abaqus屈曲分析结果汇报实例
abaqus屈曲分析报告实例
实用标准文档整个计算过程包括 2 个分析步,第 1 步做屈曲分析,第 1 步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle2 步做极限强度分析0奪莖UWICWHIK . 叽I J I*' *iirl |U*ii:* ri«-2- c.仲[U**t Wfl| «R =・|0T* |«|M4 11 屮W Ml 町扌垮・3 4M4; *E>|轴亠白*wr»44* «*M *A*S MMM-in 4414-* Ita1! I >H*d *■.■ Lrfi|i-t*b*i UWi^ *4」>jU***^ ::切2冲<a:K-.L口sMwSniLpc^l Efl «o 誓光n-3 wa HF HB・・n c:^ > q士* f *B£ -A <MI '■■*W■uTp*』«MLrii4 *M;■pofit ■直j.i t…叫町■ ' H.,机...i . r |fl»-L , | |-£I -t fr E叶*盅1并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yesU,Create job 名称为“ Buckling点击continue ,完成第 1 步的计算第 2 步:极限强度分析将“ buckle ”分析步替换为“ riks ”分析步在Basic 选项卡中,Nlgeom:选择打开在Instrumentation 选项卡中,定义如下参数,然后点击OK Array定义一个新计算工作,输入名称,点击continue在Parallelization 选项卡,选择 2 个CPU,如下所示,点击OK。
在此编辑Model-edit keywords ,删除“第 1 步”加入的文字“ *nodefile, global=yesU,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=1 1, 2.5点击OK,再保存文件最后提交计算。
Abaqus稳定性与屈曲—汇报篇2
(3)施加载荷
点击 (Create Boundary Condition)创建位移载荷, 施加Z方向大小为5的位移载荷。
(4)提交作业并分析 在分析步中勾选set-1的支反力和set-2的位移以及全 模型的能量输出,通过数据处理得到位移载荷图。
得到位移载荷图如下
位移-载荷图
0 0 -1000 -2000 -3000 -4000 10 20 30 40 50 60 70 80 90
-5000
-6000 -7000 -8000
总能量图
显式有限元法
显式分析 问题描述
已知条件和前面相同,用显式分析方法求解该屈曲 例子,做出位移载荷图形。 求解步骤 (1)建立或导入模型,设置材料特性 (2)分析步 (3)设置单元集,绑定约束 (4)定义边界条件和载荷 (5)定义和划分网格 (6)求解和分析
用同样的方法,建立另一端的Set,取名Set-2
Module选择Iteracton,点击 (Create Constraint),选择 Coupling,分别定义两端建立的set点和所在截面的约 束。
(4)定义边界条件和载荷 建立T型轴右端的固定约束,类型选择位移转角,位 置选择Set-1.
点击主菜单中Tool中的Amplitude,创建类型选择 Tabular
线性屈曲分析
注意地方
线性分析 问题描述 如图所示的T型轴结构,轴长800mm,材料为铝,弹 性模量70GPa,泊松比0.3,求该轴的前4阶屈曲模态。
解决步骤
• • • • • • • 建立模型 定义材料 装配 分析步 边界条件及载荷 定义并划分网格 求解和分析
(1)建立模型
单击 ( Create Part)按钮,“实体”形式,“拉伸”方式
基于ABAQUS二次开发变角度层合板屈曲特性分析
板的有限元分析前处理程序,开发出 ABAQUS交互式界面;最后,利用本文开发的 GUI插件,对经典定角度和
变角度层合板进行屈曲分析。结果表明,变角度层合板的屈曲载荷有很大提高,并且随着幅值参数 A和周期
参数 T逐渐增大,一阶线性屈曲均是呈先增大后减小的趋势,因此基于铺层稳定性,参数应控制在相应的范
围。采用 Python对 ABAQUS进行二次开发,从而实现变角度层合板的自动建模和计算分析,为实际工程研究
基于 ABAQUS二次开发变角度层合板屈曲特性分析
年春波 王小平 代文猛 杨 洋
(南京航空航天大学机电学院,南京 210016)
文 摘 基于 ABAQUS二次开发,探究周期函数曲线纤维路径变角度复合材料层合板的屈曲特性。首
先,以正弦曲线为基本参考路径为例,得到纤维角度的变化规律;然后,利用 Python编写变角度复合材料层合
收稿日期:2018-11-06 基金项目:国家自然科学基金(51575266) 第一作者简介:年春波,1993年出生,硕士研究生,主要从事 CAD/CAM、复合材料自动铺丝技术等方面的研究。E-mail:nianchunbo@163.com
宇航材料工艺 http://www.yhclgy.com 2019年 第 4期
NIANChunbo WANGXiaoping DAIWenmeng YANGyang
(CollegeofMechanicalandElectricalEngineeringNUAA,NanJing 210016)
