单片机产生各种波形及其程序图

合集下载

单片机产生波形控制灯亮度(共6张PPT)

单片机产生波形控制灯亮度(共6张PPT)
非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 二,PWM控制LED暗亮原理 0口当cc从0到10H的时间为高电平,而ee从10H到0的时间为低电平,由于定时器的中断,cc不断增加,ee不断减少,则高电平时间越来越 长,低电平时间越来越短。 单片机产生波形控制灯亮度 这次设计利用51单片机产生占空比可变的矩形波,当产生此矩形波的I/O口通过滤波电路再与LED灯相接后,由于输出矩形波占空比不断变 化,那么一个周期内有一部分时间LED导通,一部分时间截止,从整体来看有一个平均电压,PWM信号频率很高的,我们无法通过肉眼来 观察到每一个周期LED灯亮灭的变化过程,所以只好通过平均电压这样一种方式来决定这个LED的亮的程度了。 单片机产生波形控制灯亮度 单片机产生波形控制灯亮度
这次设计利用51单片机产生占空比可变的矩形波,当产生此矩形波的 I/O口通过滤波电路再与LED灯相接后,由于输出矩形波占空比不断变化, 那么一个周期内有一部分时间LED导通,一部分时间截止,从整体来看 有一个平均电压,PWM信号频率很高的,我们无法通过肉眼来观察到每 一个周期LED灯亮灭的变化过程,所以只好通过平均电压这样一种方式 来决定这个LED的亮的程度了。 随着波形占空比不断变化,LED灯也会 有暗到亮再从亮到暗不断变化。
对单于片控 机制产L生E波D灯形有控暗制到灯亮亮先或度由对亮到定暗0,赋采用初的是值脉,宽P使WM之法。中断(定时)5ms,再让其中断10次(次数 单片机产生波形控制灯亮可度 设定,只是输出波占空比变化快慢不同而已),再定义两个变 采脉用冲单 宽片度机调定制时(P器WM产)生,P是W量英M文波c“c,P=u然ls0e后,W控id制ethLeEM=Do1灯du0的laHt亮io(n度”的。不缩写同,的简称值脉宽会调有制,不是利同用的微处周理器期的,数字即输P出来W对M模波拟电的路进周行期控制,的一种 非为可常了以有 反 通效映过的出调技定整术时PW,器M广中的泛断周应对期周 时用脉、在冲P期 再从变W测化Mc不的c量的-能占、影-,空通响太比信,e而到在大e达功P+1,到率.+控控。否制制在充则与电变主会电换流的程闪的许序烁目多的领中)。域中令。。Pcc2+.0+口,当eec-c-,从当0到cc1=01H0的H,时e间e为=0高 0长口,当低c电c从平0时到间10越H的来时越间短电为。高平电平,,而而eee从e1从0H1到00的H时到间为0的低电时平,间由为于定低时器电的平中断,,c由c不于断增定加时,ee器不断的减中少,断则高,电c平c时不间越来越 单片机产生波形控制灯亮断度 增加,ee不断减少,则高电平时间越来越长,低电平时间越来 二cc,++P,WeMe-控-,制当LcEcD=暗10亮H,原越e理e=短0时。再c(c--,总ee周++。期不变) 为脉了冲反 宽映度出调定制时(P器WM中•)断,对是脉英冲文变“P化uls为的e影W了响idt,h反在Mo映Pd1u.出latio定n”的时缩写器,中简称断脉宽对调脉制,冲是变利用化微处的理影器的响数字,输在出来P对1模.0拟口电路接进行一控制的一种 非这常次有 设效计的利技用术51,单广片泛机应产按用生在占键从空测比,量可按、变通的住信矩到时形功波P率,1控当.制0产与低生变此电换矩的形平许波,多的领I/中O域口中断通。过次滤波数电2路5再次与L,ED1灯2相5接m后s,脉由于冲输变出矩化形波一占次空比,不断变 化,那么一个周期内有一可部分看时间到LE波D导形通,占一空部分比时变间截化止,较从慢整体,来看按有键一个松平均开电时压,PP1W.M0信高号电频率平很高,的中,我断们无10法次通过,肉眼来 观察到每一个周期LED灯则亮灭波的变形化占过程空,所比以变只好化通过较平快均电。压这样一种方式来决定这个LED的亮的程度了。

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解

目录1 引言 (1)1.1 题目要求及分析 (1)1.1.1 示意图 (1)1.2 设计要求 (1)2 波形发生器系统设计方案 (2)2.1 方案的设计思路 (2)2.2 设计框图及系统介绍 (2)2.3 选择合适的设计方案 (2)3 主要硬件电路及器件介绍 (4)3.1 80C51单片机 (4)3.2 DAC0832 (5)3.3 数码显示管 (6)4 系统的硬件设计 (8)4.1 硬件原理框图 (8)4.2 89C51系统设计 (8)4.3 时钟电路 (9)4.4 复位电路 (9)4.5 键盘接口电路 (10)4.7 数模转换器 (11)5 系统软件设计 (12)5.1 流程图: (12)5.2 产生波形图 (12)5.2.1 正弦波 (12)5.2.2 三角波 (13)5.2.3 方波 (14)6 结论 (16)主要参考文献 (17)致谢....................................................... 错误!未定义书签。

1引言1.1题目要求及分析题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。

1.1.1示意图图1:系统流程示意图1.2设计要求(1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。

(2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。

(3) 系统具有存储波形功能。

(4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。

(5) 系统输出波形幅度范围0~5V。

(6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

2波形发生器系统设计方案设计并制作一个波形信号发生器,能够产生正弦波、方波、三角波的波形,其中不使用DDS和一些专用的波形产生芯片。

并让系统的频率范围在1Hz~1MHZ可调节,在频率范围在1HZ~10KHz时,步进小于或等于10Hz,在频率范围在10KHz~1MHz时,步进小于或等于100Hz,并且电压在0~5V范围,能够实时的显示波形的类型、频率和幅值。

