数学第一章知识点总结

合集下载

四年级数学上册各章节知识点总结

四年级数学上册各章节知识点总结

四年级数学上册各章节知识点总结第一章:整数
- 正整数、负整数和零
- 整数的比较、相反数和绝对值
- 整数的加法、减法和乘法
- 整数的加减法法则
- 整数的乘法法则
第二章:小数
- 十分位、百分位和千分位的认识
- 小数点的概念和读法
- 小数的大小比较
- 小数的加法和减法
第三章:分数
- 分数的概念和表示方法
- 分数的大小比较
- 分数的加法和减法
- 分数的乘法和除法
- 分数的化简
第四章:图形的认识
- 点、线、面的概念
- 直线、曲线和线段的区别
- 三角形、四边形和多边形的认识第五章:长度和面积
- 长度的认识和测量
- 厘米、分米和米的换算
- 面积的认识和测量
- 长方形和正方形的面积计算
第六章:时间和钟表
- 年、月、日和星期的概念
- 时、分的认识和读法
- 钟表的指针和刻度的认识
- 钟表上的时、分的表示
第七章:容量和质量
- 容量的认识和测量
- 毫升和升的换算
- 质量的认识和测量
- 克和千克的换算
第八章:数据和统计
- 数据的搜集和整理
- 柱状图和折线图的认识
- 图表中的数据读取和分析
以上是四年级数学上册各章节的知识点总结。

希望能对大家的研究有所帮助。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点大全第一章 数和数的运算一、概念(一 )整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示。

0也是自然数.3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.其中“一"是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万"或“亿"作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法. 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

高一数学必修1 数学。第一章。完整知识点梳理大全(最全)

高一数学必修1 数学。第一章。完整知识点梳理大全(最全)

高一数学必修1 数学。

第一章。

完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。

常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。

集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。

集合的表示方法有自然语言法、列举法、描述法和图示法等。

其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。

集合还可以分为有限集、无限集和空集。

空集是不含有任何元素的集合,记为∅。

集合间的基本关系有子集、真子集和集合相等等。

子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。

如果两个集合中的元素完全相同,则它们是相等的。

集合的基本运算有交集、并集和补集等。

交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。

补集是指一个集合中不属于另一个集合的所有元素所组成的集合。

最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。

对于含有绝对值的不等式,可以通过分情况讨论来求解。

而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。

x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。

高一数学知识点归纳大全第一章

高一数学知识点归纳大全第一章

高一数学知识点归纳大全第一章【(一)、映射、函数、反函数】1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应当特别注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌控三种表示法——列表法、解析法、图象法,能够根实际问题谋求变量间的函数关系式,特别就是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的通常步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式算出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.特别注意①:对于分段函数的反函数,先分别算出在各段上的反函数,然后再分拆至一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.【(二)、函数的解析式与定义域】1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数源自于一个实际问题,这时自变量x存有实际意义,谋定义域必须结合实际意义考量;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母严禁为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正弦函数y=tanx(x∈r,且k∈z),余切函数y=cotx(x∈r,x≠kπ,k∈z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)未知一个函数的定义域,谋另一个函数的定义域,主要考量定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式通常存有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设得出函数特征,求函数的解析式,可以使用未定系数法.比如说函数就是一次函数,entitledf(x)=ax+b(a≠0),其中a,b为未定系数,根据题设条件,列举方程组,算出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若未知f(x)满足用户某个等式,这个等式除f(x)就是未知量外,还发生其他未知量(如f(-x),等),必须根据未知等式,再结构其他等式共同组成方程组,利用求解方程组法求出来f(x)的表达式.【(三)、函数的值域与最值】1、函数的值域依赖于定义域和对应法则,不论使用何种方法求函数值域都应当先考量其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将Rewa的繁杂函数转化成另一种直观函数Ploudalm值域,若函数解析式中所含根式,当根式里一次式时用代数换元,当根式里就是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)分体式方法:对于二次函数或二次函数有关的函数的值域问题可以考量用分体式方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”谋值域.其题型特征就是解析式中所含根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所则表示的几何意义,借助几何方法或图象,谋出来函数的值域,即以数形融合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上就是相同的,事实上,如果在函数的值域中存有一个最轻(小)数,这个数就是函数的最轻(小)值.因此求函数的最值与值域,其实质就是相同的,只是回答的角度相同,因而答题的方式就有所雷同.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用领域函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.【(四)、函数的奇偶性】1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,必须特别注意两点:(1)定义域在数轴上关于原点等距就是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)就是定义域上的恒等式.(奇偶性就是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学第一章知识点