Abstract BasedonthesecondarydevelopmentofABAQUS,thebucklingpropertiesofvariableanglecomposite laminateswithperiodicfunctioncurveswereexplored.Firstly,takingthesinusoidalcurveasthebasicreferencepath thechangelawofthefiberanglewasobtained;Secondly,thefiniteelementanalysispre-processingprogramofvaria bleanglecompositelaminateswaswrittenbyPythonanddevelopedABAQUSinteractiveinterface.Finally,thebuck linganalysisoftheclassicalfixedangleandvariableanglelaminateswascarriedoutwithusingtheGUIplug-in.The resultsshowthatthatthebucklingloadofthevariableanglelaminatesisobviouslyimproved,andthefirstorderline aritybucklingisfirstincreasedandthendecreasedwiththeincreasesofamplitudeparameterAandperiodparameter T,soconsideringthestabilityoftheply,theparametersshouldbecontrolledinthecorrespondingrange.Thesecond arydevelopmentofABAQUSbyPythonisusedtorealizetheautomaticmodelingandcomputationalanalysis,which providesresearchideasandprocessesforpracticalengineeringresearch,andhascertainpracticalsignificance.
abaqus屈曲分析报告实例
整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。
第1步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle并在Model-Edit Keywords的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yesU,Create job 名称为“Buckling”点击continue,完成第1步的计算。
第2步:极限强度分析将“buckle”分析步替换为“riks”分析步在Basic选项卡中,Nlgeom:选择打开在Instrumentation选项卡中,定义如下参数,然后点击OK定义一个新计算工作,输入名称,点击continue在Parallelization选项卡,选择2个CPU,如下所示,点击OK。
在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yesU,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=11, 2.5点击OK,再保存文件。
最后提交计算。
提取计算结果进入visualization Module点击 Create XY data选择 ODB filed output,点击continuePosition选择 Unique Nodal, CF:point loads选择 CF2,再点击elements/nodes选项卡,选择跨中载荷加载点,最后点击save。
重复上一步操作,Position选择 Unique Nodal, U:spatial displacement 选择 U3,再点击elements/nodes选项卡,选择板格中心点,最后点击save。
点击Create XY data, 选择operate on XY data,点击continue选择Combine(X,X)命令,横坐标选择保存的displacement曲线,纵坐标选择保存的Point load曲线,点击最后一行Create XY Data与Save as。
ABAQUS屈曲分析
• 其中任何一个条件满足都可以终止分析步 • 如果这两个条件都没有指定,则分析将在达到分析步定义中指定的最大增
量步数后终止。 • 由于载荷和位移都是未知量,用户无法获取某个载荷值或位移值对应的解
答。为了获取某准确载荷或位移值所对应的解答,需要在Riks分析步中的 某指定位置进行重启动分析,并且定义一个新的非Riks的后续分析步。
➢ *Buckle分析步为线性摄动分析步,而 具体的活载荷的大小则不是很重要。
➢ 活荷载需要在*Buckle分析步中指定。 ➢ 通常在*Buckle分析步前执行*Static分
析步,在*Static分析步中施加恒载。
17
.
Abaqus用法
• 对称结构的屈曲模态形状可以是对称 或反对称的
➢ 对于这种结构,高效的计算方法 为:建立部分模型,执行两次屈 曲分析,分别施加对称边界条件 和反对称边界条件。
Riks分析中总是等比例加载的,当前的载荷大小以下式计算:
其中,P0 --前一个分析步结束时的载荷; Pref --当前分析步中指定的载荷值;
λ --载荷比例系数LPF(Load Proportionality Factor);
28
.
1
静态后屈曲分析
等比例加载(续)
Riks分析中总是等比例加载的,当前的载荷大小以下式计算:
载达到临界值后,刚度突然大幅降低。
8
.
特征值屈曲分析
欧拉柱的荷载-位移响应
9
.
特征值屈曲分析
欧拉柱的变形
10
.