利用单片机AT89C52采用程序设计方法产生锯齿波

利用单片机AT89C52采用程序设计方法产生锯齿波

1 引言本系统利用单片机AT89C52采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产生10Hz—10kHz 的波形。

通过键盘来控制四种波形的类型选择、拨码开关控制频率的变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。

2设计方案2.1系统硬件设计概述经过考虑,我们确定方案如下:利用AT89C52单片机采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控制四种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。

2.2、设计要求1)、利用单片机采用软件设计方法产生四种波形2)、四种波形可通过键盘选择3)、波形频率可调4)、需显示波形的种类及其频率2.1.2方案设计与论证1.2.1 信号发生电路方案论证方案一:通过单片机控制D/A,输出四种波形。

此方案输出的波形不够稳定,抗干扰能力弱,不易调节。

但此方案电路简单、成本低。

方案二:使用传统的锁相频率合成方法。

通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

此方案,电路复杂,干扰因素多,不易实现。

方案三:利用MAX038芯片组成的电路输出波形。

MAX038是精密高频波形产生电路,能够产生准确的锯齿波、三角波、方波和正弦波四种周期性波形。

但此方案成本高,程序复杂度高。

以上三种方案综合考虑,选择方案一。

1.2.2 单片机的选择论证方案一:AT89C52单片机是一种高性能8位单片微型计算机。

它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机、而且其价格便宜。

利用单片机AT89C52采用程序设计方法产生锯齿波

利用单片机AT89C52采用程序设计方法产生锯齿波

1 引言本系统利用单片机AT89C52采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产生10Hz—10kHz的波形。

通过键盘来控制四种波形的类型选择、拨码开关控制频率的变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。

2设计方案2.1系统硬件设计概述经过考虑,我们确定方案如下:利用AT89C52单片机采用程序设计方法产生锯齿波、三角波、正弦波、方波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控制四种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。

2.2、设计要求1)、利用单片机采用软件设计方法产生四种波形2)、四种波形可通过键盘选择3)、波形频率可调4)、需显示波形的种类及其频率2.1.2方案设计与论证1.2.1 信号发生电路方案论证方案一:通过单片机控制D/A,输出四种波形。