高一数学第一章知识点

第一章1.1.1、集合的含义与表示:(1)、定义:一般地,我们把研究的对象统称为“元素”,把一些元素组成的整体叫集合,简称集。

(2)、性质:1、确定性(主要用于判断是否是集合)2、无序性3、互异性(主要用于确定集合中元素)(3)、常用大写字母表示集,小写字母表示元素。

如果a是集合A的元素,则说a属于集合A,写作a∈A。

同理,如果a不是集合A的元素,则称a不属于A,写作aA(4)、常见的数集:1、非负整数集(自然数集)【记住最小自然数是0】N2、正整数集N*或N3、主体数集Z4、有理数集Q5、实数集R(5)、集合的表示法:1、(自然语言描述)2、列举法3、描述法4、图列法1.1.2、集合的基本关系:(1)、AB【A含于B或B包含A】用因式分解法〔两种情况2、3〕(2)、A=B [A集合与B集合相变](3)、【A真含于B或A是B的真子集,﹦〉意义:因存在元素x ∈A(4)、空集﹦>不包含任何元素的集,叫空集结论:(1)、任何集分是它本身的子集(2)、传递性学生迅速口头做课后练习1.1.3、集合的基本运算:1、并集:定义,有所有属于A的元素结构组成的集合,为集合A于集合B的并集,记作A∨B2、交集:定义,所有属于集合A是属于集合B的元素,称为集合A与集合B的交集,记作A∧B3、全集:定义,一般地如果一个集合含有我们所研究问题中所涉及的所有元素,那么这个集合称为全集,常记作4、补集:定义,对于一个集合A,由全集中不属于集合A的所有元素组成的集合,称为集合A,相对于全集的补集,简称集合A的补集课后练习题1.2.1、函数及其表示(1)、函数的概念:一般的我们有设集合A、B是非空集数,如果按照确定的对应关系,使集合A中的任意一个数X,在集合B中都有唯一确定的数与之对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作Y=f(x),(2)、函数三要素:定义域、值域、对应关系→相交的函数必须三要素均相同;定义域:由变量的取值范围A;值域:与X相对应得Y值叫做函数值,函数的集合叫函数的值域(3)、区间→开区间、闭区间、半开半闭区间、半闭半开区间区间在数轴上叫做实心点与虚心点课:练习1.2.2、函数表示法(1)、初中学过解析法、图像法和列表法(2)、分段函数(3)、实射:定义:一般的,设集合为A、B是两个非空集合,如果按照某确定的对应关系f,使对于集合中的任一个元素,在集合B中都有唯一确定的元素与之对应,那么就种对应f:A→B为集合B的实射做课后练习回家做练习1.3、函数的基本性质1.3.1、单调性与最大值、最小值(1)、曾函数定义:}注意定义域!(2)、减函数定义:(3)、最大值定义:(4)、最小值定义:2.奇偶性[定义域对称](1)、偶函数定义:f(x)=f(-x)(2)、奇函数定义:f(x)=―f〔-x〕。

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).记作A C S,即C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