特征值屈曲分析
特征值屈曲分析
➢ 分析结构刚度矩阵在线性摄动过程中的奇异性
【技贴】考虑预载时的压杆屈曲分析及结果对比!
【技贴】考虑预载时的压杆屈曲分析及结果对比!在《基于abaqus的压杆屈曲分析一般流程及对比》一文中,讨论了采用线性屈曲模态法进行压杆屈曲分析,得到压标的屈曲载荷。
同时在《基于optistruct的压杆屈曲分析一般流程及对比》一文中采用optistruct进行屈曲分析,两者结果与理论均较接近。
一、通过静载荷进行屈曲分析,首先考虑预载为1000N时,屈曲载荷计算结果如下。
1、静载荷屈曲分析步设定如下,即首先进行预载的施加,再进行屈曲分析。
2、分析边界以及预载设定如下。
3、屈曲结果读取,提取第一阶特征值,如下为22319。
可得到该压杆在1000N预载下的的屈曲载荷为F * (1st mode)=1000+1*22319=23319N。
二、通过静载荷进行屈曲分析,首先考虑预载为10KN时,屈曲载荷计算结果如下。
1、预载为10KN时屈曲分析2、屈曲结果读取,提取第一阶特征值,如下为13319。
可得到该压杆在10KN预载下的的屈曲载荷为F * (1st mode)=10000+1*13319=23319N。
(1)通过optistruct计算得到无预载时屈曲载荷为23867N;(2)通过abaqus计算得到无预载时屈曲载荷为23319N;(2)通过理论公式计算值为25435N。
—荐读—【收藏】公众号部分文章阶段性汇总1【收藏】公众号部分文章阶段性汇总2Catia CAE分析的一般流程及对比基于abaqus的压杆屈曲分析一般流程及对比基于optistruct的压杆屈曲分析一般流程及对比车身典型结构模态识别方法研究车身弯曲及扭转刚度目标值确定方法【免责声明】本公众号所刊登的内容、资料等来自于个人总结、技术论坛、文献、软件帮助文档及网络等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!。
abaqus压杆屈曲分析
压杆屈曲分析1.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。
压杆整体失稳形式可以是弯曲、扭转和弯扭。
钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。
影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。
实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。
本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。
通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。
钢构件的截面尺寸如图1-1所示。
构件的材料特性: E =2.0×1011 N m 2⁄ ,μ=0.3 , f y =3.45×108N m 2⁄图1-12.长细比计算 通过计算截面几何特性,截面绕y 轴的回转半径为i y =0.0384m ,长细比取压杆截面尺寸(单位:m)值及杆件长度见表1:表13.模型分析ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。
非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。
其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。
利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。
其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。
此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。
基于ABAQUS复合材料薄壁圆筒的屈曲分析
基于ABAQUS复合材料薄壁圆筒的屈曲分析由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。
工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。
因此,为了保证结构的安全,需要进行屈曲分析。
对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。
因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。
近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。
ABAQUS 就是其中的杰出代表。
1.屈曲有限元理论有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。
1.1线性屈曲假设结构受到的外载荷模式为P0。
,幅值大小为λ,结构内力为Q,则静力平衡方程应为λP0=λQ进一步考察结构在(λ+△λ)P0载荷作用下的平衡方程,得到K E+K S S+λ△S+K G u+λu△u=△λP0由于结构达到保持稳定的临界载荷时有△λ,代入上式得K E+λK S△σ+K G△u△u=0该方程对应的特征值问题为det K E+λK S△σ+K G△u=0如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为det K E+λK S△σ=0该方程即为求解线性屈曲的特征值方程。
λ为屈曲失稳载荷因子,△u为结构失稳形态的特征向量。
1.2非线性屈曲非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。
基于ABAQUS的悬臂梁的弹塑性弯曲分析报告
