后讲述了 几种典型的去噪方法。最后介绍了几种较新的滤除噪声方法。
图 像处理 消除噪声
了,f y. ;
N S I M A OI E I GE ROCE S G N P SI N
THE E M
THOD OF
YP C n e Z Hn耐 i h F h g u g i 心 e u n o oy s
! 1 , 1 1 』 r 它
万方数据
在光照较强时, 泊松则分布趋向更易描述的高斯分布; 而 标准差(S RM幅值) 仍等于均值的平方根。这意味着噪声的幅
2 9
礁 翻艇霭 滚权 麟落嘛准 , htWAN N W翻N c , 怠淤 汇 旗 铂 ,L {IIN能 粗 d1 } 1 i 墉 初 洲O 1 阴 口 U A ,. 喊 A - "
图像。
滤除的同时, 对有用高频成分也滤除了。因此这种去噪处理是 以栖性清晰度为代价而换取的。
3 几种较新的消除噪声的方法
盯 }断 少 兮 拓 £ 蕊 常 招护 玫 韶改 介 即 抢 吸 ‘ , 贬 谈 介 分 下 炭 姜 胆 群 惑 已 冻 二 赢 卜 盯 肛 洲卜 聆 认 影 部 配 卜 孩 权 以 权 砂 犷 卜 舒 砂‘ 州 卜 和 奎 卜 豁 ‘七 r 参 r 乡 冲备 ‘ ‘ 刹不 争 》 中叶 如阳 ‘ 奋 带 夕 最

一种改进的各向异性扩散图像去噪方法

一种改进的各向异性扩散图像去噪方法

= ( ,,) Mx yt】
其 中 :( , ')R x0 一尺是一个随时 问演化的图像 , 尺 u x vt: z[,] F:一 尺表示 一个特定的算法所对应的算子 , 通常依赖于图像及其空 间上一 、 二阶导数 , 原始图像 U 为 初始条件 。 。 偏微分方程 的解 u xY t即给 出了迭代 t ( ,,) 次时的图像 。根据定义的不 同可分为 线性扩散过程 、 非线『扩散过程 、 生 各向异性扩散过程等 。 由 P n a和 Mait 出的各 向异性扩 散方程 ( — 扩散 em l k提 PM 方程 ) 最具影响力 ,— P M扩 散方 程为 :
t n .0 8,4( 3) 1 0 1 2 i s2 0 4 1 :7 — 7 . o
A bsr c t a t: Th s p pe su e o h g na c o d n to ba e o t e dr c in o t e i g f aur t n a lz s a s tope i a r t dis r o o l o r i ai n t s d n h ie to s f h ma e e t e,he nay e nio r i dfuso i g d nosn me h d if in ma e e iig t o un r hi fame r a p o os s n mprv d de t s r wo k, nd r p e a i o e ans to c if i n ior pi d f o m eh d. e us t o Th me h d v i s t o a o d i —p s d l o e pr lm s fans r p c fu in q t . p rm e t s o t a t s eho l ob e o ioto i di so e uai Ex e i n s h w h t hi m t d c a hiv g o efct i n ie e o ig f on an c e e o d fe s n os —rm vn ad n ma g n r s r i —p e mwi g n. Ke wor : a s tope y ds nio r i di u in; ie ton o h i g faur hu a vs a s se ;m a e f so d r ci s f t e ma e e t e; m n iu l y tm i g de osng f n ii

