山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考地理

合集下载

合情推理与演绎推理 课时训练

合情推理与演绎推理 课时训练

合情推理与演绎推理基础热身1.[优质试题·鹰潭一模]用“三段论”推理:任何实数的绝对值大于0,因为a是实数,所以a 的绝对值大于0.你认为这个推理( )A.大前提错误B.小前提错误C.推理形式错误D.是正确的2.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体( )A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点3.观察图K37-1中各正方形图案,则所有圆点总和S n与n的关系式为( )图K37-1A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n4.[优质试题·兰州模拟]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,….由以上式子可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1=.5.[优质试题·烟台二模]在正项等差数列中有=成立,则在正项等比数列中,类似的结论为.能力提升6.[优质试题·郑州一中调研]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.优质试题年是“干支纪年法”中的丙申年,那么优质试题年是“干支纪年法”中的( )A.丁酉年B.戊未年C.乙未年D.丁未年7.下面说法正确的是( )①数列{a n}的前三项是1,2,3,那么这个数列的通项公式为a n=n;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④8.[优质试题·临汾一中、忻州一中、长治二中、康杰中学联考]已知[x]表示不大于x的最大整数,设函数f(x)=log2,得到下列结论:结论1:当2<x<3时,f=-1.结论2:当4<x<5时,f=1.结论3:当6<x<7时,f=3.……照此规律,结论6为.9.如图K37-2甲所示,在直角三角形ABC中,AC⊥AB,AD⊥BC,D是垂足,则有AB2=BD·BC,该结论称为射影定理.如图乙所示,在三棱锥A - BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O 在△BCD内,类比直角三角形中的射影定理,则有.图K37-2难点突破10.(5分)[优质试题·郑州、平顶山、濮阳二模]设函数f(0)(x)=sin x,定义f(1)(x)=f'(0)(x),f(2)(x)=f'(1)(x),…,f(n)(x)=f'(n-1)(x),则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(优质试(15°)的值是( )题)A. B.-C.0D.111.(5分)[优质试题·江南十校二模]某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向.有下列判断:①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.课时作业(三十七)1.A[解析]实数0的绝对值等于0,不大于0,大前提错误.2.B[解析]将三角形的边类比为四面体的面,因此三边的中点类比成各正三角形的中心,故选B.3.A[解析]观察各个正方形图案可知其圆点的个数依次为4,8,12,16,…,所以各图案中圆点的个数构成一个首项为4,公差为4的等差数列,因此S n=(n-1)×4+--×4=2n2-2n,故选A.4.n2[解析]第1个式子和为1,第2个式子和为4,第3个式子和为9,第4个式子和为16,故第n个式子和为n2.5.=[解析]结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列中,类似的结论为=.6.A[解析]由题意有,优质试题年是丙申年,则优质试题年是丁酉年,故选A.7.D[解析]所给条件无法确定整个数列满足a n=n,①错误;由平面三角形的性质推测空间四面体的性质,是合情推理,②正确;类比时,平面中的三角形与空间中的三棱锥作为类比对象较为合适,③错误;所给命题满足三段论推理,但其结论确实错误,④正确.故选D.8.当12<x<13时,f(x)max=9[解析]结论1:当2<x<3时,f(x)max=-1=2×1-3.结论2:当4<x<5时,f(x)max=1=2×2-3.结论3:当6<x<7时,f(x)max=3=2×3-3.根据规律,可以归纳得出,结论6:当12<x<13 时,f(x)max=2×6-3=9.故答案为:当12<x<13 时,f(x)max=9.9.=S△BCO·S△BCD[解析]从题中条件不难发现:图甲中的AC⊥AB对应图乙中的AD⊥平面ABC,图甲中的AD⊥BC对应图乙中的AO⊥平面BCD,因此在类比的结论中,图甲中的边AB对应图乙中的△ABC,图甲中的BC对应图乙中的△BCD,图甲中的BD对应图乙中的△BOC.故有=S△BCO·S△BCD.10.A[解析]由题设可得f(1)(x)=cos x,f(2)(x)=-sin x,f(3)(x)=-cos x,f(4)(x)=sin x,f(5)(x)=cos x,显然f(n)(x)=f(n+4)(x).又f(1)(x)+f(2)(x)+f(3)(x)+f(4)(x)=0,且优质试题=504×4+1,所以f(1)+f(2)+f(3)+…+f(优质试题)= f(1)(15°)=cos 15°=,故选A.11.①③[解析]由题设得,丁所在方向是A方向,如果丙所在方向不是D方向,那么丁所在方向就不是A方向,故丙所在方向是D方向,从而乙所在方向是C方向,甲所在方向是B方向,故①③正确.。

2015届高考数学一轮总复习 阶段性测试题12(综合素质能力测试)

2015届高考数学一轮总复习 阶段性测试题12(综合素质能力测试)