此方案输出的波形不够稳定,抗干扰能力弱,不易调节。

但此方案电路简单、成本低。

方案二:使用传统的锁相频率合成方法。

通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

此方案,电路复杂,干扰因素多,不易实现。

方案三:利用MAX038芯片组成的电路输出波形。

MAX038是精密高频波形产生电路,能够产生准确的锯齿波、三角波、方波和正弦波四种周期性波形。

但此方案成本高,程序复杂度高。

以上三种方案综合考虑,选择方案一。

1.2.2 单片机的选择论证方案一:AT89C52单片机是一种高性能8位单片微型计算机。

它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机、而且其价格便宜。

51-单片机和DAC0832输出方波、矩形波和正弦波由液晶1602显示的C语言程序

51-单片机和DAC0832输出方波、矩形波和正弦波由液晶1602显示的C语言程序

显示频率,幅度可调,可产生四种波形,正弦波,方波,锯齿波,三角波,希望你能喜欢,给你发了一张效果图,喜欢的话别忘了采纳我的回答啊#include<reg52.h>#define uchar unsigned char#define uint unsigned int#define DAdata P0 //DA数据端口sbit DA_S1= P2^0; // 控制DAC0832的8位输入寄存器,仅当都为0时,可以输出数据(处于直通状态),否则,输出将被锁存sbit DA_S2= P2^1; // 控制DAC0832的8位DAC寄存器,仅当都为0时,可以输出数据(处于直通状态),否则,输出将被锁存sbit key= P3^2;uchar wavecount; //'抽点'计数uchar THtemp,TLtemp;//传递频率的中间变量uchar judge=1; //在方波输出函数中用于简单判别作用uchar waveform; //当其为0、1、2时,分别代表三种波uchar code freq_unit[3]={10,50,200}; //三种波的频率单位uchar idata wavefreq[3]={1,1,1}; //给每种波定义一个数组单元,用于存放单位频率的个数uchar code lcd_hang1[]={"Sine Wave " "Triangle Wave " "Square Wave " "Select Wave: " "press No.1 key! "};uchar idata lcd_hang2[16]={"f= Hz "};uchar code waveTH[]={0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xec,0xf6,0xf9,0xfb,0xfc,0xfc,0xfd,0xfd,0xfd,0xfe};uchar code waveTL[]={0x06,0x8a,0x10,0x4e,0x78,0x93,0xa8,0xb3,0xbe,0xc6, //正弦波频率调整中间值0xac,0xde,0x48,0x7a,0x99,0xaf,0xbb,0xc8,0xd0,0xde, //三角波频率调整中间值0x88,0x50,0x90,0x32,0x34,0xbe,0x4a,0xa3,0xe5,0x2c};/**************************************************************************************** *********/uchar code triangle_tab[]={ //每隔数字8,采取一次0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38,0x40,0x48,0x50,0x58,0x 60,0x68,0x70,0x78,0x80,0x88,0x90,0x98,0xa0,0xa8,0xb0,0xb8,0xc0,0xc8,0xd0,0xd8,0x e0,0xe8,0xf0,0xf8,0xff,0xf8,0xf0,0xe8,0xe0,0xd8,0xd0,0xc8,0xc0,0xb8,0xb0,0xa8,0xa0,0x9 8,0x90,0x88,0x80,0x78,0x70,0x68,0x60,0x58,0x50,0x48,0x40,0x38,0x30,0x28,0x20,0x 18,0x10,0x08,0x00};uchar code sine_tab[256]={//输出电压从0到最大值(正弦波1/4部分)0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa 5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd ,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd, 0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,//输出电压从最大值到0(正弦波1/4部分)0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7 ,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,0x d6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9 c,0x99 ,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,//输出电压从0到最小值(正弦波1/4部分)0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5 a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x 22,0x20,0x1e,0x1c,0x1a,0x18,0x16 ,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x 03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,//输出电压从最小值到0(正弦波1/4部分)0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02 ,0x02,0x03,0x04,0x05,0x 06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15 ,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x 29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x 63,0x66 ,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80};void delay(uchar z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void triangle_out() //三角波输出{DAdata=triangle_tab[wavecount++];if(wavecount>64) wavecount=0;DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器void sine_out() //正弦波输出{DAdata=sine_tab[wavecount++];DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器}void square_out() //方波输出{judge=~judge;if(judge==1) DAdata=0xff;else DAdata=0x00;DA_S1=0; //打开8位输入寄存器DA_S1=1; //关闭8位输入寄存器}/************1602液晶的相关函数*************/#define lcd_ports P1sbit rs=P2^2;sbit rw=P2^3;sbit lcden=P2^4;void write_com(uchar com){rs=0; //置零,表示写指令lcden=0;lcd_ports=com;delay(5);lcden=1;delay(5);lcden=0;}void write_date(uchar date){rs=1; //置1,表示写数据(在指令所指的地方写数据)lcden=0;lcd_ports=date;delay(5);lcden=1;delay(5);lcden=0;void disp_lcd(uchar addr,uchar *temp1){uchar num;write_com(addr);delay(1); //延时一会儿???for(num=0;num<16;num++){write_date(temp1[num]);//或者这样写write_date(*(temp1+num));delay(1);}}void init_lcd(){//uchar num;lcden=0; //可有可无???rw=0; //初始化一定要设置为零,表示写数据write_com(0x38); //使液晶显示点阵,为下面做准备write_com(0x0c); //初始设置write_com(0x06); //初始设置write_com(0x01); //清零write_com(0x80); //使指针指向第一行第一格disp_lcd(0x80,&lcd_hang1[3*16]); //在第一行显示disp_lcd(0xc0,&lcd_hang1[4*16]); //在第二行显示}/********************1602液晶函数声明结束*********************/ void main(){uchar i=0;DA_S2=0; //使DAC寄存器处于直通状态DAdata=0;DA_S1=1; //关闭8位输入寄存器init_lcd();waveform=0;TMOD=0x01; //设置定时器0为16位工作方式IT0=1; //设置外部中断0为下降沿触发ET0=1; //开定时器中断EX0=1;EA=1;while(1){//DAout(0xff); //可输出TTL波形//DAout(0x80);//T_temp=32;}}void timer0() interrupt 1{TH0=THtemp;TL0=TLtemp;if(waveform==0) sine_out();else if(waveform==1) triangle_out();else if(waveform==2) square_out();}void key_int0() interrupt 0{uchar keytemp;uint total_freq; //总频率EA=0; TR0=0; //关总中断与定时器delay(5); //延时够吗???if(key==0) //确实有按键按下而引发中断{keytemp=P3&0xf0; //获取P3口高四位的值switch(keytemp){case 0xe0: //选择波形waveform++;if(waveform>2) waveform=0;break;case 0xd0: //频率按规定单位依次增加wavefreq[waveform]++;if(wavefreq[waveform]>10) wavefreq[waveform]=1; // /*这边要用“>10”,因为它比“=11”可靠break;case 0xb0: //频率按规定单位依次衰减wavefreq[waveform]--;if(wavefreq[waveform]<1) wavefreq[waveform]=10; //这边要用“<1”,因为它比“=0”可靠性更高break;case 0x70: //TTL输出DA_S2=1; //使DAC寄存器关闭break;}THtemp=waveTH[waveform*10+(wavefreq[waveform]-1)]; //方括号中选取第几个数后,并把该值赋给T_tempTLtemp=waveTL[waveform*10+(wavefreq[waveform]-1)];total_freq= wavefreq[waveform] * freq_unit[waveform]; //求输出频率(个数*单位)lcd_hang2[5]=total_freq%10+0x30; //在液晶中显示个位,(0x30 在液晶显示中表示数字0)total_freq/=10; lcd_hang2[4]=total_freq%10+0x30; //在液晶中显示时十位total_freq/=10; lcd_hang2[3]=total_freq%10+0x30; //在液晶中显示时百位total_freq/=10; lcd_hang2[2]=total_freq%10+0x30; //在液晶中显示时千位disp_lcd(0x80,&lcd_hang1[waveform*16]); //在第一行显示disp_lcd(0xc0,lcd_hang2); //在第二行显示}wavecount=0; //'抽点'计数清零while(!key);EA=1; TR0=1; //开启总中断与定时器}。

基于单片机编程的波形发生以及仿真图

基于单片机编程的波形发生以及仿真图
if(plcount>1000) plcount=0;
break;
case 1: //三角波频率加1
plcount++;
if(plcount>1000) plcount=0;
break;
case 2: //锯齿波频率加1
plcount++;
if(plcount>1000) plcount=0;
break;
0x77,0x7c,0x39,0x5e,0x79,0x71};//a-f
//正弦波数据表
ucharcodesin_tab[100]={0x80,0x88,0x90,0x97,0x9f,0xa7,
0xaf,0xb6,0xbd,0xc4,0xcb,0xd1,0xd7,0xdd,
0xe2,0xe7,0xec,0xf0,0xf3,0xf6,0xf9,0xfb,0xfd,0xfe,0xff,0xff,0xff,0xff,0xfd,0xfc,0xf9,0xf7,0xf3
uint plcount=10; //频率计数
uint qudian; //波形取点
//毫秒延时程序
void delayms(int ms)
{
uchar i;
while(ms--)
{
for(i=250;i>0;i--);
}
}
//***********************************键盘扫描*******************
{
P1=jc_tab[qudian];//把锯齿波数据赋给P1口然后数据由P1口传到da中
qudian++;
if(qudian>=32)