大一数学第一章知识点总结

大一数学第一章知识点总结

大一数学第一章知识点总结一. 集合间的基本关系1.“包含”关系一子集特别注意:存有两种可能将(1)a就是b的一部分,;(2)a与b就是同一子集。

反之:集合a不包含于集合b,或集合b不包含集合a,记作a b或b a2. "成正比”关系: a=b(5≥5,且5≤5,则5=5)实例:设a={x|x2-1=0} b={-1,1}“元素相同则两集合相等”即为:①任何-个子集就是它本身的子集。

aa②真子集:如果ab,且a b那就说集合a是集合b的真子集,记作a b(或b a)③如果ab, bc ,那么ac④如果ab同时ba那么a=b3.C99mg任何元素的集台叫作空集,记作中规定:空集是任何集合的子集,空集是任何非空集合的真子集。

存有n个元素的子集,所含2n个子集,2n-1个真子集二、集合及其表示1.子集的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动过一个是名词而已。

所以集合的含义是:某些指定的对象集在-起就成为- -个集合,简称集,其中每-个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、子集的则表示通常用大写字母表示集合,用小写字母表示元素,如集合a={a,b, c}。

a. b. c就是集合a中的元素,记作aea.相反,d不属于子集a.记作da。

有-一些特殊的集合需要记忆:非负整数集(即为自然数集) n正整数集n*或n+整数集z有理数集q实数集r子集的则表示方法:列出法与叙述法。

①列举法: :....②叙述法:将子集中的元素的公共属性叙述出。

例如{xr| x-3\ue2} ,{x x-3\ue2}. {xy)ly=x2+1}③语言描述法:例: {不是直角三角形的三角形}基准:不等式x-3\ue 2的边值问题就是{xr|x-3\ue2}或{x|x-3\ue2}强调:描述法表示集合应注意集合的代表元素a=({xy)ly= x2+3x+2}与b={yly= x2+3x+2)相同。

七年级数学上册第一章知识点总结

七年级数学上册第一章知识点总结

七年级数学上册第一章知识点总结第一章:常数、变量和代数表达式1.常数:不变化的数值,如2、3、-5等。

2.变量:表示未知数的字母,如x、y、a等,可以表示任何值。

3.代数表达式:由常数、变量和运算符(如加减乘除)组成的表达式。

例如,2x+3、4y-7等。

4.同类项:指具有相同变量指数的代数式中的项。

例如,在2x+3y+4z中,2x、3y和4z都是同类项。

5.代数式的简化:合并同类项并进行合适的运算,简化代数式。

例如,将3x+2x简化为5x。

第二章:正数和负数1.数轴:用于表示数值的直线,通常在左侧用负数表示,右侧用正数表示。

2.正数:大于0的数,表示向右移动。

3.负数:小于0的数,表示向左移动。

4.绝对值:一个数字的距离原点的距离,永远是非负数。

如|-5|=5。

5.数的相反数:与某个数绝对值相等但符号相反的数。

如,5的相反数是-5,-3的相反数是3。

6.加法规则:-正数加正数,结果为正数,例如2+3=5。

-负数加负数,结果为负数,例如-2+(-3)=-5。

-正数加负数,结果的符号由两个数的大小决定,取绝对值较大的符号,例如3+(-2)=1。

-负数加正数,结果的符号由两个数的大小决定,取绝对值较大的符号,例如-2+3=1。

7.减法规则:减去一个数等价于加上它的相反数,例如7-5=7+(-5)=2。

8.同号相减:减去两个相同符号的数,结果的符号与数的绝对值有关,取绝对值较大的符号,例如7-5=2,-7-(-5)=-2。

第三章:有理数1.有理数:整数和分数的集合。

包括正整数、负整数、零以及正分数和负分数。

2.整数:包括正整数、负整数和零。

3.分数:由一个整数除以另一个非零整数得到的数。

分子表示数的一部分,分母表示总体的几等分。

4.真分数:分子小于分母的分数,如1/2、2/3等。

5.假分数:分子大于等于分母的分数,如3/2、5/4等。

6.相反数的绝对值相等:一个数的相反数的绝对值与原数的绝对值相等,例如|-5|=5。

数学知识点归纳总结(精华版)

数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:32,7,3π+8,sin60o 。

第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分) 1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章第一章:整数的认识一、整数的概念整数是由自然数,负的自然数及零组成的集合,包括正整数、负整数和零。