干扰滤波去噪方法

干扰滤波去噪方法

干扰滤波去噪方法1. 统计滤波: 通过对一系列采样数据进行统计分析,确定噪声的统计特性,并将其用于滤波,以实现去噪目的。

2. 中值滤波: 将窗口内的像素值进行排序,取中间值作为滤波结果,能够有效去除椒盐噪声和斑点噪声。

3. 小波变换去噪: 基于小波变换的多尺度分析,对信号进行去噪处理,可保留信号的细节特征。

4. Kalman滤波: 一种递归滤波算法,基于系统动态模型和观测值,对含有噪声的系统状态进行估计和去噪。

5. 自适应滤波器: 根据信号和噪声的实时特性,自动调整滤波器参数,能够有效适应不同噪声环境。

6. 高斯滤波: 基于高斯函数对信号进行加权处理,适用于平稳高斯噪声的去除。

7. 自适应中值滤波: 结合中值滤波和自适应阈值的方法,能够在不同噪声水平下进行有效去噪。

8. 布尔腐蚀滤波: 利用形态学处理技术,对二值图像进行去噪处理,保留图像轮廓和形状。

9. 自适应高斯滤波: 根据图像局部像素方差调整滤波器参数,能够有效处理不同噪声强度区域。

10. 累积滤波: 基于累积统计信息的滤波方法,对输入信号进行逐步更新滤波,有效去除随机噪声。

11. 时域滤波器: 基于时域分析的滤波方法,适用于对时间序列信号进行去噪处理。

12. 频域滤波器: 基于频域分析的滤波方法,通过傅里叶变换将信号转换到频域进行去噪处理。

13. 自适应中值滤波: 根据局部像素邻域的特性,动态调整滤波器参数以适应不同噪声水平,能够有效去除椒盐噪声和斑点噪声。

14. 动态滤波: 针对信号的变化动态调整滤波器参数,适用于噪声随时间变化的场景。

15. 非局部均值滤波: 基于图像块的相似性进行去噪处理,能够有效保留图像细节。

16. 复数小波去噪: 利用小波变换分析信号的复数特性,对信号进行去噪处理,适用于复数信号的处理场景。

17. 维纳滤波: 基于信号和噪声的功率谱,利用线性滤波方法对信号进行去噪处理。

18. 自适应加权中值滤波: 根据信号的特性和噪声的强度,动态调整滤波器的权重以实现去噪处理。

中值滤波去噪方法

中值滤波去噪方法

中值滤波去噪方法中值滤波是一种常用的去噪方法,它通过计算像素周围邻域的中值来取代当前像素的值。

中值滤波适用于各种图像类型,特别是对于受到椒盐噪声等噪声干扰较大的图像效果较好。

接下来,我们将详细介绍中值滤波的原理和应用,并探讨一些与中值滤波相关的问题。

一、中值滤波的原理中值滤波是一种非线性滤波器,其原理是将像素周围邻域内的像素值按照大小排列,然后取其中间位置的值作为当前像素的值,从而达到去除颜色偏移的目的。

中值滤波的主要步骤如下:(1)选择合适的模板大小,通常选择3x3或5x5的模板。

模板大小的选择取决于图像的噪声程度以及图像的细节程度。

(2)将模板中的像素值按照大小排序,可以使用快速排序等排序算法。

(3)取排序后像素值中间位置的值作为当前像素的值。

二、中值滤波的应用中值滤波在图像去噪方面有着广泛的应用,特别是对于椒盐噪声等噪声干扰较大的图像。

中值滤波对于平滑图像、去除噪声点、保留图像边缘等方面都有较好的效果。

中值滤波可以应用于图像处理的各个阶段,例如预处理阶段的图像去噪、特征提取阶段的图像平滑等。

同时,中值滤波也广泛应用于数字信号处理、语音处理、视频处理等领域。

三、中值滤波的优缺点中值滤波作为一种非线性滤波方法,具有以下优点:(1)较好的去噪效果。

中值滤波对于椒盐噪声等噪声干扰较大的图像有着较好的去噪效果,可以有效去除噪声点,保留图像的细节信息。

(2)保留边缘信息。

中值滤波在去噪的同时,能够较好地保留图像的边缘信息,不会产生模糊效果。

然而,中值滤波也存在以下缺点:(1)容易引入伪像。

由于中值滤波的原理是通过取邻域内像素的中值作为当前像素的值,当图像中存在边缘或者细节信息的时候,可能会引入一些伪像。

(2)计算复杂度较高。

由于中值滤波需要对每个像素的邻域内的像素进行排序,因此计算复杂度较高,对于大尺寸的图像处理较为耗时。

(3)模板大小选择的问题。

中值滤波中,模板大小的选择对于滤波效果有重要影响,特别是在图像的细节信息较多的地方,较大的模板可能会引入较多的伪像。

图像去噪的实现方法

图像去噪的实现方法

图像去噪的实现方法图像去噪是数字图像处理中重要的一个方面,它可以消除图像中不需要的信息,提高图像的质量。

在实际应用中,由于各种原因(如图像采集设备的噪声、储存时的压缩等),图像中会存在不同程度的噪声。

因此,去噪技术具有很高的应用价值。

本文将介绍几种常见的图像去噪方法。

1. 双边滤波算法(Bilateral filtering)双边滤波算法是一种常用的图像去噪方法,它对图像中的每个像素进行滤波,在滤波过程中,考虑了像素之间的空间距离和像素之间的颜色相似度,从而减少了对边缘的影响。