阶段性测试题十二(综合素质能力测试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·海南省文昌市检测)设函数y =x -2的定义域为M ,集合N ={y |y =x 2,x ∈R },则M ∩N 等于( )A .∅B .NC .[1,+∞)D .M[答案] D[解析] 由题意知,M ={x |x ≥2},N ={y |y ≥0},∴M ∩N =M ,故选D.(理)(2014·泉州实验中学期中)设集合M ={x |x 2-2x -3<0},N ={x |log 12x <0},则M ∩N 等于( )A .(-1,1)B .(1,3)C .(0,1)D .(-1,0)[答案] B[解析] 由题意知M ={x |-1<x <3},N ={x |x >1},∴M ∩N ={x |1<x <3}. 2.(2014·泸州市一诊)下列命题中的假命题是( ) A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x >1D .∃x ∈R ,tan x =2[答案] B[解析] 当x =1时,(x -1)2=0,∴B 为假命题.3.(文)(2014·哈六中期中)已知等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 11=12,则S 11的值为( )A .66B .44C .36D .33[答案] B[解析] ∵a 2+a 5+a 11=3a 1+15d =12, ∴a 6=a 1+5d =4,∴S 11=11a 6=44.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( )A .53B .54C .55D .109 [答案] C[解析] ∵a 1=1,a n =a n -1+2n ,∴a 7=(a 7-a 6)+(a 6-a 5)+(a 5-a 4)+…+(a 2-a 1)+a 1=2×7+2×6+…+2×2+1=55.4.(文)(2014·华安、连城、永安、漳平、泉港一中、龙海二中六校联考)如图是一个简单空间几何体的三视图,其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是( )A .4+4 3B .12C .4 3D .8[答案] B[解析] 由三视图知,该几何体是正四棱锥,底面边长为2,高为3,∴表面积S =22+4×(12×2×2)=12,故选B.(理)(2014·湖南长沙实验中学、沙城一中联考)如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为( )A .2 3 B. 3 C .4 D .2[答案] A[解析] 由正视图和俯视图可知,其侧视图矩形的长和宽分别为3和2,∴其面积为S =2 3. 5.(文)(2014·绵阳市南山中学检测)在矩形ABCD 中,AB =2,AD =3,如果向该矩形内随机投一点P ,那么使得△ABP 与△ADP 的面积都不小于1的概率为( )A.49B.13C.12D.25 [答案] A[解析] 在矩形内取一点Q ,由点Q 分别向AD 、AB 作垂线,垂足依次为E 、F ,由S △ABQ =S △ADQ =1知,QF =1,QE =23,设直线EQ 、FQ 分别交BC 、CD 于M 、N ,则当点P 落在矩形QMCN 内时,满足要求,∴所求概率P =S 矩形QMCNS 矩形ABCD =(3-1)×(2-23)3×2=49.(理)(2014·山西省太原五中月考)若(x +2x 2)n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .180B .120C .90D .45[答案] A[解析] ∵只有第6项的二项式系数最大,∴n =10, ∴展开式的通项T r +1=C r 10·(x )10-r ·(2x 2)r =2r ·C r10·x 10-5r 2 ,令10-5r 2=0得,r =2,∴常数项为T 3=22·C 210=180. 6.(2014·河南淇县一中模拟)下图是一个算法框图,则输出的k 的值是()A .3B .4C .5D .6 [答案] C[解析] 解法1:k =1时,k 2-5k +4=0,不满足条件;k =2时,k 2-5k +4=-2不满足条件;k =3时,k 2-5k +4=-2不满足条件;k =4时,k 2-5k +4=0不满足条件;k =5时,k 2-5k +4=0>0满足条件,此时输出k 的值为5.解法2:由k 2-5k +4>0得k <1或k >4,∵初值k =1,由“k =k +1”知步长为1,∴k ∈N ,∴满足k 2-5k +4>0的最小k 值为5,故当k =5时,满足程序条件,输出k 的值.7.(2014·山东省菏泽市期中)已知函数f (x )在实数集R 上具有下列性质:①f (x +1)是偶函数;②f (x +2)=-f (x );③当1≤x 1≤x 2≤3时,(f (x 2)-f (x 1))(x 2-x 1)<0,则f (2011),f (2012),f (2013)的大小关系为( )A .f (2011)>f (2012)>f (2013)B .f (2012)>f (2011)>f (2013)C .f (2013)>f (2011)>f (2012)D .f (2013)>f (2012)>f (2011) [答案] D[解析] ∵f (x +2)=-f (x ),∴f (x +4)=f (x ),∴f (x )的周期为4,∴f (2011)=f (3),f (2013)=f (1),∵f (x +1)是偶函数,∴f (x )的图象关于直线x =1对称,∴f (2012)=f (0)=f (2),∵1≤x 1<x 2≤3时,(f (x 2)-f (x 1))(x 2-x 1)<0,∴f (x )在[1,3]上单调递减,∴f (1)>f (2)>f (3),∴f (2013)>f (2012)>f (2011),故选D.8.(2014·海南省文昌市检测)过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A .a <-3或1<a <32B .1<a <32C .a >1或a <-3D .-3<a <1或a >32[答案] A[解析] 由条件知点A 在圆外,∴⎩⎪⎨⎪⎧a 2+a 2-2a 2+a 2+2a -3>0,4a 2-4(a 2+2a -3)>0, ∴⎩⎪⎨⎪⎧a <-3或a >1,a <32,∴a <-3或1<a <32,故选A.9.(文)(2014·北京东城区联考)要得到函数y =sin(2x -π4)的图象,只要将函数y =sin2x 的图象( )A .向左平移π4单位B .向右平移π4单位C .向右平移π8单位D .向左平移π8单位[答案] C[解析] ∵y =sin(2x -π4)=sin[2(x -π8)],∴将y =sin2x 的图象右移π8个单位即可得到y =sin(2x -π4)的图象.(理)(2014·开滦二中期中)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =cos 2x -sin 2x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度[答案] C[解析] ∵f (x )=a ·b =cos x sin x +sin x cos x =sin2x ,y =cos 2x -sin 2x =cos2x =sin(π2+2x )=sin2(x +π4),∴要得到函数y =cos 2x -sin 2x 的图象,只需将函数y =f (x )的图象向左平移π4个单位长度. 10.(文)(2014·河北冀州中学期中)在平面直角坐标系中,A (3,1),B 点是以原点O 为圆心的单位圆上的动点,则|OA →+OB →|的最大值是( )A .4B .3C .2D .1 [答案] B[解析] 由条件知|OA →|=2,|OB →|=1,∵|OA →+OB →|2=|OA →|2+|OB →|2+2OA →·OB →=5+2OA →·OB →,∴要使|OA →+OB →|最大,应使OA →·OB →取最大值,又|OA →|,|OB →|为定值,∴当OA →与OB →同向时,|OA →+OB →|取到最大值,此时OA →·OB →=2,∴|OA →+OB →|max =3,故选B.(理)(2014·华师一附中月考)定义方程f (x )=f ′(x )的实数根x 0叫做函数的“新驻点”,若函数g (x )=sin x (0<x <π),h (x )=ln x (x >0),φ(x )=x 3(x ≠0)的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a >b >cB .c >b >aC .a >c >bD .b >a >c[答案] B[解析] g ′(x )=cos x ,h ′(x )=1x ,φ′(x )=3x 2,由sin x =cos x,0<x <π得x =π4,∴a =π4;由x 3=3x 2,x ≠0得x =3,∴c =3. 由ln x =1x 及x >0得x >1,0<1x <1,∴1<x <e ,即1<b <e , ∵π4<1<b <e<3,∴a <b <c . 11.(2014·山西曲沃中学期中)双曲线C 的左右焦点分别为F 1,F 2,且F 2恰为抛物线y 2=4x 的焦点,设双曲线C 与该抛物线的一个交点为A ,若△AF 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为( )A. 2 B .1+ 2 C .1+ 3D .2+ 3[答案] B[解析]y2=4x的焦点F2(1,0),∵|AF2|=|F1F2|=2,∴由抛物线的定义知A点的横坐标为1,即AF2⊥x轴,从而|AF1|=22,∴2a=|AF1|-|AF2|=22-2,∴a=2-1,∴e=ca=12-1=2+1,故选B.12.(文)(2014·江西白鹭洲中学期中)函数f(x)=x-sin x(x∈R)的部分图象可能是()[答案] A[解析]首先f(x)为奇函数,排除D;其次由f′(x)=1-cos x≥0知f(x)为增函数,排除C;又在(0,π)上y=cos x单调递减,从而f′(x)=1-cos x单调递增,即在(0,π)上f(x)的切线斜率逐渐增大,曲线向下凸,排除B,选A.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)函数y=3x cos3x9x-1的图象大致为()[答案] D[解析] 对于f (x )=3x cos3x9x -1,有f (-x )=3-x cos (-3x )9-x -1=3x cos3x 1-9x=-f (x ),∴f (x )为奇函数,排除A ;当x 略大于0时,y >0,排除B ;由3x cos3x 9x -1=0得3x =k π+π2(k ∈Z ),∴x =π6+k π3,∴f (x )的零点等间隔出现,排除C ,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·抚顺二中期中)已知α∈(π2,π),sin α=35,则tan(α-π4)=________.[答案] -7[解析] ∵α∈(π2,π),sin α=35,∴cos α=-45,∴tan α=-34,∴tan(α-π4)=tan α-tan π41+tan α·tan π4=-34-11+(-34)×1=-7.(理)(2014·黄冈中学、荆州中学联考)在△ABC 中,b cos C +c cos Ba =________.[答案] 1[解析] 由正弦定理知,b cos C +c cos B a =sin B cos C +sin C cos B sin A =sin (B +C )sin A=sin (π-A )sin A=1.14.(文)(2014·韶关市曲江一中月考)设实数x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0x ≥y2x -y ≤1,则3x +2y 的最大值是________.[答案] 5[解析] 作出可行域如图,作直线l 0:3x +2y =0,平移l 0得直线l :3x +2y =u ,当l 经过点A (1,1)时,u 取最大值,u max =3×1+2×1=5.(理)(2014·山东省博兴二中质检)已知x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0x +y -1≥03x -y -3≤0,则2x -y 的最大值为________.[答案] 2[解析] 作出可行域如图,作直线l 0:2x -y =0,平移l 0得直线l :2x -y =t ,当平移到l 经过点A (1,0)时,t 取最大值,t max =2.[点评] 当直线l :2x -y =t 的纵截距最小时,t 取最大值,故t 最大时,直线l 应过A (1,0)点,而不是B (0,1)点.15.(文)(2014·吉林省实验中学一模)已知奇函数f (x )是定义在R 上的增函数,数列{x n }是一个公差为2的等差数列,且满足f (x 8)+f (x 9)+f (x 10)+f (x 11)=0,则x 2014=________.[答案] 4009[解析] ∵{x n }是公差为2的等差数列, ∴x 8<x 9<x 10<x 11,∵奇函数f (x )是定义在R 上的增函数, ∴f (x 8)<f (x 9)<f (x 10)<f (x 11), 又∵x 8+x 11=x 9+x 10, f (x 8)+f (x 9)+f (x 10)+f (x 11)=0, ∴x 8<x 9<0且x 11>x 10>0,∴x 10=-x 9,x 11=-x 8,∴x 9=-1,x 2014=x 9+2·(2014-9)=4009.(理)(2014·吉林市摸底)边长是22的正△ABC 内接于体积是43π的球O ,则球面上的点到平面ABC 的最大距离为________.[答案]433[解析] 因为球O 的体积为43π,即4π3r 3=43π,所以r =3,设正△ABC 的中心为D ,连接OD ,AD ,OA ,则OD ⊥平面ABC ,且OA =3,AD =263, 所以OD =(3)2-(263)2=33,所以球面上的点到平面ABC 的最大距离为33+r =433. 16.(2014·开滦二中期中)给出下列四个命题: ①函数f (x )=ln x -2+x 在区间(1,e)上存在零点; ②若f ′(x 0)=0,则函数y =f (x )在x =x 0处取得极值; ③若m ≥-1,则函数y =log 12(x 2-2x -m )的值域为R ;④“a =1”是“函数f (x )=a -e x1+a e x 在定义域上是奇函数”的充分不必要条件.其中正确的是________. [答案] ①③④[解析] ①∵f (1)·f (e)=-1·(e -1)<0,又f (x )在(1,e)上的图象连续不断,∴f (x )在(1,e)上存在零点,故①正确;②f ′(x 0)=0是f (x )在x =x 0处取得极值的必要条件,但不是充分条件,②为假命题;③要使函数y =log 12 (x 2-2x -m )的值域为R ,应使x 2-2x +m 取遍所有正数,∴Δ=4+4m ≥0,∴m ≥-1,故③正确;④a =1时,f (x )=1-e x 1+e x ,f (-x )=1-e -x 1+e x =e x -1e x +1=-f (x ),∴f (x )为奇函数;f (x )=a -e x1+a e x为奇函数时,f (-x )=-f (x )恒成立,∴a -e -x 1+a e -x =-a -e x 1+a e x ,即a e x -1e x +a =e x -a 1+a ex ,∴e 2x -a 2=a 2e 2x -1,∴(a 2-1)(e 2x +1)=0,∴a 2-1=0,∴a =±1,∴④正确,故填①③④.