单片机实现简易波形发生器

单片机实现简易波形发生器

电子信息工程专业单片机课程设计报告题目简易波形发生器姓名学号班级指导教师2013年7 月4 日要求:1.指导教师按照课程设计大纲要求完成学生课程设计指导工作。

2.课程设计任务书由指导教师照大纲要求填写,内容要全面。

3.课程设计报告由参加本学生填写。

课程设计结束时交指导教师。

4.指导教师要根据每一位学生课程设计任务完成情况,认真审核设计报告,并在课程设计结束时,给出客观、准确的评语和成绩。

5.课程设计任务书和报告要语言流畅,图表正确规范。

6.本表要用钢笔、圆柱笔填写或打印,字迹工整。

课程设计报告1 设计原理与技术方法:1.1 电路工作原理分析本次单片机实习采用的是单片机STC89C52,对于简易波形发生器设计的硬件电路主要为三个部分,为显示部分、键盘部分、D/A转换电路,以下对三个部分分别介绍。

1.1.1 显示电路原理如图1.1所示八位八段数码管为共阴极数码管,通过两个74HC573锁存器与单片机连接,一片573的LE为位选信号另一片的LE为段选信号,分别由单片机的P2.7和P2.6控制,高电平有效。

当P2.7=1、P2.6=0时,位选有效,P0.0-P0.7分别控制01-08八位数码管选通,低有效,即通过P0口送出数据,哪一位为0则哪一位数码管有显示;当P2.6=1、P2.7=0时,段选有效,此时P0.0-P0.7分别控制每一位八段数码管的每一段a b c d e f g dp 的亮灭,高有效,从而使数码管显示数字0-9。

显示段码如表1.1所示。

图 1.1 显示电路表1.1 共阴极数码管显示段码1.1.2 键盘电路原理如图1.2所示为4×4的矩阵式键盘与单片机的P3口相连,行连接P3.0-P3.3,列连接P3.4-P3.5。

用扫描法对按键进行扫描,先将所有行置0,所有列置1,当有按键按下时,通过对P3口的状态查询则按下的按键所在列将为0,其余仍未1,通过延时去抖动判断是否真有按键按下,若有,则逐行扫描,判断按键所在行,最后返回按键键码,并去执行相应按键的程序。