基于ABAQUS的悬臂梁的弹塑性弯曲分析学院:航空宇航学院专业:工程力学指导教师:姓名:学号:1. 问题描述考虑端点受集中力F 作用的矩形截面的悬臂梁,如图1所示,长度l=10m ,高度h=1m ,宽度b=1m 。
材料为理想弹塑性钢材(如图2),并遵守Mises 屈服准则,屈服强度为MPa Y 380=σ,弹性模量GPa E 200=,泊松比3.0=υ。
图1 受集中力作用的悬臂梁 图2 钢材的应力-应变行为首先通过理论分析理想弹塑性材料悬臂梁的弹塑性弯曲,得到悬臂梁的弹塑性弯曲变形的规律和塑性区形状,确定弹性极限载荷e F 和塑性极限载荷Y F ;其次利用ABAQUS 模拟了该悬臂梁受集中载荷作用的变形过程,得出弹性极限载荷e F 、塑性极限载荷Y F 、塑性区形状和载荷-位移曲线,与理论分析的结果进行对比,验证有限元分析的准确性。
2. 理论分析2.1梁的弹塑性纯弯曲对于矩形截面Euler-Bernoulli 梁,受弯矩M 作用,如图3所示,根据平截面假定,有图3 矩形截面梁受弯矩M 的作用y κε= (1)其中κ为弯曲后梁轴的曲率,规定梁的挠度w 以与y 同向为正,则在小变形情况有22-dx w d =κ (2)当弯矩M 由零逐渐增大时,起初整个截面都处于弹性状态,这是Hooke 定律给出()y E E y κεσ== (3) 再由平衡方程,可得到κEI M = (4) 其中,3121bh I =是截面的惯性矩。
将EI M /=κ带入(3)式,可知 I y /M =σ显然,最外层纤维的应力值最大。
当M 增大时,最外层纤维首先达到屈服,即Y h y bh M σσ==±=22/61/ (5)这时的弯矩是整个截面处于弹性状态所能承受的最大弯矩,即为弹性极限弯矩,它等于261bh M Y e σ= (6)对应的曲率可由式(4)求得Eh EI M Y e e /2/σκ== (7)当e M M >时,梁的外层纤维的应变继续增大,但应力值保持为Y σ不再增加,塑性区将逐渐向内扩大。
(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析
基于ABAQUS复合材料薄壁圆筒的屈曲分析由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。
工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。
因此,为了保证结构的安全,需要进行屈曲分析。
对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。
因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。
近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。
ABAQUS 就是其中的杰出代表。
1.屈曲有限元理论有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。
1.1线性屈曲假设结构受到的外载荷模式为。
,幅值大小为,结构内力为Q,则静力平衡方程应为进一步考察结构在载荷作用下的平衡方程,得到由于结构达到保持稳定的临界载荷时有,代入上式得该方程对应的特征值问题为如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为该方程即为求解线性屈曲的特征值方程。
为屈曲失稳载荷因子,为结构失稳形态的特征向量。
1.2非线性屈曲非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。
与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。
abaqus屈曲分析结果汇报实例
整个计算过程包括2个分析步,第1步做屈曲分析, 2步做极限强度分析第1步:屈曲分析载荷步定义如下:Step 1-I nitialStep 2- Buckle左 _f t t b ££s lw M f t * r E r«*b 百K ・ si ?tt E t T « 0*4 E £F 9E K X 2-IX 乍 ■ ^n l * *吐匕口 I -r *3 鱼 一 E E S }- L __*」 < .jrd H * if i F JC E ] a H T -F f _ HafETT IJU^U- f i w - E I V 3> _f - -f t 论Mv s r -^ 3一fh£:i■/“>>>£>j■dql-kjizi -,1112M吉玄aLbcAAdL/■>•Ji*$r E忆wnu—30**^0"*U &-U0 丄0Dd >--sSS 5^A L ・£j.in —B-i--m jg 丄石b u =f f ^2s -_- 3"hea w s s r ^ HCJtaE* *-3.1?The-T :金 L ±4-.Kex- -hs. f f 0f t 3a ■■□i ';- H T 富 p 山u l i 酋 l LimkM i r e --!■•齐?-二管;-■.* 二>■=!■■ M 一 !A a i 1 3 r f .>4r l - _.a_- f 8?^ ij m聞”诃詡&w $11" 0(*r T*$l< Ruy-hi 孑母¥*口占■❷建It十亡叫乐口輯1 •占0 lb S3'Void««dm« : 9弱»W M I.CL I.yariUib **TI插■FA W MT I K1■l* 町E 岂Std* g .Flibi■y g村啤. J "oft Ia* It迅Qg I宝H ET I UTT Uid^ut t3 *W*«iTfc-弘4f Mu»Fr ] n ★”■■也… 册feMvidrttarM fLcmtad 诵CcmdllMMikId C-uffin.1! 