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且m =(sin A +sin B +sin C ,sin C ),n =(sin B ,sin B +sin C -sin A ),若m ∥n .(1)求A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值及此时B 的值. [解析] (1)因为m ∥n ,所以(sin A +sin B +sin C )(sin B +sin C -sin A )=sin B sin C , 根据正弦定理得,(a +b +c )(b +c -a )=bc , 即a 2=b 2+c 2+bc ,由余弦定理得,cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π), 所以A =23π.(2)由正弦定理及a =3得,S =12bc sin A =12·a sin Bsin A·a sin C =3sin B sin C ,所以S +3cos B cos C =3(cos B cos C +sin B sin C ) =3cos(B -C ),所以当B =C 时,即B =C =π6时,S +3cos B cos C 取最大值 3.(理)(2014·西安市长安中学期中)已知平面向量a =(cos φ,sin φ),b =(cos x ,sin x ),c =(sin φ,-cos φ),其中0<φ<π,且函数f (x )=(a ·b )cos x +(b ·c )sin x 的图象过点(π6,1).(1)求φ的值;(2)将函数y =f (x )图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数y =g (x )的图象,求函数y =g (x )在[0,π2]上的最大值和最小值.[解析] (1)∵a ·b =cos φcos x +sin φsin x =cos(φ-x ), b ·c =cos x sin φ-sin x cos φ=sin(φ-x ), ∴f (x )=(a ·b )cos x +(b ·c )sin x =cos(φ-x )cos x +sin(φ-x )sin x =cos(φ-x -x )=cos(2x -φ), 即f (x )=cos(2x -φ), ∴f (π6)=cos(π3-φ)=1,而0<φ<π,∴φ=π3.(2)由(1)得,f (x )=cos(2x -π3),于是g (x )=cos[2(12x )-π3],即g (x )=cos(x -π3).当x ∈[0,π2]时,-π3≤x -π3≤π6,所以12≤cos(x -π3)≤1,即当x =0时,g (x )取得最小值12,当x =π3时,g (x )取得最大值1.18.(本小题满分12分)(文)(2014·韶关市曲江一中月考)等差数列{a n }中,a 3=3,前7项和S 7=28.(1)求数列{a n }的公差d ;(2)等比数列{b n }中,b 1=a 2,b 2=a 4,求数列{b n }的前n 项和T n (n ∈N *). [解析] (1)S 7=(a 1+a 7)×72=7a 4=28,∴a 4=4,又∵a 3=3,∴d =a 4-a 3=1.(2)由(1)知数列{a n }是以1为首项,1为公差的等差数列, ∴a n =1+(n -1)=n , ∴b 1=2,b 2=4,∴数列{b n }的公比q =b 2b 1=2,∴T n =b 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.(理)(2014·开滦二中期中)已知数列{a n }中,a 1=2,a n +1=a n +cn ,(c 是不为0的常数,n ∈N *),且a 1,a 2,a 3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =a n -cn ·c n ,求数列{b n }的前n 项和T n .[解析] (1)由已知a 2=2+c ,a 3=2+3c , 则(2+c )2=2(2+3c ),∴c =2,∴a n +1=a n +2n , n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2×1+2×2+…+2×(n -1)=n 2-n +2, n =1时,a 1=2也适合上式,因此a n =n 2-n +2.(2)b n =a n -2n ·2n =n -12n ,则T n =b 1+b 2+…+b n =02+122+223+…+n -22n -1+n -12n , 12T n =022+123+224+…+n -22n +n -12n +1,用错位相减法可求得T n =1-n +12n . 19.(本小题满分12分)(文)(2014·泗阳县模拟)直三棱柱ABC -A 1B 1C 1中,AC =BC =BB 1=1,AB 1= 3.(1)求证:平面AB 1C ⊥平面B 1CB ; (2)求三棱锥A 1-AB 1C 的体积.[解析] (1)直三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC ,∴BB 1⊥AB ,BB 1⊥AC , 又由于AC =BC =BB 1=1,AB 1=3,∴AB =2, 则由AC 2+BC 2=AB 2可知,AC ⊥BC , ∴AC ⊥平面B 1CB ,∴平面AB1C⊥平面B1CB.(2)∵BC⊥AC,BC⊥CC1,∴BC⊥平面ACC1A1,∴B到平面ACC1A1的距离d=1,∵BB1∥平面ACC1A1,∴B1到平面A1AC的距离为1,∴三棱锥A1-AB1C的体积=13×(12×1×1)×1=16.(理)(2014·海南省文昌市检测)如图,已知ABCD为平行四边形,∠A=60°,AF=2FB,AB=6,点E在CD上,EF∥BC,BD⊥AD,BD与EF相交于点N.现将四边形ADEF沿EF折起,使点D在平面BCEF上的射影恰在直线BC上.(1)求证:BD⊥平面BCEF;(2)求折后直线DN与直线BF所成角的余弦值;(3)求三棱锥N-ABF的体积.[解析](1)由条件知EF⊥DN,EF⊥BN,∴EF⊥平面BDN,∴平面BDN⊥平面BCEF,∵BN=平面BDN∩平面BCEF,∴D在平面BCEF上的射影在直线BN上,又D在平面BCEF上的射影在直线BC上,∴D在平面BCEF上的射影即为点B,故BD⊥平面BCEF.(2)法一.如图,建立空间直角坐标系,∵在原平面图形中AB=6,∠DAB=60°,∴BD=33,∵EF∥AD,AF=2FB,∴DN=2BN,∴BN =3,DN =23,∴折后立体图形中BD =3,BC =3, ∴N (0,3,0),D (0,0,3),C (3,0,0),NF →=13CB →=(-1,0,0),∴BF →=BN →+NF →=(-1,3,0),DN →=(0,3,-3), ∴cos 〈BF →,DN →〉=BF →·DN →|BF →|·|DN →|=34,∴折后直线DN 与直线BF 所成角的余弦值为34. 法二:在线段BC 上取点M ,使BM =NF ,则MN ∥BF , ∴∠DNM 或其补角为DN 与BF 所成的角.又MN =BF =2,DM =BD 2+BM 2=10,DN =2 3. ∴cos ∠DNM =DN 2+MN 2-DM 22DN ·MN =34,∴折后直线DN 与直线BF 所成角的余弦值为34. (3)∵AD ∥EF ,∴A 到平面BNF 的距离等于D 到平面BNF 的距离, ∴V N -ABF =V A -BNF =V D -BNF =13S △BNF ·BD =32,即所求三棱锥的体积为32. 20.(本小题满分12分)(文)(2014·屯溪一中期中)设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a 、b ∈R .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)设g (x )=f ′(x )e -x ,求函数g (x )的极值.[解析] ∵f (x )=x 3+ax 2+bx +1,∴f ′(x )=3x 2+2ax +b , ∵f ′(1)=2a ,∴3+2a +b =2a , ∵f ′(2)=-b ,∴12+4a +b =-b , ∴a =-32,b =-3,∴f (x )=x 3-32x 2-3x +1,f ′(x )=3x 2-3x -3,∴f (1)=-52,f ′(1)=-3,∴切线方程为y -(-52)=-3(x -1),即6x +2y -1=0.(2)∵g (x )=(3x 2-3x -3)e -x ,∴g ′(x )=(6x -3)e -x +(3x 2-3x -3)·(-e -x ),∴g ′(x )=-3x (x -3)e -x ,∴当0<x <3时,g ′(x )>0,当x >3时,g ′(x )<0,当x <0时,g ′(x )<0,∴g (x )在(-∞,0)上单调递减,在(0,3)上单调递增,在(3,+∞)上单调递减, 所以g 极小(x )=g (0)=-3,g 极大(x )=g (3)=15e -3.(理)(2014·福州市八县联考)永泰某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入x (x ≥10)万元之间满足:y =f (x )=ax 2+10150x -b ln x 10,a ,b 为常数.当x =10万元时,y =19.2万元;当x =30万元时,y =50.5万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6).(1)求f (x )的解析式;(2)求该景点改造升级后旅游利润T (x )的最大值.(利润=旅游增加值-投入). [解析] (1)由条件可得⎩⎨⎧a ×102+10150×10-b ln1=19.2,a ×302+10150×30-b ln3=50.5,解得a =-1100,b =1, 则f (x )=-x 2100+10150x -ln x10(x ≥10).(2)T (x )=f (x )-x =-x 2100+5150x -ln x10(x ≥10),则T ′(x )=-x 50+5150-1x =-(x -1)(x -50)50x ,令T ′(x )=0,则x =1(舍)或x =50,当x ∈(10,50)时,T ′(x )>0,因此T (x )在(10,50)上是增函数; 当x ∈(50,+∞)时,T ′(x )<0,因此T (x )在(50,+∞)上是减函数, ∴当x =50时,T (x )取最大值.T (50)=-502100+5150×50-ln 5010=24.4(万元).即该景点改造升级后旅游利润T (x )的最大值为24.4万元.21.(本小题满分12分)(文)(2014·长沙市重点中学月考)某数学老师对本校2014届高三学生某次联考的数学成绩进行分析,按进行分层抽样抽取了20名学生的成绩,分数用茎叶图记录如下:得到频率分布表如下:; (2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.[解析] (1)由茎叶图可知分数在[50,70)范围内的有2人,在[110,130)范围内的有3人, ∴a =220=0.1,b =3从茎叶图可知分数在[90,150]范围内的有13人, 所以估计全校数学成绩的及格率为1320=65%.(2)设A 表示事件“大于等于110分的学生中随机选2名学生得分,平均得分大于等于130”,由茎叶图可知大于等于110分有5人,记这5人分别为a ,b ,c ,d ,e ,则选取学生的所有可能结果为:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),基本事件数为10,事件“2名学生的平均得分大于等于130”,也就是“这两个学生的分数之和大于等于260”,所有可能结果为:(118,142),(128,136),(128,142),(136,142),共4种情况,基本事件数为4,所以P (A )=410=25.(理)(2014·山西省太原五中月考)某数学老师对本校2013届高三学生的高考数学成绩按进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:(1)求表中a ,b 的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150]内为及格);(2)从成绩在[100,130)范围内的学生中随机选4人,设其中成绩在[100,110)内的人数为X ,求X 的分布列及数学期望.[解析] (1)由茎叶图可知分数在[50,70)范围内的有2人,在[110,130)范围内的有3人, ∴a =220=0.1,b =3;分数在[70,90)范围内的人数为20×0.25=5,结合茎叶图可得分数在[70,80)内的人数为2,所以分数在[90,100)范围内的学生人数为4,故数学成绩及格的学生为13人,所以估计这次考试全校学生数学成绩的及格率为1320×100%=65%.(2)由茎叶图可知分数在[100,130)范围内的有7人,分数在[100,110)范围内的有4人,则随机变量X 的所有可能取值为1,2,3,4.相应的概率为:P (X =1)=C 14C 33C 47=435;P (X =2)=C 24C 23C 47=1835;P (X =3)=C 34C 13C 47=1235;P (X =4)=C 44C 03C 47=135. 随机变量X 的分布列为:E (X )=1×435+2×1835+3×1235+4×135=167.22.(本小题满分14分)(文)(2014·天津市六校联考)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程; (2)若OA →⊥OB →,求k 的值.[解析] (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得,(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,∴x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0,化简得-4k 2+1=0,∴k =±12.(理)(2014·江西白鹭洲中学期中)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为23,离心率为32.(1)求椭圆方程;(2)设过椭圆顶点B (0,b ),斜率为k 的直线交椭圆于另一点D ,交x 轴于点E ,且|BD |,|BE |,|DE |成等比数列,求k 2的值.[解析] (1)由已知2c =23,c a =32.解得a =2,c =3, ∴b 2=a 2-c 2=1, ∴椭圆的方程为x 24+y 2=1.(2)由(1)得过B 点的直线方程为y =kx +1, 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +1,消去y 得(4k 2+1)x 2+8kx =0,∴x D =-8k1+4k 2,y D =1-4k 21+4k 2,依题意k ≠0,k ≠±12.∵|BD |,|BE |,|DE |成等比数列,∴|BE |2=|BD ||DE |, ∴b -y D =|BE ||DE |=|BD ||BE |=b -y Db ,∵b =1,∴y 2D -y D -1=0,解得y D =1-52,∴1-4k 21+4k2=1-52,解得k 2=2+54, ∴当|BD |,|BE |,|DE |成等比数列时,k 2=2+54.。