它的主要优点是能够有效保留图像的细节信息,同时去噪效果较好。

但是,该算法的计算量较大,并且可能导致图像产生模糊。

2. 小波去噪算法(Wavelet denoising)小波去噪算法是使用小波变换对图像进行去噪的方法。

它将图像变换到小波空间后,利用小波系数的特点对图像进行去噪。

小波变换在不同尺度上对图像进行分解,并对每个分解系数进行滤波和重构,去除噪声和保留图像细节。

相比于传统的线性滤波方法,小波去噪算法具有更好的非线性处理能力,可以去除各种类型的噪声。

3. 总变分去噪算法(Total variation denoising)总变分去噪算法是一种压制噪声的非线性方法。

它是基于图像中像素之间的变化量来对图像进行去噪的。

具体来说,总变分去噪算法通过最小化图像中像素之间的总变分(即像素值变化的总和)来实现去噪。

由于总变分具有平滑和稀疏性的特点,因此该算法能够有效去除图像中的噪声,并且可以保持图像的边缘信息。

4. 非局部均值去噪算法(Non-local means denoising)非局部均值去噪算法是一种基于相似度的去噪方法。

它通过寻找图像中相似的块,计算它们之间的均值来进行去噪。

该算法的主要优点是能够有效去除高斯噪声和椒盐噪声,并且对图像平滑处理的影响较小。

但是,该算法的计算量较大,对于大型图像处理可能会导致计算时间过长。

总之,以上介绍的图像去噪方法都有各自的优点和缺点,在不同的应用场景下具有不同的适用性。

视觉图像的信号噪声处理与纹理特征提取

视觉图像的信号噪声处理与纹理特征提取

视觉图像的信号噪声处理与纹理特征提取视觉图像是人类感知世界的一种重要方式,而信号处理也是使视觉图像变得更加清晰的必要工具。

信号处理通常包括了去除图像中的噪声和提取一些有用的特征。

本文将重点探讨视觉图像的信号噪声处理和纹理特征提取。

一、信号噪声处理图像信号噪声是由于图像采集和传输过程中的干扰产生的,可能是由于环境因素、传感器或者传输通道噪声引起的。

为了更好地观察和分析图像,需要对图像进行噪声处理。

1、滤波方法传统的滤波方法通常采用线性滤波器,如均值滤波和高斯滤波。

均值滤波器通过计算特定像素周围的像素均值来消除噪声。

然而,均值滤波器存在一些限制,例如降低边缘的清晰度和失真模糊。

高斯滤波器可以在消除噪声的同时保留图像边缘。

此外,非线性滤波方法也很受欢迎,如中值滤波器和双边滤波器。

中值滤波器通过对每个像素值进行排序,并选择邻域中的中值来消除噪声。

虽然它不能去除整个图像噪声,但它可以有效地消除孤立的像素点噪声。

而双边滤波器则通过同时考虑像素之间的距离和像素值的相似性,可以在保持边缘清晰的同时消除噪声。

2、小波变换小波变换在图像处理中也得到了广泛应用。

小波变换通过将信号分解成不同的频率组件来分析和处理图像。

与傅里叶变换不同,小波变换可以进行多分辨率分析,因此可以对不同尺寸的噪声进行处理。

二、纹理特征提取在计算机视觉中,纹理特征能够提供有关图像的表面细节和重要视觉信息,它可以为目标检测、图像分类、分割等应用提供帮助。

纹理特征提取可以通过滤波器、Gabor滤波器等一系列算法实现。

1、滤波法纹理特征最简单的提取方法是基于纹理滤波器的技术,例如基于灰度共生矩阵的Haralick特征。

滤波器通常是一些小的模板或者掩模,移动到图像的每个像素上,根据掩模内的像素计算纹理特征。

2、Gabor滤波器Gabor滤波器是基于Gabor小波来提取图像纹理特征。

它可以提取出图像中的一些线条、角点等特征。

由于它的理论基础比较坚实,且可以捕获图像的低级特征,因此Gabor滤波器受到了广泛的关注。

医学像处理技术的噪声去除方法

医学像处理技术的噪声去除方法

医学像处理技术的噪声去除方法在医学图像处理技术中,噪声是一个常见且严重的问题。

噪声的存在会对图像的质量和准确性产生负面影响,因此,开发一种有效的噪声去除方法对于医学图像的应用至关重要。

本文将介绍几种常见的医学图像噪声去除方法,并比较它们的优缺点。

一、平滑滤波法平滑滤波法是最简单且常见的噪声去除方法之一。

其基本原理是利用相邻像素的平均值或加权平均值来替代噪声像素的值。

常用的平滑滤波方法包括均值滤波、中值滤波和高斯滤波。

均值滤波法通过计算像素周围邻域像素的平均值来平滑图像,但它对于边缘细节的保护较差;中值滤波法则是用局部邻域的中值来代替噪声像素,对于椒盐噪声有较好的去除效果;高斯滤波则通过与邻域像素的加权平均来平滑图像,它能在一定程度上保留图像的细节。