整数的特点是可以进行加法、减法运算,并且加法运算封闭,即两个整数相加的结果还是一个整数。

二、整数的表示方法1. 整数可以用数轴表示,数轴上的0点表示整数0,正方向表示正整数,负方向表示负整数。

2. 整数还可以用进位制表示,根据位权大小,将整数表达为十进制形式。

三、整数的比较1. 当两个正整数进行比较时,数愈大,其数值愈大。

2. 当两个负整数进行比较时,数愈小,其数值愈大。

3. 正整数大于负整数。

四、整数的加法1. 两个正整数相加,结果仍然为正整数。

2. 两个负整数相加,结果仍然为负整数。

3. 正整数加负整数,结果为两个数的差的绝对值,符号由绝对值较大的数决定。

五、整数的减法1. 正整数减去正整数,结果可能为正整数、零或负整数。

2. 负整数减去负整数,结果可能为负整数、零或正整数。

3. 正整数与负整数相减,可以转换为两个整数的加法。

六、整数的乘法1. 两个正整数相乘,结果仍然为正整数。

2. 两个负整数相乘,结果为正整数。

3. 正整数乘以负整数,结果为负整数。

4. 0与任何整数相乘,结果都为0。

七、整数的除法1. 两个正整数相除,结果可能为正整数、零或小数。

2. 两个负整数相除,结果可能为正整数、零或小数。

3. 正整数除以负整数,结果可能为正整数、零或小数。

4. 负整数除以正整数,结果可能为负整数、零或小数。

5. 0除以任何一个整数,结果为0。

八、整数的知识点总结1. 整数的概念及表示方法。

2. 整数的比较方法。

3. 整数的加法和减法运算规则。

4. 整数的乘法和除法运算规则。

5. 整数的运算规律和性质。

6. 整数在实际生活中的应用。

以上是关于七年级数学上册第一章整数的知识点总结。

整数在数学中具有很重要的地位,是很多数学概念和运算的基础。

希望同学们通过学习整数的相关概念和运算规则,能够掌握整数的基本特性和运算方法,为后续的学习打下坚实的基础。

高一数学 第一章的知识点

高一数学 第一章的知识点

高一数学第一章的知识点第一章:数与式高一数学第一节:整式与分式1. 整式的概念与性质整式是指由常数、变量及它们的乘、积、差、商等运算所组成的代数表达式。

整式具有以下性质:- 整式是有限个单项式相加减得到的。

- 整式的次数等于其中次数最高的单项式的次数。

- 同类项是具有相同字母部分的项。

2. 分式的概念与性质分式是指由整式的除法表示的代数表达式。

分式具有以下性质:- 分式由分子与分母组成,分子分母都是整式。

- 分式的值在未知数合法取值范围内有意义。

- 分式的约分和通分。

第二节:二次根式1. 平方根的定义和性质平方根是指一个数的平方等于该数的数值,可以用√a表示,其中a为非负实数。

- 一般正数的平方根都是无理数。

- 平方根的性质:非负实数a和b,有以下性质。

- 非负实数a的平方根是唯一的非负实数。

- 平方根的运算性质,如√(a*b) = √a * √b。

2. 二次根式的定义和性质二次根式是指由非负实数的平方根及其运算所组成的表达式。

- 二次根式的性质:非负实数a、b和任意非负整数m、n,有以下性质。

- √a * √b = √(a*b)- √(a^m) = a^(m/2) (m为偶数)- √(a^m) = |a^(m/2)| (m为奇数)- √(a/b) = √a / √b第三节:一次函数与一次不等式1. 一次函数的概念与性质一次函数是指自变量的最高次数是1的函数,通常表达为f(x) = kx + b,其中k和b为常数。