高考语文一轮复习专题15:鉴赏诗歌的表达技巧(讲案) 人教版高三总复习

高考语文一轮复习专题15:鉴赏诗歌的表达技巧(讲案)  人教版高三总复习

高考语文一轮复习专题15:鉴赏诗歌的表达技巧(讲案)人教版高三总复习专题15:鉴赏诗歌的表达技巧(讲案)目标明讲1.了解鉴赏诗歌表达技巧的基本题型及命题规律。

2.掌握鉴赏诗歌表达技巧的基本方法,准确鉴赏诗歌中的表达技巧。

考点详讲◇考点一:修辞手法【真题回放】1.【2016年高考上海卷】阅读下面的诗歌,完成后面题目。

(8分)野望(唐)杜甫西山白雪三城戍①,南浦清江万里桥②。

海内风尘诸弟隔,天涯涕泪一身遥。

惟将迟暮供多病,未有涓埃③答圣朝。

跨马出郊时极目,不堪人事日萧条。

【注】①三城戍:西山三城的堡垒,三城,与吐蕃临界,为蜀边要塞。

②南浦句:南浦,泛指送别之地。

万里桥,在成都杜甫草堂的东边。

③涓埃:细流与微尘,比喻微小。

(1)下列各组词语不符合对仗要求的一项是()(1分)A.第一、二句中的“白雪”与“清江”B.第三、四句中的“诸弟”与“一身”C.第五、六句中的“供多病”与“答圣朝”D.第七、八句中的“时极目”与“日萧条”(2)从“切合题目”的角度分析本诗,恰当的一项是()。

(2分)A.第一、二句中的“西山”“南浦”切合“野”字。

B.第三、四句“海内”“天涯”切合“野望“二字。

C.第五、六句中的“迟暮”“涓埃”切合“望“字。

D.第七句中的“出郊”“极目”切合“野望”二字。

(3)全诗是怎样表现作者的情感的?请结合具体诗句加以赏析。

(5分)2.【2016年高考山东卷】阅读下面的元曲,回答问题。

(8分)水仙子.舟中孙周卿孤舟夜泊洞庭边,灯火青荧对客船,朔风吹老梅花片。

推开篷雪满天。

诗豪与风雪争先,雪片与风鏖战,诗和雪缴缠。

一笑琅然。

(1)分析“诗豪与风雪争先,雪片与风鏖战,诗和雪缴缠”使用的两种修辞手法。

(4分)(2)结合作品,简要分析作者的感情变化。

(4分)【规律探秘】高考对于修辞手法的考查,一般要求结合具体内容作相应的具体分析,而不能泛泛而谈。

高考对修辞手法的考查一般分两个层面,一是辨认修辞格,二是说明其表达效果。

2015届高考数学一轮总复习 阶段性测试题8(平面解析几何)

2015届高考数学一轮总复习 阶段性测试题8(平面解析几何)