二、小波变换法小波变换是一种时频分析方法,它通过将信号分解为不同频率的小波子带来表示信号。

在医学图像处理中,小波变换被广泛应用于噪声去除。

小波变换可以将信号的低频成分与高频成分相分离,然后通过对高频成分进行阈值去噪处理来实现图像的去噪。

小波变换法具有较好的去噪效果,可以有效地去除多种噪声,但它的计算复杂度较高。

三、非局部均值滤波法非局部均值滤波法(Non-local Means,简称NLM)是一种基于相似性原理的图像去噪方法。

该方法通过计算图像中每个像素与其他像素之间的相似性来过滤噪声。

具体来说,NLM方法将每个像素与图像中所有其他像素进行比较,并计算它们之间的相似度。

然后,通过对相似度进行加权平均来计算噪声像素的值,从而实现去噪的目的。

NLM方法具有较好的去噪效果,尤其擅长去除高斯白噪声和椒盐噪声。

四、偏微分方程法偏微分方程法(Partial Differential Equation,简称PDE)是一种通过偏微分方程对图像进行去噪的方法。

PDE方法通过定义一个能量函数来描述图像噪声与图像细节之间的平衡关系,并使用偏微分方程对能量函数进行最小化求解。

图像去噪技术中的常见噪声类型及滤波方法

图像去噪技术中的常见噪声类型及滤波方法

图像去噪技术中的常见噪声类型及滤波方法在图像处理领域,图像去噪技术是一项非常重要的任务。

噪声通常由于图像获取或传输过程中的干扰引起,对图像质量产生不良影响。

因此,了解常见噪声类型及相应的滤波方法对于成功去除噪声、提升图像质量至关重要。

以下是图像去噪技术中常见的几种噪声类型及相应的滤波方法:1. 高斯噪声:高斯噪声是图像处理中最常见的噪声类型之一,它具有均值为零、方差相同的正态分布特征。

为去除高斯噪声,可以使用高斯滤波器。

高斯滤波器通过使用与噪声具有相似尺度的卷积核来平滑图像。

它能够有效地减少高频噪声,但也可能损失一些图像细节。

2. 盐噪声和胡椒噪声:盐噪声和胡椒噪声是由于图像传感器或信号传输引起的随机亮度突然变化。

盐噪声导致图像中的亮点,而胡椒噪声则导致暗点。

为去除这种噪声,可以使用中值滤波器。

中值滤波器通过将像素周围的一组像素排序,并将中间值作为输出来减少这种噪声。

中值滤波器能够有效地去除椒盐噪声,但可能导致图像细节的模糊。

3. 椒盐噪声:椒盐噪声包括随机出现的黑白像素点,类似盐和胡椒一样。

为去除椒盐噪声,可以使用自适应中值滤波器。

自适应中值滤波器通过根据像素周围邻域的灰度级变化来选择适当的中值滤波器大小。

它可以根据像素周围的情况自动调整滤波器的尺寸,在保留图像细节的同时减少椒盐噪声的影响。

4. 橡皮泥噪声:橡皮泥噪声是一种低频噪声,通常由于传输或存储图像时的压缩引起。

为去除橡皮泥噪声,可以使用自适应均值滤波器。

自适应均值滤波器通过计算像素周围邻域的均值并用其代替当前像素值来减少噪声。

它能够有效地消除橡皮泥噪声,但可能导致图像细节的平滑化。

除了上述常见的噪声类型和滤波方法外,还有其他一些噪声类型和相应的去噪方法,如波动噪声、条纹噪声等。

对于不同的噪声类型,选择适当的滤波方法是至关重要的,以实现最佳的去噪效果。

然而,需要注意的是,图像去噪技术并不是完美的,因为过度去噪可能会损坏图像的细节和边缘信息。