9 Mid lx(■miitov'h 'ZfftHeur bet卜J£«4*rt. ■—-■-,N^nd. —$ 1■曹e R1°IfMK nev *w 居The Ji-^.4hje ] UDQL3-J4I .n-J 沖女j'lir alCil J>v 切xbc^- atjft glic讯试 Ebt* pCy fili TQ . . I xiid "d 耳Or Q -iODIfifi in-u w UitiJfl sd K说TBP .亠I汕«l!fa frSMcj C* llw 冃论迈叩xcmLDi哙nwi««tr:4=-L ftss t«e& xF w □ T-**p Ai&^ZL L IMA :-seii j* ■ih * i>¥ii "i4i ii-I -t>A4 TYE巾尼‘旳!B帀*rn n ■:riF YW«T in ib* 钻巒■nlM ・ e 1力『円「0,何■比I 4- IJ I■ Ml曲|Tfl4hr r-fckdiie4wne- M?p-]J 2加甘植小乜CLfa W 31E El KUhF* !1, 审WlitM '■ g ^Ktd-IHCEIl⑷册冇Qg K aii e/y - B A‘宝Hwlwr U I J^U!t3 W-*C*Tfc. in «U 4rrt^Ta* % n I H H wli aE甘hltnarl旨內岭A] HCjMivi CdMT9 if C-OHKlInMt:昭I Mali创(-miitoMilj■ Ejwrfnr fact .f MbHB為A.-xJrTn一:w 0 MoM fMhW-L■灰OM4L LE中鼻Eai OfMW rti p T!--^ IdHI f - A・■*<< X・(V )屮d1*",・L=> ":昭!:站我tbrian I;E■毗CH-^R W«W^r. r<jw|a<r or ■ftoritf flvfFML LMII^sewihiH ・・H rr*Mi«<h rapd TK I M ar 4-cai p^ak^ad ■3=n> #ia ari-jn^tDr cadKtk wrii:・ MidJi计皿百g The jaj^.4toe 1 iibQL>j4| .h-2 內贞J^r 11411 X>v m 均Lbit S KJ-1 Silled 3 EBri? pLufiE -汕 4 耳 D I si 泊■«0 TODl&s m iy*i»Je!i?d bv 呵■怙O . -Ifcu 町临Xrtpftii r* ihe 自他迈灯曲妣仙哙白jrttEThe- K^±L isi-SDfrse- :hs当be«i ami ID 'J T^*p AZLQIL L ISLCA :-se-1 TT*s "4TAI1" Ikhli ^f4l :h-9 W IVAntJiB'^fl ■帀*4111 h I 10 1 iw* AW^ihl f iwwl I riAFe -4B4B-A*… .PF T4Jp«■c* ®'■■29WW^ n.^.并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态*no defile, global=yesU,ratRf^inw ► L占 | Qslrt电.C> C^al ibralsDFS4S' Sectior-g (2221_. -ix n__ i—. tafn匕匕口人t 2 3 4Modu *t 「-:Modd: x Create job 名称为“ Buckling点击continue,完成第1步的计算Q [予&J*nager..s &ModflL|Copy Modd 卜宕htod 亡呻O^Kt—\二也・甘L宀Ed4 Anri butts •Modd Viewport:(D &e Jfiew Sfte 口Output Other loo-S Mug-in?第2步:极限强度分析将“ buckle ”分析步替换为“ riks ”分析步”二AE - -4J 1Bk 歴詔嶠如pxt 垦w 4 昭Other £M I*H呼戸屮L MRk +<* %女X M iM UnPnUdA 1®I{jiad— Vipjrptitl 乩疏1IF Jib-lpji Othgr Icids. s ij^'ns. £j?lp 审I J3S-中C叫匚却u g M 1Morit Re^yiii舜I制讶甘:QI |2 Meddf (I)::誠贰右ParH Q|jf |?< Mawfiaic i;7)宫Giibr』口M菟Sr Swtbn, [223fc> ZT I8UIbupt lil,Qi Pi"; i; HiE 伍*M«teriali [2|fir ti EH-i.蛊h«Bor-s J_ - I幸Pr^le i (KB■出Al i^ltlLiji 咼bbt印L -S Hitch Conlcxl Orl tS^piHeTime PALE AdMlJirftrratIwac Elm. &Hlfomtc iHipp^rtifi*Cc^ldc s■Cmitr;AddsAmoIrtLLo^di <^7W Ai HmEEiDMd &l Urd-rCall^pse JLJIAridOHisscryModUt r 趾P■心E SIM CK:U I« rSlepF*=在Basic选项卡中,Nlgeom :选择打开在Instrumentation 选项卡中,定义如下参数,然后点击Oih«rTI«• 4^-rarpJlk ■ P-.uadlumbar & hcd«fn»rM:Iniiid Mnmurn MagnumArc le-^ih rKmiwc C J OI.L£-D15 ilfOJdE^mjied nzcdJ 1Ncrtt: Used] off tu rcompute :he DA lobd pruRiHiorin ry 口書定义一个新计算工作,输入名称,点击con ti nue OKN JIE■: RikaCancel在Parallelization 选项卡,选择2个CPU ,如下所示,点击 OK在此编辑Model-edit keywords,删除“第1步”加入的文字 global=yes