阶段性测试题八(平面解析几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·山东省博兴二中质检)“m =-1”是“直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 若两直线垂直,则3m +m (2m -1)=0,∴m =0或-1,故选A.2.(文)(2014·三峡名校联盟联考)直线x -y +1=0与圆(x -1)2+y 2=2的位置关系是( ) A .相离 B .相切C .相交且过圆心D .相交但不过圆心[答案] B[解析] 圆心C (1,0)到直线的距离d =|1-0+1|2=2,∴选B.(理)(2014·天津市六校联考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)[答案] C[解析] 由条件知,|a -0+1|2≤2,∴-3≤a ≤1,故选C.3.(2014·韶关市曲江一中月考)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414B.324C.32D.43[答案] C[解析] 由条件知,a 2+5=9,∴a 2=4,∴e =c a =32.4.(2014·山西曲沃中学期中)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] 若方程mx 2+ny 2=1的曲线是椭圆,则m >0,n >0,从而mn >0,但当mn >0时,可能有m =n >0,也可能有m <0,n <0,这时方程mx 2+ny 2=1不表示椭圆,故选B.5.(文)(2014·云南景洪市一中期末)点P (2,-1)为圆(x -1)2+y 2=25内一条弦AB 的中点,则直线AB 的方程为( )A .x +y -1=0B .2x +y -3=0C .x -y -3=0D .2x -y -5=0 [答案] C[解析] 圆心C (1,0),由条件知PC ⊥AB ,∴k AB =-1k PC=1,∴直线AB 的方程为y -(-1)=1×(x-2),即x -y -3=0.(理)(2014·银川九中一模)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2 [答案] B[解析] 设圆心C (x 0,-x 0),则 |x 0-(-x 0)|2=|x 0-(-x 0)-4|2, ∴x 0=1,∴圆心C (1,-1),半径r =2, 方程为(x -1)2+(y +1)2=2.6.(2014·广东执信中学期中)已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A.x 2144+y 2128=1或x 2128+y 2144=1 B.x 26+y 24=1 C.x 236+y 232=1或x 232+y 236=1 D.x 24+y 26=1或x 26+y 24=1 [答案] C[解析] 由条件知a =6,e =c a =13,∴c =2,∴b 2=a 2-c 2=32,故选C.7.(2014·云南景洪市一中期末)从抛物线y 2=4x 图象上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线焦点为F ,则△MPF 的面积为( )A .10B .8C .6D .4[答案] A[解析] 设P (x 0,y 0),∵|PM |=5,∴x 0=4,∴y 0=±4, ∴S △MPF =12|PM |·|y 0|=10.8.(文)(2014·河南淇县一中模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2[答案] B[解析] 由条件知,|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c , 由条件知,(2c )2=(a -c )·(a +c ),∴a 2=5c 2,∴e =55. (理)(2014·抚顺二中期中)在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318[答案] C[解析] 设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x ,由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴c =c a =2c 2a =x 83x =38. 9.(2014·威海期中)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥1,x +y ≥1,2x -y ≤4,则z =yx的最大值为( )A.32 B.23 C.52 D.25 [答案] B[解析] 不等式组⎩⎪⎨⎪⎧x -y ≥1,x +y ≥1,2x -y ≤4表示的平面区域为图中阴影部分,z =yx表示平面区域内的点P (x ,y )与原点连线的斜率,∴k OA ≤yx≤k OB ,∵k OA =-2353=-25,k OB =23,故-25≤y x ≤23,选B.10.(文)(2014·山东省博兴二中质检)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为2,且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于( )A. 2B. 3 C .2 D .2 3[答案] B[解析] ∵抛物线y 2=43x 的焦点(3,0)为双曲线的右焦点,∴c =3, 又ba=2,结合a 2-b 2=c 2,得e =3,故选B. (理)(2014·浙北名校联盟联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,作与实轴平行的直线,交两渐近线于M 、N 两点,若PM →·PN →=2b 2,则该双曲线的离心率为( )A.63 B. 3 C.62D. 2 [答案] C[解析] 由条件知,双曲线两渐近线方程为y =±b a x ,设P (x 0,y 0),则x 20a 2-y 20b 2=1,∴x 20-a 2y 20b2=a 2,由y =y 0与y =±b a x 得M (-ay 0b ,y 0),N (ay 0b ,y 0),∵PM →·PN →=(-ay 0b -x 0,0)·(ay 0b -x 0,0)=x 20-a 2y 20b2=a 2=2b 2,又b 2=c 2-a 2,∴3a 2=2c 2,∴e =c a =62.11.(2014·山西曲沃中学期中)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17 [答案] A[解析] ⊙C 1的圆心C 1(2,3),半径r =1,⊙C 2的圆心C 2(3,4),半径R =3,设E 为x 轴上任一点,EC 1交⊙C 1于A ,EC 2交⊙C 2于B ,则|EA |+|EB |=|EC 1|+|EC 2|-4为E 到⊙C 1与⊙C 2上的点的距离之和的最小值,而|EC 1|+|EC 2|的最小值为|C 1′C 2|(其中C 1′为C 1关于x 轴的对称点),∴当P 为直线C 1′C 2:7x -y -17=0与x 轴的交点(177,0)时,|PM |+|PN |取到最小值,|PC 1|+|PC 2|-4=(177-2)2+9+(177-3)2+16-4=1527+2027-4=52-4,故选A. 12.(2014·海南省文昌市检测)设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48[答案] C[解析] 由3|PF 1|=4|PF 2|知|PF 1|>|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=8,|PF 2|=6,又c 2=a 2+b 2=1+24=25,∴c =5,∴|F 1F 2|=10,∴△PF 1F 2为直角三角形,S △PF1F 2=12|PF 1||PF 2|=24. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·西安市长安中学期中)已知椭圆x 2+ky 2=3k (k >0)的一个焦点与抛物线y 2=12x 的焦点重合,则该椭圆的离心率是________.[答案]32[解析] 抛物线的焦点为F (3,0),椭圆的方程为:x 23k +y 23=1,∴3k -3=9,∴k =4,∴离心率e=323=32. 14.(2014·浙北名校联盟联考)已知直线l 与圆O :x 2+y 2=1在第一象限内相切于点C ,并且分别与x ,y 轴相交于A 、B 两点,则|AB |的最小值为________.[答案] 2[解析] 设A (a,0),B (0,b ),则a >0,b >0,l :x a +yb =1,即bx +ay -ab =0, ∵l 与⊙O 相切,∴ab a 2+b2=1,∴a 2+b 2=a 2b 2, ∵a 2+b 2≥2ab ,∴(a 2+b 2)2≥4a 2b 2=4(a 2+b 2), ∴a 2+b 2≥4,∴a 2+b 2≥2,即|AB |的最小值为2.15.(文)(2013·泗阳县模拟)两个正数a ,b 的等差中项是92,等比中项是25,且a >b ,则双曲线x 2a 2-y 2b2=1的离心率为________. [答案]415[解析] ∵两个正数a ,b 的等差中项是92,等比中项是25,且a >b ,∴⎩⎪⎨⎪⎧a +b 2=92,ab =25,a >b ,解得a =5,b =4,∴双曲线方程为x 225-y 216=1,∴c =25+16=41,∴双曲线x 2a 2-y 2b 2=1的离心率e =c a =415.(理)(2014·抚顺市六校联合体期中)已知点F 1、F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是________.[答案] (1,1+2)[解析] ∵双曲线关于x 轴对称,∴A 、B 两点关于x 轴对称,∴|F 2A |=|F 2B |,△ABF 2为锐角三角形⇔∠AF 2B 为锐角⇔∠AF 2F 1<45°⇔|AF 1|<|F 1F 2|,∵F 1(-c,0),∴A (-c ,b 2a ),即|AF 1|=b 2a ,又|F 1F 2|=2c ,∴b 2a <2c ,∴c 2-2ac -a 2<0,∴e 2-2e -1<0, ∴1-2<e <1+2, ∵e >1,∴1<e <1+ 2.16.(2014·山西曲沃中学期中)在平面直角坐标系中,动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W .(1)给出下列三个结论: ①曲线W 关于原点对称;②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是________;(2)曲线W 上的点到原点距离的最小值为________. [答案] (1)②③ (2)2- 2[解析] 由条件知:|x |+|y |=(x -1)2+(y -1)2, 两边平方得,|xy |=-x -y +1,当xy ≥0时,xy =-x -y +1,∴y =1-x 1+x =21+x -1,当xy <0时,-xy =-x -y +1,∴(x -1)(y -1)=0,∴x =1(y <0)或y =1(x <0), ∴曲线W 如图所示.由图易知:W 的图象关于直线y =x 对称,关于原点不对称,W 与x 轴、y 轴非负半轴围成图形的面积S <12×1×1=12,由⎩⎪⎨⎪⎧y =x ,y =1-x1+x ,x >0,得x =y =2-1,∴A (2-1,2-1)到原点距离d =(2-1)2+(2-1)2为W 上点到原点距离的最小值.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·广东执信中学期中)已知两点M (-1,0)、N (1,0),点P 为坐标平面内的动点,满足|MN →|·|NP →|=MN →·MP →.(1)求动点P 的轨迹方程;(2)若点A (t,4)是动点P 的轨迹上的一点,K (m,0)是x 轴上的一动点,试讨论直线AK 与圆x 2+(y -2)2=4的位置关系.[解析] (1)设P (x ,y ),则MN →=(2,0),NP →=(x -1,y ),MP →=(x +1,y ).∵|MN →|·|NP →|=MN →·MP →,∴2(x -1)2+y 2=2(x +1),化简得y 2=4x . 所以动点P 的轨迹方程为y 2=4x .(2)由A (t,4)在轨迹y 2=4x 上,则42=4t ,解得t =4,即A (4,4).当m =4时,直线AK 的方程为x =4,此时直线AK 与圆x 2+(y -2)2=4相离.当m ≠4时,直线AK 的方程为y =44-m(x -m ),即4x +(m -4)y -4m =0.圆x 2+(y -2)2=4的圆心(0,2)到直线AK 的距离d =|2m +8|16+(m -4)2,令d =|2m +8|16+(m -4)2<2,解得m <1;令d =|2m +8|16+(m -4)2=2,解得m =1;令d =|2m +8|16+(m -4)2>2,解得m >1.综上所述,当m <1时,直线AK 与圆x 2+(y -2)2=4相交; 当m =1时,直线AK 与圆x 2+(y -2)2=4相切; 当m >1时,直线AK 与圆x 2+(y -2)2=4相离.18.(本小题满分12分)(文)(2014·山东省博兴二中质检)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.[解析] (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为3.∴圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0. 从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0, 又y 1=x 1+a ,y 2=x 2+a , 所以2x 1x 2+a (x 1+x 2)+a 2=0.②由①②得a =-1,满足Δ>0,故a =-1.