- 一次函数的图像是一条直线。

- 斜率表示函数变化的趋势,截距表示函数与y轴的交点。

2. 一次不等式的概念与求解方法一次不等式是指未知数的最高次数是1的不等式,通常形式为ax + b > 0 or ax + b < 0。

- 一次不等式的解集是满足不等式的实数集合。

- 求解一次不等式的方法:根据不等式的性质进行代数运算,得出解集的范围。

第四节:二次函数与一元二次方程1. 二次函数的概念与性质二次函数是指自变量的最高次数是2的函数,通常表达为f(x)= ax^2 + bx + c,其中a、b和c为常数且a≠0。

大一数学知识点总结大全

大一数学知识点总结大全

大一数学知识点总结大全第一章整数与整式1. 整数的概念和性质2. 整数的四则运算3. 整式的概念和性质4. 整式的加减运算5. 整式的乘法运算第二章分式与分式方程1. 分式的概念和性质2. 分式的加减运算3. 分式的乘除运算4. 分式方程的解法第三章一次函数与二次函数1. 一次函数的概念和性质2. 一次函数的图像及性质3. 一次函数的斜率和截距4. 一次函数的应用问题5. 二次函数的概念和性质6. 二次函数的图像及性质7. 二次函数的最值和零点8. 二次函数的应用问题第四章平面直角坐标系与直线1. 平面直角坐标系的引入2. 直线的相关概念和性质3. 直线的方程与图像4. 直线与坐标轴的交点第五章空间几何与向量1. 空间几何的基本概念和性质2. 点、线、面的相互位置关系3. 向量的概念和性质4. 向量的加减运算5. 向量的数量积和向量积第六章三角函数与三角恒等式1. 三角函数的引入和定义2. 三角函数的性质和图像3. 三角函数的基本关系式和恒等式4. 三角函数的运算和应用第七章概率论基础1. 随机事件与样本空间2. 概率的定义与性质3. 事件的运算与概率计算4. 条件概率与独立性5. 排列与组合的基本概念第八章导数与微分1. 导数的定义和性质2. 导数的计算3. 导数的应用问题4. 微分的定义和性质5. 微分中值定理第九章不定积分与定积分1. 不定积分的引入和性质2. 基本积分公式和常见积分3. 定积分的定义和性质4. 定积分的计算和应用第十章线性代数基础1. 矩阵及其运算2. 线性方程组的解法3. 行列式的定义和性质4. 向量空间和线性变换的基本概念总结:大一数学知识点涵盖了整数与整式、分式与分式方程、一次函数与二次函数、平面直角坐标系与直线、空间几何与向量、三角函数与三角恒等式、概率论基础、导数与微分、不定积分与定积分以及线性代数基础等内容。

通过学习这些知识点,可以建立起数学思维模式和解决问题的基本方法,为后续学习和应用提供坚实的基础。

高中数学各章节知识点汇总

高中数学各章节知识点汇总

高中数学各章节知识点汇总数学作为一门科学,无论在理论研究还是实际应用中,都占据着举足轻重的地位。

在高中数学学习中,学生们需要掌握多个章节的知识点,才能够建立起系统的数学思维框架。

本文将对高中数学各章节的知识点进行汇总,以帮助学生们更好地理解并掌握这些内容。

第一章:函数与导数1. 函数的概念与性质- 函数的定义与表示方法- 奇偶函数与周期函数- 函数的单调性与最值2. 导数与导数的应用- 导数的定义与基本性质- 函数的导数与图像的关系- 导数的几何意义与物理应用第二章:数列与数学归纳法1. 数列的概念与性质- 数列的定义与表示方法- 等差数列与等比数列- 数列的通项公式与前n项和公式2. 数学归纳法的基本思想与应用- 数学归纳法的原理与步骤- 使用数学归纳法证明数学命题第三章:三角函数与解三角形1. 三角函数的概念与性质- 正弦函数、余弦函数与正切函数 - 三角函数的周期与图像- 三角函数的基本关系式2. 解三角形的基本原理与方法- 解直角三角形与一般三角形- 航向与三角函数的应用第四章:平面解析几何1. 向量的概念与性质- 向量的定义与表示方法- 向量的线性运算与数量积- 向量的几何应用2. 平面几何图形的性质与应用- 点、直线、平面的性质- 圆与椭圆的性质与方程- 直线与平面的位置关系第五章:数与函数的应用1. 数列与函数的模型建立- 序列与数列模型的建立- 函数与实际问题的建模- 数据处理与统计2. 几何与数据处理的应用- 函数的图像与几何问题- 数据处理与统计的相关概念与方法 - 概率与统计模型的建立第六章:立体几何1. 空间几何图形的性质与计算- 空间中的点、直线、面的性质- 空间几何体的计算公式- 空间几何模型的建立2. 空间解析几何的应用- 点、直线、面的位置关系- 空间几何图形的投影与旋转- 空间几何问题的解决方法总结:高中数学涵盖了函数与导数、数列与数学归纳法、三角函数与解三角形、平面解析几何、数与函数的应用以及立体几何等多个章节的知识点。