边缘滤波算法

边缘滤波算法

边缘滤波算法摘要:1.边缘滤波算法概述2.边缘滤波算法的原理3.边缘滤波算法的常见类型4.边缘滤波算法的应用5.边缘滤波算法的优缺点正文:【1.边缘滤波算法概述】边缘滤波算法是一种图像处理技术,主要作用是消除图像中噪声,保留图像边缘信息。

在计算机视觉领域,边缘滤波算法被广泛应用于图像识别、目标检测和图像分割等任务。

【2.边缘滤波算法的原理】边缘滤波算法的原理是在保持图像边缘的同时,对图像中的噪声进行平滑处理。

其核心思想是在满足一定条件下,对图像中像素值进行调整,使得图像的边缘更加清晰。

边缘滤波算法需要在保证不破坏图像边缘信息的同时,有效消除图像噪声。

【3.边缘滤波算法的常见类型】常见的边缘滤波算法有以下几种:1.高斯滤波:利用高斯核函数对图像进行卷积处理,实现对图像噪声的消除。

高斯滤波具有较好的平滑效果,但可能会导致图像边缘的模糊。

2.中值滤波:对图像中每个像素周围的像素值进行排序,取中间值作为该像素的新值。

这种滤波方法能有效消除脉冲噪声,但可能导致图像边缘的不规则。

3.双边滤波:采用一种特殊的卷积核函数,对图像进行处理。

双边滤波能够在保持图像边缘的同时,有效地消除图像噪声。

【4.边缘滤波算法的应用】边缘滤波算法在计算机视觉领域有很多应用,例如:1.图像去噪:在图像采集过程中,可能会受到环境、设备等因素的影响,导致图像中存在噪声。

边缘滤波算法可以去除这些噪声,提高图像质量。

2.图像分割:在图像识别和目标检测任务中,边缘滤波算法可以帮助提取目标物体的边缘信息,从而实现图像分割。

3.目标检测:边缘滤波算法可以提高目标检测算法的准确性,例如在行人检测、车辆检测等任务中。

【5.边缘滤波算法的优缺点】边缘滤波算法具有以下优缺点:优点:1.可以有效消除图像噪声,提高图像质量。

2.可以保留图像中的边缘信息,有助于后续图像处理任务。

3.算法简单,计算量较小。

缺点:1.可能会导致图像边缘的模糊或不规律。

均值滤波处理边缘

均值滤波处理边缘

均值滤波处理边缘
均值滤波是一种典型的线性滤波算法,主要通过将图像中每个像素点的灰度值替换为其邻域像素的平均值来进行噪声的去除。

在进行边缘处理时,该算法通常无法保留边缘信息,因为它会将边缘像素的灰度值与其周围像素进行平均,从而导致边缘变得模糊。

如果要使用均值滤波处理边缘,一种常见的方法是先进行边缘检测,然后只对非边缘像素应用均值滤波。

这样可以在去除噪声的同时,尽可能地保留边缘信息。

然而,这种方法可能无法完全保留所有边缘信息,因为均值滤波本身的设计目标就是对整个图像进行平滑处理,而非只处理特定区域的像素。

此外,这种方法可能会降低处理速度,因为它需要在应用滤波之前进行边缘检测。

如果要更好地保留边缘信息,可能需要使用其他类型的滤波算法,例如中值滤波或双边滤波等非线性滤波算法。

这些算法可以在处理像素时考虑到其空间位置和灰度值,从而更好地保留边缘信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边缘保留的图像噪声滤除方法
噪声图像的滤波问题一直是图像处理的基本任务之一。