51单片机制作的波形发生器

51单片机制作的波形发生器

51单片机制作的波形发生器相信很多朋友都可能接触到一个波型发生器的制作,可能刚刚入门,做的东西也不会说是很复杂。

可能就一个矩形波,或者是三角波。

但是网上的很多资料是忽悠人的,就此,我也提供一个比较完整的波型发生器 C51 原代:该系统的软件比较典型:包括键盘的应用,显示的应用和 DA 转换器的应用。

本设计中,输出的波形有三种:正弦波,方波,三角波。

方波的输出最为简单,只要按照设定的周期值将输出的电压改变即可。

三角波的输出也比较简单,单片机的输出只要完成数字量递增和递减交替进行即可。

、正弦波的输出最麻烦,如果在软件中计算出输出的各点电压值,将会浪费很多的 CPU 时间,以至于无法满足频率的要求。

通常最简单的方法是通过手动的方法计算出输出各点的电压值,然后在编写程序时以数组的方式给出。

当需要时,只要按照顺序进行输出即可。

这种方法比运算法速度快且曲线的形状修改灵活。

在本设计中将 360 度分为 256 个点,则每两个点之间的间隔为1.4 度,然后计算出每个点电压对应的数字量即可。

只要反复输出这组数据到 DAC0832, 就可以在系统输出端得到想要的正弦波。

具体程序如下:#include ;#define uchar unsigned char#define uint unsigned int#define DAdata P0uchar code Sinetab[256]={0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xab,0xad,0xaf,0xb1,0xb2,0xb4,0xb6,0xb7,0xb9,0xba,0xbc,0xbd,0xbf,0xc0,0xc1,0xc3,0xc4,0xc5,0xc6,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xce,0xcf,0xd0,0xd1,0xd1,0xd2,0xd2,0xd3,0xd3,0xd3,0xd2,0xd2,0xd1,0xd1,0xd0,0xcf,0xce,0xce,0xcd,0xcc,0xcb,0xca,0xc9,0xc8,0xc6,0xc5,0xc4,0xc3,0xc1,0xc0,0xbf,0xbd,0xbc,0xba,0xb9,0xb7,0xb6,0xb4,0xb2,0xb1,0xaf,0xad,0xab,0xaa,0xa8,0xa6,0xa4,0xa2,0xa0,0x9e,0x9c,0x9a,0x98,0x96,0x94,0x92,0x90,0x8e,0x8c,0x8a,0x88,0x86,0x84,0x82, 0x80,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71, 0x6f,0x6d,0x6b,0x69,0x67,0x65,0x63,0x61, 0x5f,0x5d,0x5b,0x59,0x57,0x55,0x54,0x52, 0x50,0x4e,0x4d,0x4b,0x49,0x48,0x46,0x45, 0x43,0x42,0x40,0x3f,0x3e,0x3c,0x3b,0x3a, 0x39,0x37,0x36,0x35,0x34,0x33,0x32,0x31, 0x31,0x30,0x2f,0x2e,0x2e,0x2d,0x2d,0x2c, 0x2c,0x2b,0x2b,0x2b,0x2b,0x2a,0x2a,0x2a, 0x2a,0x2a,0x2a,0x2a,0x2b,0x2b,0x2b,0x2b, 0x2c,0x2c,0x2d,0x2d,0x2e,0x2e,0x2f,0x30, 0x31,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x39,0x3a,0x3b,0x3c,0x3e,0x3f,0x40,0x42, 0x43,0x45,0x46,0x48,0x49,0x4b,0x4d,0x4e, 0x50,0x52,0x54,0x55,0x57,0x59,0x5b,0x5d, 0x5f,0x61,0x63,0x65,0x67,0x69,0x6b,0x6d, 0x6f,0x71,0x73,0x75,0x77,0x79,0x7b,0x7d, };uchar code Triangletab[58]={0x1a,0x21,0x28,0x2f,0x36,0x3d,0x44,0x4b, 0x52,0x59,0x60,0x67,0x6e,0x75,0x7c,0x83,0x8a,0x91,0x98,0x9f,0xa6,0xad,0xb4,0xbb,0xc2,0xc9,0xd0,0xd7,0xde,0xe5,0xde,0xd7,0xd0,0xc9,0xc2,0xbb,0xb4,0xad,0xa6,0x9f,0x98,0x91,0x8a,0x83,0x7c,0x75,0x6e,0x67,0x60,0x59,0x52,0x4b,0x44,0x3d,0x36,0x2f,0x28,0x21,};uchar code Squaretab[2]={0x56,0xaa};uchar code disp1[]={&quot;Sine Wave &quot;&quot;Triangle Wale &quot;&quot;Square Wave &quot;};uchar idata disp2[16]={&quot;Frequency:Hz&quot;};uchar code Coef[3]={10,100,200};uchar idata WaveFre[3]={1,1,1};uchar code WaveTH[]={0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, };uchar code WaveTL[]={0xf2,0x78,0xfb,0x3c,0x63,0x7d,0x8f,0x9d,0xa8,0xb1, 0x17,0x0b,0xb2,0x05,0x37,0x58,0x70,0x82,0x90,0x9b, 0x4d,0xa7,0xc4,0xd3,0xdc,0xe2,0xe6,0xea,0xec,0xee };uchar Wavecount,THtemp,TLtemp;uchar Waveform;sbit rs=P2^5;sbit rw=P2^6;sbit e=P2^7;sbit DA=P2^0;sbit KEY=P3^2;void delay(uchar i){uchar j;for(;i>;0;i--)for(j=20;j>;0;j--);}void busy(){uchar temp;temp=0x00;rs=0;rw=1;while((temp&0x80)==0x80) {P0=0xff;e=1;temp=P0;e=0;}}void WR_Com(uchar temp) {busy();rs=0;rw=0;P0=temp;e=1;e=0;}void WR_Data(uchar num){busy();rs=1;rw=0;P0=num;e=1;e=0;}void disp_lcd(uchar addr,uchar *temp1) {uchar i;WR_Com(addr);delay(100);for(i=0;i;0;i--){P0=0x30;rs=0;rw=0;e=1;e=0;delay(100);P0=0x38;rs=0;rw=0;e=1;e=0;delay(100);}void lcd_Reset(){WR_Com(0x01);delay(100);WR_Com(0x06);delay(100);WR_Com(0x0c);delay(100);}void SineOUT(uchar Wavecount) {DAdata=Sinetab[Wavecount++]; Wavecount=0;DA=0;}void TriangleOUT(uchar Wavecount) {DAdata=Triangletab[Wavecount++]; if(Wavecount>;57)Wavecount=0;DA=0;DA=1;}void SquareOUT(uchar Wavecount) {DAdata=Squaretab[Wavecount++];if(Wavecount>;1)Wavecount=0;DA=0;DA=1;}void timer() interrupt 1{TH0=THtemp;TL0=THtemp;if(Waveform==0)SineOUT(Wavecount); else if(Waveform==1)TriangleOUT(Wavecount); else if(Waveform==2)SquareOUT(Wavecount); }void key_int() interrupt 0 {uchar keytemp,keytemp1;uint WaveCoef;EA=0;TR0=0;keytemp1=0;delay(10);while(!KEY);keytemp=~P2&0x1e; keytemp>;>;=1;while(keytemp!=8){keytemp=~P2&0x1e;keytemp>;>;=1;if(keytemp!=keytemp1){keytemp1=keytemp;switch(keytemp){case 1:if(++Waveform==3)Waveform=0;break;case 2:if(++WaveFre[Waveform]==11)WaveFre[Waveform]=1;break;case 4:if(--WaveFre[Waveform]==0)WaveFre[Waveform]=10;break;}THtemp=WaveTH[Waveform*16+(WaveFre[Waveform]-1)]; TLtemp=WaveTL[Waveform*16+(WaveFre[Waveform]-1)];WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);}}TH0=THtemp;TL0=THtemp;Wavecount=0;TR0=1;}void main(){uint WaveCoef;uchar i;lcd_ini();lcd_Reset();WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);i=0;DAdata=0x00;DA=0;TMOD=0x01;IT0=1;ET0=1;EX0=1;EA=1;while(1);}。

单片机波形发生器

单片机波形发生器

前言波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。

函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。

在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。

这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。

在 70 年代后,微处理器的出现,可以利用处理器、A/D/和 D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。

这时期的波形发生器多以软件为主,实质是采用微处理器对 DAC的程序控制,就可以得到各种简单波形。

90 年代末,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为 HP770S的信号模拟装置系统,它由 HP8770A任意波形数字化和HP1776A波形发生软件组成。