(理)(2014·北京西城区期末)已知A ,B 是抛物线W :y =x 2上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(1)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(2)设C 为W 上一点,且AB ⊥AC ,过B ,C 两点分别作W 的切线,记两切线的交点为D ,求|OD |的最小值.[解析] (1)抛物线y =x 2的焦点为(0,14).由题意得直线AB 的方程为y -1=k (x -1),令x =0,得y =1-k ,即直线AB 与y 轴相交于点(0,1-k ). 因为抛物线W 的焦点在直线AB 的下方, 所以1-k >14,解得k <34.(2)由题意,设B (x 1,x 21),C (x 2,x 22),D (x 3,y 3),联立方程⎩⎪⎨⎪⎧y -1=k (x -1),y =x 2,消去y 得x 2-kx +k -1=0,由韦达定理得1+x 1=k ,所以x 1=k -1.同理,得AC 的方程为y -1=-1k (x -1),x 2=-1k -1.对函数y =x 2求导,得y ′=2x ,所以抛物线y =x 2在点B 处的切线斜率为2x 1,所以切线BD 的方程为y -x 21=2x 1(x -x 1),即y=2x 1x -x 21.同理,抛物线y =x 2在点C 处的切线CD 的方程为y =2x 2x -x 22.联立两条切线的方程⎩⎪⎨⎪⎧y =2x 1x -x 21,y =2x 2x -x 22,解得x 3=x 1+x 22=12(k -1k -2),y 3=x 1x 2=1k -k , 所以点D 的坐标为(12(k -1k -2),1k -k ).因此点D 在定直线2x +y +2=0上.因为点O 到直线2x +y +2=0的距离d =|2×0+0+2|22+12=255,所以|OD |≥255,当且仅当点D (-45,-25)时等号成立.由y 3=1k -k =-25,得k =1±265,验证知符合题意.所以当k =1±265时,|OD |有最小值255.19.(本小题满分12分)(文)(2014·韶关市曲江一中月考)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.[解析] (1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4,又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得x 225+(x -3)225=1,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65). (理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程. [解析] (1)设椭圆方程为x 2a 2+y 2b 2=1,(a >0,b >0),∵c =1,c a =12,∴a =2,b =3,∴所求椭圆方程为x 24+y 23=1.(2)由题意得直线l 的斜率存在,设直线l 方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1.消去y 得(3+4k 2)x 2+8kx -8=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 1+x 2=-8k3+4k2,x 1·x 2=-83+4k2,由AM →=2MB →得x 1=-2x 2,∴⎩⎪⎨⎪⎧-x 2=-8k3+4k 2,-2x 22=-83+4k2,消去x 2得(8k 3+4k 2)2=43+4k 2,解得k 2=14,∴k =±12,所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.20.(本小题满分12分)(文)(2014·浙北名校联盟联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0),且经过点P (1,32).(1)求椭圆C 的方程;(2)设过F 1的直线l 与椭圆C 交于A 、B 两点,问在椭圆C 上是否存在一点M ,使四边形AMBF 2为平行四边形,若存在,求出直线l 的方程,若不存在,请说明理由.[解析] (1)∵c =1,b 2a =32,a 2=b 2+c 2,∴a =2,b =3,∴椭圆C 的方程为x 24+y 23=1.(2)假设存在符合条件的点M (x 0,y 0), 设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,3x 2+4y 2=12,消去x 得:(3m 2+4)y 2-6my -9=0, 由条件知Δ>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m3m 2+4,∴AB 的中点为(-43m 2+4,3m3m 2+4),∵四边形AMBF 2为平行四边形, ∴AB 的中点与MF 2的中点重合, 即⎩⎪⎨⎪⎧x 0+12=-43m 2+4,y 02=3m3m 2+4.∴M (-3m 2+123m 2+4,6m3m 2+4),把点M 的坐标代入椭圆C 的方程得:27m 4-24m 2-80=0,解得m 2=209,∴存在符合条件的直线l ,其方程为:y =±3510(x +1).(理)(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,以原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的标准方程; (2)过右焦点F 作斜率为-22的直线l 交曲线C 于M 、N 两点,且OM →+ON →+OH →=0,又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.[解析] (1)由题意可得圆的方程为x 2+y 2=b 2, ∵直线x -y +2=0与圆相切,∴d =22=b ,即b =1, 又e =c a =22,及a 2=b 2+c 2,得a =2,所以椭圆方程为x 22+y 2=1.(2)∵直线l 过点F (1,0),且斜率为k =-22, ∴l 的方程为y =-22(x -1). 联立方程组⎩⎨⎧x 22+y 2=1,y =-22(x -1),消去y 得2x 2-2x -1=0.设M (x 1,y 1)、N (x 2,y 2),可得 ⎩⎪⎨⎪⎧ x 1+x 2=1,x 1x 2=-12,于是⎩⎪⎨⎪⎧x 1+x 2=1,y 1+y 2=22.又OM →+ON →+OH →=0,得OH →=(-x 1-x 2,-y 1-y 2), 即H (-1,-22), 而点G 与点H 关于原点对称,于是可得点G (1,22). ∴k GH =22. 若线段MN 、GH 的中垂线分别为l 1和l 2,则有l 1:y -24=2(x -12),l 2:y =-2x . 联立方程组⎩⎪⎨⎪⎧y -24=2(x -12),y =-2x .解得l 1和l 2的交点为O 1(18,-28).因此,可求得|O 1H |=(98)2+(328)2=3118, |O 1M |=(x 1-18)2+(y 1+28)2=3118.所以M 、G 、N 、H 四点共圆,且圆心坐标为O 1(18,-28),半径为3118.21.(本小题满分12分)(文)(2014·绵阳市南山中学检测)已知椭圆C:x2a2+y2b2=1(a>b>0)经过(1,1)与(62,32)两点.(1)求椭圆C的方程;(2)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:1|OA|2+1|OB|2+2|OM|2为定值.[解析](1)将(1,1)与(62,32)两点坐标代入椭圆C的方程得,⎩⎨⎧1a2+1b2=1,32a2+34b2=1,解得⎩⎪⎨⎪⎧a2=3,b2=32.∴椭圆C的方程为x23+2y23=1.(2)由|MA|=|MB|知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点,此时1|OA|2+1|OB|2+2|OM|2=1b2+1b2+2a2=2(1a2+1b2)=2.同理,若点A、B是椭圆的长轴顶点,则点M是椭圆的一个短轴顶点,此时1|OA|2+1|OB|2+2|OM|2=1a2+1a2+2b2=2(1a2+1b2)=2.②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),则直线OM的方程为y=-1k x,设A(x1,y1),B(x2,y2),由⎩⎪⎨⎪⎧y=kx,x23+2y23=1,解得x21=31+2k2,y21=3k21+2k2,∴|OA|2=|OB|2=x21+y21=3(1+k2)1+2k2,同理|OM|2=3(1+k2)2+k2,所以1|OA|2+1|OB|2+2|OM|2=2×1+2k23(1+k2)+2(2+k2)3(1+k2)=2,故1|OA|2+1|OB|2+2|OM|2=2为定值.(理)(2014·浙江台州中学期中)已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1经过点A (1,0),且离心率为32. (1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上P 点的切线与椭圆C 1交于两点M 、N ,记线段MN 与P A 的中点分别为G 、H ,当GH 与y 轴平行时,求h 的最小值.[解析] (1)由题意可得⎩⎨⎧1b 2=1,ca =32,a 2=b 2+c 2.解得a =2,b =1,所以椭圆C 1的方程为x 2+y 24=1.(2)设P (t ,t 2+h ),由y ′=2x 知,抛物线C 2在点P 处的切线的斜率为k =y ′|x =t =2t ,所以MN 的方程为y =2tx -t 2+h ,代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0,化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0, 又MN 与椭圆C 1有两个交点, ∴Δ=16[-t 4+2(h +2)t 2-h 2+4]>0,①设M (x 1,y 1),N (x 2,y 2),MN 中点G 的横坐标为x 0,则 x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 的中点H 横坐标为x 3=1+t 2,∵GH 与y 轴平行,∴x 0=x 3,即t (t 2-h )2(1+t 2)=1+t2,②显然t ≠0,∴h =-(t +1t+1),③当t >0时,t +1t ≥2,当且仅当t =1时取得等号,此时h ≤-3不符合①式,故舍去;当t <0时,(-t )+(-1t )≥2,当且仅当t =-1时取得等号,此时h ≥1,满足①式.综上,h 的最小值为1.22.(本小题满分14分)(文)(2014·长沙市重点中学月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A 、B 两点,当直线l 的斜率为1时,坐标原点O 到直线l 的距离为22. (1)求椭圆C 的方程;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.[解析] (1)设F (c,0),当l 的斜率为1时,其方程为x -y -c =0, ∴O 到l 的距离为|0-0-c |2=c2,由已知得,c 2=22,∴c =1. 由e =c a =33,得a =3,∴b =a 2-c 2= 2.∴所求椭圆C 的方程为x 23+y 22=1.(2)假设C 上存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立, 设A (x 1,y 1),B (x 2,y 2),则P (x 1+x 2,y 1+y 2), 由(1),知C 的方程为x 23+y 22=1.由题意知,l 的斜率一定不为0,故不妨设l :x =ty +1. 由⎩⎪⎨⎪⎧x =ty +1,x 23+y 22=1.消去x 并化简整理得,(2t 2+3)y 2+4ty -4=0. 由韦达定理,得y 1+y 2=-4t2t 2+3, ∴x 1+x 2=ty 1+1+ty 2+1=t (y 1+y 2)+2 =-4t 22t 2+3+2=62t 2+3,∴P (62t 2+3,-4t2t 2+3).∵点P 在C 上,∴(62t 2+3)23+(-4t2t 2+3)22=1,化简整理得,4t 4+4t 2-3=0,即(2t 2+3)(2t 2-1)=0,解得t 2=12.当t =22时,P (32,-22),l 的方程为2x -y -2=0; 当t =-22时,P (32,22),l 的方程为2x +y -2=0. 故C 上存在点P (32,±22),使OP →=OA →+OB →成立,此时l 的方程为2x ±y -2=0.(理)(2014·西安市长安中学期中)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P (4,0)且不垂直于x 轴的直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程; (2)求OA →·OB →的取值范围.[解析] (1)由条件知e =c a =12,b =3,∴a 2=4,b 2=3,故椭圆的方程为x 24+y 23=1.(2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x -4), 由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得:(4k 2+3)x 2-32k 2x +64k 2-12=0, 由Δ=(-32k 2)2-4(4k 2+3)(64k 2-12)>0得:k 2<14,设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,∴y 1y 2=k (x 1-4)k (x 2-4)=k 2x 1x 2-4k 2(x 1+x 2)+16k 2,∴OA →·OB →=x 1x 2+y 1y 2=(1+k 2)·64k 2-124k 2+3-4k 2·32k 24k 2+3+16k 2=25-874k 2+3,∵0≤k 2<14,∴-873≤-874k 2+3<-874,∴-4≤OA →·OB →<134,∴OA →·OB →的取值范围是[-4,134).。