常用的滤波技术主要有Lee滤波器,Frost滤波器,GammaGAP滤波器等。

这些滤波算法都是基于对图像局部统计特性自适应的,因此滤除噪声的效果较好。

但由于算法本身的原因,往往造成图像的边缘等细节信息模糊,降低了图像的质量1。

针对这一问题,人们提出许多改进算法,如改进的Lee滤波器,变窗口滤波器等,这些算法虽然在一定程度上解决了边缘模糊的问题,但也带来新问题,比如改进的Lee滤波器,由于要进行边缘检测,所以选择的窗口就不能太大,但小窗口对消除斑噪声不利,又降低了效能。

针对以上情况,本文提出了一种新的滤波方法:把滤波过程分为两个步骤,先检测出图像的边缘,把图像的边缘从原图像中分离,得到无边缘纹理的图像;然后对其进行滤波,再将边缘纹理加入到滤波后的图像,这样就得到了一个即保留边缘纹理,又有好的滤波效果的图像。

1噪声图像边缘检测
最常用的边缘检测算法一般是Sobel算子、Kirsh算子、Laplacian算子以及Marr算子等,这些算法都是基于梯度检测的。

梯度检测器就是确定一个门限,当象素梯度超过门限时就认为它是边缘,在图像越亮的地方,梯度的方差就越大,如果门限不变,就会有许多虚假边缘被检测出来;既使门限变化,由于门限的变化范围不好确定,因此效果也不好,所以检测被噪声污染的图像的边缘不能用一般的方法。

本文使用斜面拟合法和广义模糊算子法较好地解决了这个问题。

1.1Haralick斜面拟合法[2]
边缘是一种灰度的起落,故可用曲面对数字图像进行拟合,然后再在拟合的曲面上进行边缘检测。

由于拟合用的曲面是满足一定平滑性的有理曲面,因而可以使噪声图像得到平滑,有一定滤噪能力。

本文用Haralick曲面拟合方法作图像边缘检测,该方法用斜面拼接成表面,然后求出表面的交,从而确定物体的边缘。

Haralick边缘检测可以通过两个步骤完成:
1.1.1确定Haralick斜面拟合参数
假设对于方形数字图像R×C中的每一点(x,y),数字图像f(i,j)的斜面模型都可以写成:
f(i,j)=αi+βj+γ+η(i,j)(1)
其中η(i,j)是噪声项,是独立的零均值随机变量。

用最小平方误差求α,β,γ,即最小化下述误差:
将ε2分别对α,β,γ求偏微分,并令结果等于零:
通常R,C均为奇数,设拟合窗口R×C的中间点坐标为(0,0),由于对称性,有:
求解上面的方程组,得:
求出α,β,γ,后,就可以很容易地进行边缘检测。

由于1仅于R、C有关,故令
1.1.2斜面交界的确定
考虑两个相邻的斜面,它们分别由斜面参数α1,β1,γ1和α2,β2,γ2表征,设它们大小相等,斜面中心点连线的中点坐标为(0,0)。

于是这两个中心点的坐标可设为-δi/2-δj/2和δi/2δj/2,则两个斜面在一个平面内的条件是:
α1=α2,β1=β2,(α1-α2)δi/2+(β1-β2)δj/2+(γ1-γ2)=0(8)
因为噪声是正态分布的,则α,β,γ亦服从正态分布,所以:
都是服从零均值的正态分布随机变量。

构造F分布作为统计量:
F值越大,这两个拟合邻域之间存在边缘的可能性越大。

1.2广义模糊算子法[3]
传统的边缘检测方法是将边缘点理解为灰度的突变点,从而通过邻域象素之间的代数运算来求取边缘点。

广义模糊算子法认为:图像灰度差异是由于光照不均而产生的,在二维图像中,边缘是高频成分,但图像在边缘处灰度值是连续的,也就是说,边缘包括了图像其它部分的灰度信息。

但由于量化的影响,图像灰度值在边缘处产生突变。

定义论域U上广义模糊集合A表征为:
其中υA(x)∈[-1,1]称为U上的广义隶属函数;称υA(x)∈[-1,0]为U上x完全不属于A的广义隶属函数;υA(x)∈[-1,0]为U上x完全属于A的广义隶属函数;而υA(x)=0为U上A的模糊分界点函数。