HP8770A实际上也只能产生8 中波形,而且价格昂贵。

不久以后,Analogic公司推出了型号为 Data-2020的多波形合成器,Lecroy 公司生产的型号为9100 的任意波形发生器等。

到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent的产品 33220A能够产生17种波形,最高频率可达到 20M,2005 年的产品N6030A 能够产生高达 500MHz的频率,采样的频率可达 1.25GHz。

单片机课程设计———波形发生器

单片机课程设计———波形发生器

课程设计任务书题目波形发生器专业、班级学号姓名主要内容:设计一个产生各种波形的波形发生器基本要求:利用单片机P1.0引脚输出频率范围1Hz – 1000Hz的正弦波、方波、三角波、梯形波、锯齿波,并用示波器观察。

目录一、设计目的及意义 ........................................................................... - 3 -1.1设计目的 (3)1.2设计意义 (3)二、方案论证 ....................................................................................... - 3 -2.1设计要求 (3)2.2方案论证 (4)三、硬件电路设计 ............................................................................... - 4 -3.1设计思路、元件选型 (4)3.2原理图 (5)3.3主要芯片介绍 (5)3.4硬件连线图 (8)四、软件设计 ....................................................................................... - 9 -4.1锯齿波的产生过程 (10)4.2梯形波的产生过程 (11)4.3三角波的产生过程 (13)4.4方波的产生过程 (14)4.5正弦波的产生过程 (15)五、调试与仿真 ................................................................................. - 16 -六、总结.............................................................................................. - 19 -七、参考文献: ................................................................................. - 19 -一、设计目的及意义1.1设计目的(1)利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。

51单片机实现波形发生器

51单片机实现波形发生器

51单片机实现波形发生器摘要这个系统是基于AT89C51单片机的波形信号发生器。

使用AT89C51单片机作为控制核心,该系统由数字/模拟转换电路(DAC0832)、运放电路(OP07)、按键电路和6位数码管等组成。

通过按键可控制方波、三角波、正弦波的产生,并且用数码管显示其对应的频率和波形的类型。

这个设计方法简单、性能良好,这个系统可在多种需要低频信号的场所使用,它具有良好的实用性。

关键词:AT89C51 数模转换电路数码管信号发生器1 总体方案设计本次设计的任务是设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。

示意图如下:基本要求如下:(1)具有产生正弦波、方波周期性波形的功能;(2)输出波形的频率范围为100Hz~20kHz(非正弦波频率按10次谐波计算);重复频率可调,频率步进间隔≤100Hz;(3)输出波形幅度范围0~5V(峰-峰值),可按步进0.1V(峰-峰值)调整;(4)具有显示输出波形的类型、重复频率(周期)和幅度的功能。

1.1 方案论证方案一:采用单片函数发生器可产生正弦波、方波等,操作简单易行,用 D/A 转换器的输出来改变调节电压,可以实现数控调整频率,但产生信号的频率稳定度不高。

方案二:利用芯片组成的电路输出波形,MAX038是MAXIM公司生产的一个只需要很少外部元件的精密高频波形产生器,它能产生准确的高频正弦波、三角波、方波。

输出频率和占空比可以通过调整电流、电压或电阻来分别地控制。

所需的输出波形可由在A0和A1输入端设置适当的代码来选择,且具有输出频率范围宽、波形稳定、失真小、使用方便等特点。

方案三:采用Atmel公司的AT89C51单片机编程方法实现,该方案可以通过编程的方法控制信号波形的频率和幅度,而在硬件电路不便的情况下,通过程序实现频率的变化和输出波形的选择,并同时在显示器显示相应的结果。

方案一输出信号频率不够稳定;方案二成本高,程序复杂度高;方案三软硬件结合,硬件成本低,软件起点低,用汇编语言即可完成,优化型相对比较好,容易实现,且满足设计要求。

单片机在多种波形发生器中的应用图--电子技术文章-技术

单片机在多种波形发生器中的应用图--电子技术文章-技术

单片机在多种波形发生器中的应用(图)http: 2005-10-6北极星电技术网钱宏摘要:介绍了基于80C51单片机产生几种基本波形的方法。

采用微处理器兼容的14位数模转换器MAX7534,高速,稳定,具有良好的线性。

用户通过按键选择输出需要的波形,波形精度能够满足一般的使用条件。

关键词:波形发生器;单片机;MAX7534;方波;锯齿波;正弦波本文利用80C51单片机外接数模转换器和I/V转换电路,由用户通过按键选择输出实验中经常使用到的几种基本波形:方波、锯齿波、正弦波。

方波由80C51单片机内部自带的计数器/定时器产生,并由用户通过小键盘选择波形周期。

与微处理器兼容的14位数模转换器MAX7534将数字量转换为模拟量电流信号,通过I/V转换电路得到双极性的锯齿波和正弦波信号,波形保证了他的精度和平滑、稳定。

1 硬件电路设计80C51单片机时钟电路采用内部方式,外接陶瓷谐振器(频率为12 MHz),微调电容值为30 pF。

系统复位采用按键式外部复位方式,复位信号至少保持8 μs以上。

通过按键由用户选择要输出的波形,按键选择占用P1.1~P1.7口,采用独立式键盘结构。

利用80C51单片机内部自带的计数器/定时器在P1.0口上产生连续方波,由用户通过按键选择输出方波周期。

系统结构框图如图1所示。

1.1 D/A转换电路本文采用美国MAXIM公司的微处理器兼容高性能单片14位数模转换器MAX7534。

MAX7534内部功能框如图2所示。

MAX7534的高质量、激光校准、薄膜电阻和带温度补偿的NMOS开关等确保了器件在整个工作温度范围内具有良好的线性和增益稳定性。

MAX7534接收8位总线的2个字节,内部包括1个LS输入寄存器和1个MS输入寄存器,分时接收低8位和高6位的14位待转换数字量、1个14位DAC寄存器、1个14位DAC数模转换器和逻辑控制电路。