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考地理试题

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考地理试题

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考地理试题(满分100分,考试时间90分钟)一、选择题(共25小题,每小题2分,共50分。

在题目所给的四个选项中,只有一项是最符合题目要求的)读右图,完成1~2题。

1.图中甲、乙、丙、丁按形成的先后顺序排列,正确的是A.甲、乙、丙、丁B.丙、丁、乙、甲C.丙、乙、丁、甲D.丙、丁、甲、乙2.有关图中区域的说法,正确的是A.可以在A地修建采石厂B.岩浆岩乙可能含有化石C.若A处有河谷形成,是因为A位于向斜顶部,容易被侵蚀D.可以在A处修建水库堤坝,是因为A位于岩性坚硬的背斜顶部读“某区域海平面等压线(单位:hPa)分布图”,完成3~4题。

3. 假如气压变化只和气温有关,选项中的四个地点气温日较差最大的是A.(40°N,130°E)B.(40°N,140°E)C.(30°N,120°E)D.(30°N,130°E)4. 该时间段内,M点①气压降低②气温降低③天气由晴朗转为阴雨④由偏东风转为偏西风⑤风力减弱A.①②③B.②④⑤C.③④⑤D.②③⑤阿克库勒湖位于新疆阿勒泰地区(阿尔泰山南麓、准噶尔盆地北缘),因其湖水呈乳白半透明状又称“白湖”。

其成因是上游冰川中的冰碛物(冰川沉积的岩块物质)经冰川运动,被挤压、研磨成白色的粉末带入河流,进入湖泊使湖水成白色。

读“该湖附近的等高线地形图”,完成5~6题。

5.下列关于湖泊和河流的叙述,正确的是A.白湖为内流湖,其水位的变化受气温的影响小B.图中①②③河流均注入白湖C.④河与③河相比,流量的季节变化大D.①河与②河相比,流速更快6.根据材料信息,可以推测下列说法正确的是 A.站在A 处不能看到B 处B.该湖周围是我国著名的长绒棉产地C.宿营地可以选择在C 处以方便取水D.引起湖水呈现白色的主要地质作用为冰川的搬运、堆积作用 右图中①、②、③、④为四个不同的区域,读图完成7~8题。

2015届高考数学一轮总复习 阶段性测试题11(算法、框图、复数、推理与证明)

2015届高考数学一轮总复习 阶段性测试题11(算法、框图、复数、推理与证明)