(完整版)人教版高中数学必修一第一章知识点

(完整版)人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。

知识点四:集合的表示方法集合的表示方法有列举法和描述法。

列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。

知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。

子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。

知识点六:集合的运算集合的运算包括交集和并集。

集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。

3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。

4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

高数知识点总结(上册)

高数知识点总结(上册)

高数知识点总结(上册).doc 高等数学知识点总结(上册)第一章:函数、极限与连续性1.1 函数定义:变量之间的依赖关系。

性质:单调性、奇偶性、周期性、有界性。

1.2 极限定义:函数在某一点或无穷远处的趋势。

性质:唯一性、局部有界性、保号性。

1.3 无穷小与无穷大无穷小:当自变量趋于某一值时,函数值趋于零。

无穷大:函数值趋于无限。

1.4 连续性定义:在某点的极限值等于函数值。

性质:连续函数的四则运算结果仍连续。

第二章:导数与微分2.1 导数定义:函数在某一点的切线斜率。

几何意义:曲线在某点的瞬时速度。

2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。

2.3 高阶导数定义:导数的导数,用于描述函数的凹凸性。

2.4 微分定义:函数在某点的线性主部。

第三章:导数的应用3.1 切线与法线几何意义:曲线在某点的切线和法线方程。

3.2 单调性与极值单调性:导数的符号与函数的增减性。

极值:导数为零的点可能是极大值或极小值。

3.3 曲线的凹凸性与拐点凹凸性:二阶导数的符号。

拐点:凹凸性改变的点。

第四章:不定积分4.1 不定积分的概念定义:原函数,即导数等于给定函数的函数。

4.2 基本积分公式幂函数、三角函数、指数函数、对数函数的积分。

4.3 积分技巧换元积分法:凑微分法、代换法。

分部积分法:适用于积分中存在乘积形式的函数。

第五章:定积分5.1 定积分的概念定义:在区间上的积分,表示曲线与x轴围成的面积。

5.2 定积分的性质线性:可加性、可乘性。

区间可加性:积分区间的可加性。

5.3 定积分的计算数值计算:利用微积分基本定理计算定积分。

5.4 定积分的应用面积计算:曲线与x轴围成的面积。

物理意义:质量、功、平均值等。

第六章:多元函数微分学6.1 多元函数的极限与连续性定义:多元函数在某点的极限和连续性。

6.2 偏导数与全微分偏导数:多元函数对某一变量的局部变化率。

全微分:多元函数的微分。

6.3 多元函数的极值定义:多元函数在某点的最大值或最小值。

高一数第一章知识点总结

高一数第一章知识点总结

高一数第一章知识点总结
高一数学第一章知识点总结
1. 数的分类与集合
数的分类:自然数、整数、有理数、实数、复数等。

集合的概念:元素、空集、全集等。

2. 数的运算
加法、减法、乘法、除法的基本概念与运算规则。

3. 整式与分式
整式的定义与基本性质。

分式的定义与基本性质。

4. 代数方程初步
一元一次方程与一元一次方程组的概念与解法。

一元二次方程与一元二次方程的解法。

5. 直线与函数图形初步
直线的方程及其常见应用。

函数的概念与函数图形的性质。

6. 复数
复数的定义与复数的运算规则。

7. 数列和等差数列
数列的定义与数列的常见形式。

等差数列的定义与等差数列的属性。

8. 平面向量初步
向量的定义与向量的运算。

向量的数量积与向量的性质。

9. 立体几何初步
立体几何的基本概念与性质。

平行四边形、三角形、四边形等的性质。

10. 概率初步
概率的基本概念与性质。

事件的概率计算方法。

以上是高一数学第一章的知识点总结,通过学习这些内容,可以帮助我们建立数学思维,提高数学解题能力。

在接下来的学习中,我们将进一步应用这些知识,解决更加复杂的数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法2:“第一天比第二天多看20页”可以知道20页是第一天和第二天的差。要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%—20%)