数模转换器(DAC)电路包括由激光校准的11个薄膜R2R电阻阵、1个3位分段电阻阵和NMOS电流开关。

单片机产生正弦波

单片机产生正弦波

波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。

本次课程设计使用的AT89S51 单片机构成的发生器可产生锯齿波、三角波、正弦波等多种波形,波形的周期可以用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑等优点。

在本设计的基础上,加上按钮控制和LED显示器,则可通过按钮设定所需要的波形频率,并在LED 上显示频率、幅值电压,波形可用示波器显示。

二、系统设计波形发生器原理方框图如下所示。

波形的产生是通过AT89S51 执行某一波形发生程序,向D/A转换器的输入端按一定的规律发生数据,从而在D/A转换电路的输出端得到相应的电压波形。

在AT89S51的P2口接5个按扭,通过软件编程来选择各种波形、幅值电压和频率,另有3个P2口管脚接TEC6122芯片,以驱动数码管显示电压幅值和频率,每种波形对应一个按钮。

此方案的有点是电路原理比较简单,实现起来比较容易。

缺点是,采样频率由单片机内部产生故使整个系统的频率降低。

1、波形发生器技术指标1)波形:方波、正弦波、锯齿波;2)幅值电压:1V、2V、3V、4V、5V;3)频率:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;2、操作设计1)上电后,系统初始化,数码显示6个…-‟,等待输入设置命令。

2)按钮分别控制“幅值”、“频率”、“方波”、“正弦波”、“锯齿波”。

3)“幅值“键初始值是1V,随后再次按下依次增长1V,到达5V后在按就回到1V。

4)“频率“键初始值是10HZ,随后在按下依次为20HZ、50HZ、100HZ、200HZ、500HZ、1000HZ循环。

三、硬件设计本系统由单片机、显示接口电路,波形转换(D/A)电路和电源等四部分构成。

电路图2附在后1、单片机电路功能:形成扫描码,键值识别、键处理、参数设置;形成显示段码;产生定时中断;形成波形的数字编码,并输出到D/A接口电路和显示驱动电路。

pic单片机PWM波形产生程序(汇编)

pic单片机PWM波形产生程序(汇编)
MOVWF CCPR1L
RETURN
;**********确定占空比为75%的子程序*********
PER75 MOVLW 0XBF
MOVWF CCPR1L
RETURN
;**********确定占空比为100%的子程序*********
PER100 MOVLW 0XFF
MOVWF CCPR1L
BSF RCON,7 ;使能中断优先级
MOVLW 0XFF
MOVWF PR2 ;设置PWM的工作周期
MOVLW 0X7F
MOVWF CCPR1L ;默认占空比为50%
MOVLW 0X3C
MOVWF CCP1CON ;设置CCP1模块为PWM工作方式,且其工作循
;环的低2位为11,高8位为01111111=7F
KEYDELAY
MOVLW 0X0A
MOVWF DEYH
AGAIN2 MOVLW 0XFF
MOVWF DEYL
AGAIN1 DECFSZ DEYL,1
GOTO AGAIN1
DECFSZ DEYH,1
GOTO AGAIN2 ;具体程序语句参考3. 2节
RETURN
;***************键服务子程序******************
;以屏蔽一次无用的中断,又可以防止按键时间
;过长发生连续中断
BTFSC PORTB,4
RETFIE ;判断为干扰,则返回,并可以屏蔽一次无用的
;中断
CALL KEYSERVE ;调用键服务子程序,确定键值
BCF PORTB,1
BCF PORTA,3
BCF PORTE,0

单片机简易波形

单片机简易波形

目录第一章前言 (5)1.1课程设计内容与要求 (5)1.2单片机的发展前景 (5)第二章总体设计方案 (7)2.1设计总体思路 (7)2.2工作原理 (8)第三章系统硬件设计及说明 (9)3.1 DAC0832简介 (9)3.2 DAC0832引脚图 (10)3.3 DAC0832各引脚功能 (10)3.4 DAC0832三种数据输入方式 (11)第四章系统软件设计 (13)4.1流程总图及各波形流程图 (13)4.2子程序及其说明 (15)第五章总结体会 (18)附录 (19)附录A 系统原理图 (19)附录B 程序清单 (20)第一章前言1.1课程设计内容与要求用单片机与DAC0832 构成的波形发生器,可产生方波、三角波、锯齿波、正弦波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。

1.2单片机的发展前景当今世界在以电子信息技术为前提下推动了社会跨跃式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。

由此可见科技已成为各国竞争的核心,尤其是电子信息技术更显得尤为重要,在国民生产各部门电子信息技术得到了广泛的应用。

漫步在繁华的现代化的大都市的大街上,随时都可以看到街上有很多可以用卡取钱的机器(ATM自动柜机),十字路口的交通灯。

我们家里数码电视机、数码音响、遥控器、空调、智能玩具..... 这些“高科技”看上去是如此的神秘,它到底是怎样构成的,它是通过什么样的程序和什么样的方式来完成这一系列指令的呢?让我们取钱更方便、避免城市的交通混乱和交通阻塞……给我们生活带来了处处方便。