U,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=1 1,2.5斗A Cre^tt JoLName :厉1000T E UJrtactCcntnue... *no defile,点击OK,再保存文件最后提交计算提取计算结果进入visualization ModuleT fir 心ffpE 四rw fUI 屮“去匸 1 匕4詁用[丈或£ P^jg-sri 声口h p 也吕广叫 r ::口:琳^*70 ・-:;;LU:Mcnld s 皿^■■■cn ClHta■□drUlM-Mh8 ■ Ep i'i E£KW WH.K K^WWts:・ n・FW口pjpn U| * km 和>| Cul5 *■SiiumL■^*7—<1G点击Create XY data□ t5n# 4* r xiiUJjh —zT "BModelSession Dsla 耳二也恕令韻Output Orttfb^BwrTi3 ■m君JCVBotsS XVDflrtoC Ws■+J=| ①Gpldy <±roupc 41)b flk^y Cute■谿“昨珥MdVWC■ ]n#g^选择ODB filed output ,点击continuePosition 选择Unique Nodal , CF:point loads 选择CF2,再点击J £ife MiOfiel ViewjucH.迫br : 建bt Animn怙^port Ogfapn J DO I S-即* «wlr 轩V** ”LI N fbi ,A- "ik Sfiwd PkijTn 也” 7七》咅广:;"化•- 彳环丘芒口口尸匕hMJi- 啊3tiiTkbn ■- HI吐qlklr.rV/"■比■屈3也elements/no des 选项卡,选择跨中载荷加载点,最后点击save。
Abaqus屈曲分析(一)线性特征值屈曲
Abaqus屈曲分析(⼀)线性特征值屈曲∨本⽂由CAE数值优化轻量化授权转载结构稳定性问题是我们⽇常⽣活中经常遇到的问题,主要是发⽣在梁或壳结构中。
屈曲是⼀种失效模式,其特征是构件在⾼压应⼒作⽤下突然失效。
屈曲失效的实际压应⼒⼩于材料能够承受的最终压应⼒。
当构件或结构将膜应变能转换为弯曲应变能⽽外部施加的载荷不变时,会发⽣屈曲失效。
先来看⼀个简单的结构:⼀个长为L的细长杆,横截⾯积为A。
轴向刚度ka远⼤于弯曲刚度kb。
因此,微⼩的膜变形可以吸收⼤量的应变能。
然⽽,需要较⼤的横向挠度和横截⾯旋转来吸收弯曲中的能量。
如果让弯曲来吸收膜应变能,挠度将会远⼤于轴向变形。
⼏种典型稳定性问题:板件屈曲-分⽀问题:⼀般情况下,⼩的初始缺陷对平板的后屈曲响应没有显著影响,但可能影响屈曲⽅向。
突弹跳变(snap-through)-极限载荷问题预屈曲段的结构响应是⾮线性的。
因此,需要进⾏⼏何⾮线性分析来准确研究预屈曲⾏为。
结构不稳定发⽣在⼀个负载最⼤(极限载荷 点)位置。
⼀旦解在点A处变得奇异,结构就从A点翻转到B点。
在快速翻转过程中,响应变为动态的,结构释放弹性能转化为动能。
在B点存在⼀个稳定的静⼒平衡状态。
超过这⼀点,载荷P可以再次增加。
⽆加强筋的圆筒屈曲结构对⼩的初始缺陷表现出很强的敏感性。
对初始缺陷的考虑将分岔问题转化为极限载荷问题。
屈曲问题本质特征:A类问题:在分叉点前为线性响应B类问题:在缺陷敏感结构分叉点前为⾮线性响应缺陷敏感:实际结构的坍塌载荷受载荷⽅向、⽀承⽅式或⼏何形状的微⼩变化的强烈影响。
这些结构往往是求极限载荷问题。
ABAQUS⼀般有两种分析⼿段来处理这类分析问题:特征值屈曲分析和后屈曲分析。
A:线性特征值屈曲分析(针对A类问题):1. ⽤于估计刚性结构的临界(分岔)载荷。
2. 使⽤abaqus线性扰动求解。
通常⽤来估计刚性结构的临界屈曲载荷。
想要特征值屈曲分析可以得到可靠的屈曲载荷的估计,需要满⾜以下假设前提:⼩⼏何变化、线性弹性材料响应,且缺陷不敏感。
abaqus压杆屈曲分析报告
压杆屈曲非线性分析专业:结构工程******学号:**********压杆屈曲分析1.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。
压杆整体失稳形式可以是弯曲、扭转和弯扭。
钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。
影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。
实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。
本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。
通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。
钢构件的截面尺寸如图1-1所示。
构件的材料特性: E =2.0×1011 N m 2⁄ ,μ=0.3 , f y =3.45×108N m2⁄图1-1压杆截面尺寸(单位:m)2.长细比计算通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取值及杆件长度见表1:表13.模型分析ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。
非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。
其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。
利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。
其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。