2、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,两天共看了20页,这本书一共有多少页?
等量关系式:由“两天共看了20页”可以知道第一天+等二天=20页。
4.利率:利息与本金的比值叫做利率。
列方程为:X—25%X—(25%X+10)=20
百分数应用题(四)利息的计算
1.本金:存入银行的钱叫做本金。
2.利息:取款时银行多支付的钱叫做利息。
利息=本金×利率×时间
3.20XX年10月9日以前国家规定,存款的利息要按20%的税率纳税。国债的利息不纳税。20XX年10月9日以后免收利息税。所以如无特殊说明,就不在计算利息税。
计算步骤:第一步:单位1:水:50—5=45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之几:5÷45=11.1%
4、“减少百分之几与增加百分之几”的解题方法完全相同。
5、与增加百分之几相同的还有“多百分之几”“提高百分之几”
“增长百分之几“等。
与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷单位1水的45就等于增加百分之几。
解题思路:单位1去年不知道用除法,增加用(1-25%)
算式:100÷(1-25%)
百分数应用题(三)列方程解百分数应用题
1、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,第一天比第二天多看20页,这本书一共有多少页?
解题思路:单位1一本书不知道,可以选用方程或除法来解答。
根据“第一天比第二天多看20页”可以知道第一天是多的,第二天是少的,第一天减去第二天等于多出的20页。
小学数学知识点百分数的总结
(一)百分数的基本概念
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
(二)百分数应用题
百分数应用题(一)
求增加百分之几?减少百分之几?
公式:增加百分之几=增加的部分÷单位1
减少百分之几=减少的部分÷单位1
例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
等量关系式:第一天—第二天=20页
方法1:解:设这本书一共有X页。
由“第一天看了全书的25%”可以知道第一天等于全书乘以25%,用X可以表示为25%X,由“第二天看了全书的20%”可以知道第二天等于全书乘以20%,用X可以表示为20%X.依据等量关系式“第一天—第二天=20页”可以列方程为:25%X—20%X=20
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之几:5÷45=11.1%
2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。
百分数应用题(二)
比一个数增加百分之几的数,比一个数减少百分之几的数。
例如1、矣得小学去年有80名学生,今年的学生人数比去年增加了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,增加用(1+25%)
算式:80×(1+25%)
2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,减少用(1-25%)
算式:80×(1-25%)
3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?
解题思路:单位1去年不知道用除法,增加用(1+25%)
算式:100÷(1+25%)
4、矣得小学今年有100名学生,比去年减少了25%,去年有多少名学生?
等量关系式:一本书—第一天—第二天=20页
方程法:解设这本书一共有X页,则第一天为25%X,第二天为20%X。
列方程为:X—25%X—20%X=20
算术法:20÷(1- 25%X- 20%)
4、小明看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩20页,这本书一共有多少页?
方程法:解设这本书一共有X页,则第一天为25%X,第二天为(25%X+10)页。
方程法:解:设这本书共有X页,则第一天为25%X,第二天为20%X。
方程列为:25%X+20%X=20
算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%+20%)
3、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,还剩20页,这本书一共有多少页?
相关文档
最新文档