其实这也是用单片机来控制的,单片机在我们生活中触手可及,它是如此地贴近我们的生活,单片机给我们的生活带来的有如此多的便利。

目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。

导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。

单片机课程设计简易波形发生器

单片机课程设计简易波形发生器

单片机课程设计简易波形发生器波形发生器是电子实验中经常使用的一种仪器,它能够产生各种不同形式的周期信号。

在单片机课程设计中,我们可以通过编写程序控制单片机来实现一个简易的波形发生器。

本文将介绍使用单片机实现波形发生器的设计思路和实现过程。

首先,我们需要确定需要实现的波形类型。

常见的波形类型包括正弦波、方波、三角波等。

在本设计中,我们将选择实现方波和三角波两种波形。

其次,我们需要确定单片机的硬件资源。

根据波形发生器的要求,我们需要使用单片机的数模转换功能,将数字信号转换为模拟信号输出。

因此,我们需要选择一个具有这一功能的单片机。

在确定了波形类型和硬件资源后,我们可以开始编写程序。

首先,我们需要编写一个初始化函数,用于初始化单片机的相关寄存器和引脚设置。

然后,我们需要编写一个生成方波的函数。

方波信号是一个固定频率的矩形信号,其周期可通过设置定时器的计数值和频率来实现。

我们可以通过控制输出引脚的高低电平来生成方波信号。

接下来,我们需要编写一个生成三角波的函数。

三角波信号是一个类似于正弦波的周期信号,其产生过程可以通过一个计数器和一个增减状态位来实现。

通过控制计数器的递增和递减,我们可以得到一个周期为正弦波信号的三角波信号。

最后,我们需要在主函数中调用这些函数,以及设置相应的延时函数,来实现波形信号的输出。

在输出信号时,我们可以通过设置引脚的电平来控制波形的高低电平。

在实际的实验中,我们可以通过连接示波器来观察并验证所产生的波形信号。

根据波形的输出结果,我们可以调整相应的参数,如频率、周期等,以获得所需的波形效果。

总结起来,通过单片机实现一个简易的波形发生器是一个很有趣的课程设计项目。

通过控制单片机的计数器和引脚状态,我们可以实现方波和三角波等不同形式的周期信号输出。

这不仅有助于理解波形发生器的工作原理,还可以提升对单片机编程和硬件控制的技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe
9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5
,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xfe,0xfd ,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0x e9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda ,0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb 1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99 ,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0 x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51 ,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0 x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16 ,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0 x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00 ,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02 ,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15 ,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0 x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e ,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66 ,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0 x80 }; void delayms(uint t) {
x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51
,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0
x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16
uint i; while(t--) {
for (i=0;i<125;i++);//对于11.0592M 时钟,约延时1ms } } void delay(uint t) { uint i; for (i=t;i>0;i--); }
void time0_init() {
TMOD|=0x01; //定时器设置16位 TH0=-50000/256; TL0=-50000%256;//初始化值 ET0=1; TR0=1; EA=1; } void time0_int(void) interrupt 1 {
if(S2==0) {
delayms(10); if(S2==0) x=x-1; while(!S2);//松手检测 }
if(S3==0) {
delayms(10); if(S3==0) y=y+5; while(!S3);//松手检测 }
if(y>254) y=0; if(m>5) m=0; if(x>50) x=0; TR0=1;//启动定时器 } void fangbo() //方波 {
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
unsigned char x=0,m=0,y=128;
sbit WR_DA=P2^1;
sbit CS_DA=P2^0;//DA 与单片机的接口 sbit S0=P3^0; //波形选择,每次按下将产生不同的波形 sbit S1=P3^1; //频率减
,0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb
1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99
,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0
sbit S2=P3^2; //频率加 sbit S3=P3^3; //调节方波的占空比
uchar
code
SinTab[256]={0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa
5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5
0xff,0xff,0xff,0xff,0xff,0xfe,0xfd
,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0x
e9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda
if(S1==0) {
delayms(10); if(S1==0) x=x+1; while(!S1);//松手检测 }
if(S2==0) {
delayms(10); if(S2==0) x=x-1; while(!S2);//松手检测 }
P0=i; delay(x);
}
} void sanjiao()
//三角波
{
uchar i;
CS_DA=0;
WR_DA=0;
for(i=0;i<255;i++)
{
P0=i;
delay(x);
}
while(i--)
{
P0=i;
delay(x);
}
}
void tixing()
//梯形波
{
uchar i=255,j,k;
uchar i,j; j=255-y; CS_DA=0; WR_DA=0; for(i=y;i>0;i--) { P0=0; delay(x); } while(j--) { P0=255; delay(x); } } void juchi() //锯齿波 { uchar i; CS_DA=0; WR_DA=0; for(i=255;i>0;i--) {
uint i; while(t--) {
for (i=0;i<125;i++);//对于11.0592M 时钟,约延时1ms } } void delay(uint t) { uint i; for (i=t;i>0;i--); }
void time0_init() {
TMOD|=0x01; //定时器设置16位 TH0=-50000/256; TL0=-50000%256;//初始化值 ET0=1; TR0=1; EA=1; } void time0_int(void) interrupt 1 { TR0=0;//关闭定时器 TH0=-50000/256; TL0=-50000%256;//重装初值 if(S0==0) { delayms(10);//按键消抖 if(S0==0) m++; while(!S0);//松手检测 }
TR0=0;//关闭定时器 TH0=-50000/256; TL0=-50000%256;//重装初值 if(S0==0) { delayms(10);//按键消抖 if(S0==0) m++; while(!S0);//松手检测 }
if(S1==0) {
delayms(10); if(S1==0) x=x+1; while(!S1);//松手检测 }
,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe
9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5
,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
for(a=0;a<255;a++)
{
P0=SinTab[a];
delay(x);
}
}
main()
{
time0_init();
while(1)
{
switch(m)
{
case 0: fangbo(); //方波
break;
case 1: juchi(); //锯齿波
break; case 2: sanjiao(); //三角波 break; case 3: sin(); //正弦波 break; case 4: tixing(); //梯形波 break; default: fangbo(); } } } 源程序如下:
相关文档
最新文档