abaqus压杆屈曲分析94698
压杆屈曲非线性分析专业:结构工程姓名:刘耀荣学号:2110150113压杆屈曲分析1.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。
压杆整体失稳形式可以是弯曲、扭转和弯扭。
钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。
影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。
实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。
本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。
通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。
钢构件的截面尺寸如图1-1所示。
构件的材料特性: E =2.0×1011 N m 2⁄ ,μ=0.3 , f y =3.45×108N m 2⁄图1-1压杆截面尺寸(单位:m)2.长细比计算通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取值及杆件长度见表1:表13.模型分析ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。
非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。
其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。
利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。
其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。
梁柱屈曲分析荷载位-移曲线输出
abaqus分析梁柱屈曲问题,如何查看其荷载-位移曲线?本人是ABAQUS新手,最近学习ABAQUS Benchmarks Manual里的“Buckling analysis,” Section 1.2,里面分析的几个例子如l 梁、圆柱壳等都有大量的INP文件。
其中beambuckle_b31os_load_isec.inp如下。
*HEADINGLATERAL BUCKLING: B31OS, *BEAM SECTION, SECTION=I*NODE1, 0.0000E+00, 0.0000E+00, 0.0, 0.0000E+00, 0.0000E+00,-1.02, 6.0000E-01,-2.4222E-04, 0.0, 9.1382E-08, 4.5345E-04,-1.03, 1.2000E+00,-4.8288E-04, 0.0, 1.7867E-07, 8.9808E-04,-1.04, 1.8000E+00,-7.1826E-04, 0.0, 2.5496E-07, 1.3247E-03,-1.05, 2.4000E+00,-9.4284E-04, 0.0, 3.1164E-07, 1.7237E-03,-1.06, 3.0000E+00,-1.1500E-03, 0.0, 3.4040E-07, 2.0850E-03,-1.07, 3.6000E+00,-1.3324E-03, 0.0, 3.3503E-07, 2.3984E-03,-1.08, 4.2000E+00,-1.4830E-03, 0.0, 2.9322E-07, 2.6543E-03,-1.09, 4.8000E+00,-1.5957E-03, 0.0, 2.1761E-07, 2.8439E-03,-1.010, 5.4000E+00,-1.6654E-03, 0.0, 1.1591E-07, 2.9606E-03,-1.011, 6.0000E+00,-1.6889E-03, 0.0, 0.0000E+00, 3.0000E-03,-1.012, 6.6000E+00,-1.6654E-03, 0.0,-1.1591E-07, 2.9606E-03,-1.013, 7.2000E+00,-1.5957E-03, 0.0,-2.1761E-07, 2.8439E-03,-1.014, 7.8000E+00,-1.4830E-03, 0.0,-2.9322E-07, 2.6543E-03,-1.015, 8.4000E+00,-1.3324E-03, 0.0,-3.3503E-07, 2.3984E-03,-1.016, 9.0000E+00,-1.1500E-03, 0.0,-3.4040E-07, 2.0850E-03,-1.017, 9.6000E+00,-9.4284E-04, 0.0,-3.1164E-07, 1.7237E-03,-1.018, 1.0200E+01,-7.1826E-04, 0.0,-2.5496E-07, 1.3247E-03,-1.019, 1.0800E+01,-4.8288E-04, 0.0,-1.7867E-07, 8.9808E-04,-1.020, 1.1400E+01,-2.4222E-04, 0.0,-9.1382E-08, 4.5345E-04,-1.021, 1.2000E+01, 0.0000E+00, 0.0, 0.0000E+00, 0.0000E+00,-1.0*ELEMENT,TYPE=B31OS1,1,2*ELGEN,ELSET=BEAM1,20,1,1*BEAM SECTION,SECTION=I,ELSET=BEAM,MATERIAL=MAT0.345,0.69, 0.3,0.3, 0.027,0.027, 0.01450.0,-1.0,0.0*MATERIAL,NAME=MAT*ELASTIC2.1E11,0.3125*BOUNDARY1,1,421,2,4*STEP,NLGEOM,INC=50*STATIC,RIKS.025, 1., 1.E-4, , ,11,3,-0.3*DLOADBEAM, PZ, -100000.,*MONITOR,NODE=11,DOF=3*EL PRINT,FREQUENCY=20*NODE PRINT,FREQUENCY=5COORD,U,RF ,*NSET,NSET=NOUT,GENERATE2,20*NODE FILE,NSET=NOUTU,*EL FILE,FREQUENCY=25S,ESF,*CONTROLS,PARAMETERS=FIELD,0.0,*END STEP首先,不清楚为何一个节点的坐标有6个?