若U是由有限个元素构成的有限域,则广义模糊集合A也是有限的。

如果一个广义模糊集中仅有一个元素,则称为广义模糊单敦。

于是一个由灰度级为L的M×N二维灰度图像可看成是由一个广义模糊单敦构成的阵列,其每个元素的广义隶属函数的绝对值表示相对于最大亮度L-1的亮度程度,故可记
为:
其中Pij/xij,(-1≤Pij≤1)表示图像中的元素(i,j)完全拥有或不拥有性质Pij的程度。

定义一个广义模糊算子(GFO),它作用在广义模糊集A上可以产生另一个模糊集A’,即A’=GFO(A)。

给出GFO的表达式如下:
其中β>1,α>0。

在给定了β之后,α可以由上式中第二第三项在分界点[0.5,1]上进行耦合求出。

图1为用广义模糊算子实现图像边缘检测的框图。

选择合适映射,将图1中X映射到P,本文采用正弦映射,经过GFO变换,发现:当象素点X(i,j)→0时,由GFO操作后,P(i,j)→-1,P’(i,j)→1,而X’(i,j)→Xmax’,即低灰阶区域映射到高灰阶区域;
当象素点X(i,j)→1时,由GFO操作后,P(i,j)→1,P’(i,j)→1,而X’(i,j)→Xmax’,即高灰阶区域映射到高灰阶区域;
当象素点X(i,j)为→1中间灰度集时,这通常是真正的边缘所在。

由GFO操作后,P(i,j)→0,P’(i,j)→0,而X’(i,j)→Xmax—D(D是由所选映射函数决定的常数)。

至此,就可用广义模糊算子(GFO)检测出图像的边缘。

1.3用Haralick斜面拟合法和广义模糊算子法综合得到图像边缘
用Haralick斜面拟合法和广义模糊算子法结合检测边缘,可以先用这两种边缘监测器分别独立地对图像边缘进行检测,然后把得到的图像边缘取逻辑与,得到用两种方法相结合的最终图像的边缘。

2无纹理图像的噪声滤除
对于一般图像的噪声,由噪声的统计特性可知,其幅度A是高斯分布,其亮度u是指数分布。

对亮度来讲,其分布函数可写成[4]:
因此实际上最终获得的噪声图像像素代表场景的反射强度,图像亮度I(t)可写成
I(t)=R(t)u(t)(14)
其中t=(x,y)为图像上一点,R(t)为理想图像亮度,u(t)为亮度,反应了目标的反射特性,u(t)与R(t)统计独立。

这里我们采用Lee滤波器进行噪声滤除。

Lee滤波器假设图像噪声是乘性噪声,并采用自适应迭代法。

这种方法有利于保持边缘信息。

其数学表达式为:
R=I+K(CP×I)
K=(UV)/(VU2+I2M),
M=(SD/I)/2 (15)
其中,R为处理后像元值;I为平滑窗口像元的平均值;CP为平滑窗口中心像元的灰度值;U是相乘噪声均值(基于假定,一般取U=1);V是平滑窗口像元的方差;SD是平滑窗口的噪声标准差。

3基于边缘检测的噪声滤除
对未处理的图像(如图2所示)用合适的方法进行边缘检测(使其纹理不丢失)。

不是边缘的象素令其值为零,边缘象素保留其原值,得到边缘图像(如图3所示)。

把边缘象素点从原始未处理的图像中减去,令边缘被减去处的值等于临近非边缘象素值的平均,这样就得到了非边缘的均匀的图像。

用合适的滤波器(本文为Lee滤波器)对改图像滤波,滤除噪声,然后恢复边缘,即用边缘位置的象素值代替被滤波过的对应位置的象素值,得到最终图像(如图4所示)。

图5为仅用Lee滤波的结果。

从图中可以很明显的看到该算法即保留了边缘又滤除了噪声,效果要明显好于Lee滤波。

相关文档
最新文档