还有“*STEP,NLGEOM,INC=50*STATIC,RIKS.025, 1., 1.E-4, , ,11,3,-0.3*DLOADBEAM, PZ, -100000.,*MONITOR,NODE=11,DOF=3*EL PRINT,FREQUENCY=20*NODE PRINT,FREQUENCY=5”一段很多地方都不懂,不知哪位好心人能帮助解释一下?先谢谢了!还有计算分析后如何得到如ABAQUS Benchmarks Manual中的Figure 1.2.1的荷载-位移曲线?Figure 1.2.1liyan_5555512助理工程师精华0积分66帖子33水位66技术分0abaqus分析梁柱屈曲问题,如何查看其荷载-位移曲线?本人是ABAQUS新手,最近学习ABAQUS Benchmarks Manual里的“Buckling analysis,” Section 1.2,里面分析的几个例子如l梁、圆柱壳等都有大量的INP文件。
abaqus压杆屈曲分析报告
压杆屈曲分析1.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。
压杆整体失稳形式可以是弯曲、扭转和弯扭。
钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。
影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。
实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。
本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。
通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。
钢构件的截面尺寸如图1-1所示。
构件的材料特性: , ,图1-12.长细比计算 通过计算截面几何特性,截面绕y 轴的回转半径为 ,长细比取压杆截面尺寸(单位:m)值及杆件长度见表1:表13.模型分析ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。
非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。
其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。
利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。
其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。
此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。
缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。
4.建模计算过程建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。
第1步:屈曲分析
载荷步定义如下:
Step 1-Initial
Step 2- Buckle
并在Model-Edit Keywords的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yes
U,
Create job 名称为“Buckling”
点击continue,完成第1步的计算。
第2步:极限强度分析
将“buckle”分析步替换为“riks”分析步
在Basic选项卡中,Nlgeom:选择打开
在Instrumentation选项卡中,定义如下参数,然后点击OK
定义一个新计算工作,输入名称,点击continue
在Parallelization选项卡,选择2个CPU,如下所示,点击OK。
在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yes
U,”,并在下图位置加入下段文字:
*imperfection, file=buckling, step=1
1, 2.5
点击OK,再保存文件。
最后提交计算。
提取计算结果
进入visualization Module
点击Create XY data
选择ODB filed output,点击continue
Position选择Unique Nodal,CF:point loads选择CF2,再点击elements/nodes选项卡,选择跨中载荷加载点,最后点击save。
重复上一步操作,Position选择Unique Nodal,U:spatial displacement 选择U3,再点击elements/nodes选项卡,选择板格中心点,最后点击save。
点击Create XY data, 选择operate on XY data,点击continue
选择Combine(X,X)命令,横坐标选择保存的displacement曲线,纵坐标选择保存的Point load曲线,点击最后一行Create XY Data与Save as。