阶段性测试题十一(算法、框图、复数、推理与证明)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·白鹭洲中学期中)复数z =(m 2+m )+m i(m ∈R ,i 为虚数单位)是纯虚数,则实数m 的值为( )A .0或-1B .0C .1D .-1[答案] D[解析] ∵z 为纯虚数,∴⎩⎪⎨⎪⎧m 2+m =0,m ≠0,∴m =-1,故选D.2.(文)(2014·山东省博兴二中质检)如果等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于( )A .21B .30C .35D .40[答案] C[解析] ∵3a 6=a 5+a 6+a 7=15,∴a 6=5, ∴a 3+a 4+…+a 9=7a 1+35d =7a 6=35.(理)(2014·银川九中一模)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .(32)n -1C .(23)n -1D.12n -1 [答案] B[解析] ∵S n =2a n +1=2(S n +1-S n ),∴S n +1S n =32,又S 1=a 1=1,∴S n =(32)n -1,故选B.3.(文)(2014·银川九中一模)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3[答案] C[解析] ∵f (x )为偶函数,∴f (-x )=f (x ),∴sin-x +φ3=sin x +φ3,∴cos φ3sin x3=0, ∵此式对任意x 都成立,∴cos φ3=0,∵φ∈[0,2π],∴φ=3π2.(理)(2014·杭州七校联考)“sin x =1”是“cos x =0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件[答案] A[解析] 若sin x =1,则x =2k π+π2,k ∈Z ,∴cos x =0;若cos x =0,则x =k π+π2,k ∈Z ,∴sin x=±1.4.(文)(2014·北京朝阳区期中)执行如图所示的程序框图,则输出的T 值为( )A .91B .55C .54D .30 [答案] B[解析] 所给的程序的作用是计算:T =12+22+32+42+52=55. (理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)下列程序框图的输出结果为( )A.20122013B.12013C.20132014D.12014 [答案] C[解析] 由程序框图知,每循环一次,i 的值增加1,S 的值加上1i (i +1),当i =2013时,不满足i >2013,再循环一次,i 的值变为2014,满足i >2013,此时输出S ,故S 最后加上的数为12013×2014,∴S =11×2+12×3+…+12013×2014=(1-12)+(12-13)+…+(12013-12014)=1-12014=20132014,故选C.5.(2014·武汉市调研)复数z =m (3+i)-(2+i)(m ∈R ,i 为虚数单位)在复平面内对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] B[解析] 复数z =(3m -2)+(m -1)i 在复平面内的对应点P (3m -2,m -1),当m >1时,P 在第一象限;当m <23时,P 在第三象限,当23<m <1时,P 在第四象限,当m =23时,P 在y 轴上,当m =1时,P 在x 轴上,故选B.6.(2014·佛山市质检)将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a >b )的比值ab ,称这些比值中的最小值为这个数表的“特征值”.当n =2时,数表的所有可能的“特征值”最大值为( )A.32B.43 C .2 D .3[答案] A[解析] 当n =2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1,2同行或同列时,这个数表的“特征值”为43;当1,3同行或同列时,这个数表的特征值分别为43或32;当1,4同行或同列时,这个数表的“特征值”为43或32;故这些可能的“特征值”的最大值为32.7.(2014·山西省太原五中月考)某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e-xD .f (x )=sin 2x1+cos 2x[答案] B[解析] 由框图知,f (x )为有零点的奇函数,A 、C 中函数f (x )无零点;D 中函数f (x )为偶函数;B 中函数f (x )=ln(x 2+1-x )满足f (0)=0且f (-x )=ln(x 2+1+x )=ln 1x 2+1-x=-ln(x 2+1-x )=-f (x ),故选B.8.(2014·哈六中期中)若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)[答案] B[解析] ∵x >0,y >0,1x +4y =1,∴x +y 4=(x +y 4)(1x +4y )=2+y 4x +4xy≥2+2y 4x ·4xy=4,等号在y =4x ,即x =2,y =8时成立,∴x +y 4的最小值为4,要使不等式m 2-3m >x +y4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.9.(文)(2014·吉林市摸底)如图,程序输出的结果s =132,则判断框中应填( )A .i ≥10?B .i ≥11?C.i≤11? D.i≥12?[答案] B[解析]第一次循环:s=1×12=12,i=12-1=11,不满足条件,继续循环;第二次循环:s=12×11=132,i=11-1=10,此时应输出,结束循环,因此判断框中应填i≥11?.(理)(2014·成都七中模拟)阅读下边的程序框图,若输出S的值为-14,则判断框内可填写()A.i<6? B.i<8?C.i<5? D.i<7?[答案] B[解析]这是一个循环结构,每次循环的结果为:S=2-1=1,i=1+2=3;S=1-3=-2,i =3+2=5;S=-2-5=-7,i=5+2=7;S=-7-7=-14,i=7+2=9.因为最后输出-14,所以判断框内可填写i<8?选B.10.(2014·广东梅县东山中学期中)在f(m,n)中,m,n,f(m,n)∈N*,且对任意m,n都有:(1)f(1,1)=1,(2)f(m,n+1)=f(m,n)+2,(3)f(m+1,1)=2f(m,1);给出下列三个结论:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26;其中正确的结论个数是()个.()A.3B.2C.1D.0[答案] A[解析]∵f(m,n+1)=f(m,n)+2,∴f(m,n)组成首项为f(m,1),公差为2的等差数列,∴f(m,n)=f(m,1)+2(n-1).又f(1,1)=1,∴f(1,5)=f(1,1)+2×(5-1)=9,又∵f(m+1,1)=2f(m,1),∴f(m,1)构成首项为f(1,1),公比为2的等比数列,∴f(m,1)=f(1,1)·2m-1=2m-1,∴f(5,1)=25-1=16,∴f(5,6)=f(5,1)+2×(6-1)=16+10=26,∴①②③都正确,故选A.11.(文)(2014·九江市修水一中第四次月考)如图,在△ABC 中,∠CAB =∠CBA =30°,AC 、BC 边上的高分别为BD 、AE ,垂足分别是D 、E ,以A 、B 为焦点且过D 、E 的椭圆与双曲线的离心率分别为e 1、e 2,则1e 1+1e 2的值为( )A .1 B. 3 C .2 D .2 3[答案] B[解析] 设AE =1,则AB =2,BD =1,AD =BE =3,∴椭圆的焦距2c =2,∴c =1,长轴长2a =AD +BD =3+1,∴离心率e 1=13+12=3-1,双曲线的焦距2c 1=2, ∴c 1=1,双曲线的实轴长2a 1=AD -BD =3-1, ∴离心率e 2=13-12=3+1. ∴1e 1+1e 2=13-1+13+1=3,故选B. (理)(2014·北京市海淀区期末)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,BD ∩AC =O ,M 是线段D 1O 上的动点,过点M 作平面ACD 1的垂线交平面A 1B 1C 1D 1于点N ,则点N 到点A 距离的最小值为( )A. 2B.62C.233 D .1[答案] B[解析] 因为ABCD -A 1B 1C 1D 1为正方体,所以BB 1⊥平面A 1B 1C 1D 1,因为BB 1⊂平面BDD 1B 1,所以平面BDD 1B 1⊥平面A 1B 1C 1D 1,因为M ∈平面BDD 1B 1,MN ⊥平面ACD 1,平面BDD 1B 1∩平面A 1B 1C 1D 1=B 1D 1,所以N ∈B 1D 1.因为ABCD -A 1B 1C 1D 1为正方体,棱长为1,所以△AB 1D 1为正三角形,边长为2,所以当N 为B 1D 1中点时,AN 最小为2sin60°=62.故B 正确. 12.(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4[答案] C[解析] 将△ABC 的三条边长a 、b 、c 类比到四面体P -ABC 的四个面面积S 1、S 2、S 3、S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r +13S 2r+13S 3r +13S 4r ,∴r =3VS 1+S 2+S 3+S 4. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量监测)有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和a n 与其组的编号数n 的关系为________.[答案] a n =n 3[解析] 第n 组含n 个数,前n -1组共有1+2+3+…+(n -1)=n (n -1)2个数,∴第n 组的最小数为n 2-n +1,第n 组的n 个数组成首项为n 2-n +1,公差为2的等差数列,∴其各项之和为a n =n (n 2-n +1)+n (n -1)2×2=n 3.(理)(2014·陕西工大附中四模)由13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,……,可猜想出的第n 个等式是________.[答案] 13+23+…+n 3=(1+2+…+n )2[解析] 观察各等式可见第n 个等式左边有n 项,每个等式都是从13到n 3的和,等式右端是从1到n 的和的平方,故第n 个等式为13+23+33+…+n 3=(1+2+3+…+n )2.14.(文)(2014·吉林市摸底)下列说法:①“∃x ∈R ,使2x >3”的否定是“∀x ∈R ,使2x ≤3”;②函数y =sin(2x +π3)的最小正周期是π;③“在△ABC 中,使sin A >sin B ,则A >B ”的逆命题是真命题;④“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +2=0垂直”的充要条件;其中正确的说法是______(只填序号).[答案] ①②③[解析] ①∵特称命题的否定是全称命题,∴“∃x ∈R ,使2x >3”的否定是“∀x ∈R ,使2x ≤3”,正确;②因为T =2π2=π,所以函数y =sin(2x +π3)的最小正周期是π,正确;③“在△ABC 中,若sin A >sin B ,则A >B ”的逆命题是“在△ABC 中,若A >B ,则sin A >sin B ”,在△ABC 中,若A >B ⇒a >b ⇒2r sin A >2r sin B ⇒sin A >sin B ,故③正确;④由3m +(2m -1)m =0得m =0或-1,所以“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +2=0垂直”的充分不必要条件,∴④错误.(理)(2014·泸州市一诊)已知集合A ={f (x )|f 2(x )-f 2(y )=f (x +y )·f (x -y ),x 、y ∈R },有下列命题:①若f (x )=⎩⎪⎨⎪⎧1, x ≥0-1, x <0,则f (x )∈A ;②若f (x )=kx ,则f (x )∈A ;③若f (x )∈A ,则y =f (x )可为奇函数;④若f (x )∈A ,则对任意不等实数x 1,x 2,总有f (x 1)-f (x 2)x 1-x 2<0成立.其中所有正确命题的序号是________.(填上所有正确命题的序号) [答案] ②③[解析] 对于①,取x =1,y =-1知,f 2(x )-f 2(y )=f 2(1)-f 2(-1)=1-1=0,但f (x +y )f (x -y )=f (0)·f (2)=1,∴①错;对于②,当f (x )=kx 时,f 2(x )-f 2(y )=k 2x 2-k 2y 2=k (x +y )·k (x -y )=f (x +y )·f (x -y ),∴②正确; 对于③,在f 2(x )-f 2(y )=f (x +y )f (x -y )中令x =0,y =0得,f (0)=0,又令x =0得,f 2(0)-f 2(y )=f (y )·f (-y ),当f (y )≠0时,有f (-y )=-f (y ),∴f (x )可以为奇函数.对于④,取f (x )=x ,则f 2(x )-f 2(y )=x 2-y 2=(x +y )(x -y )=f (x +y )f (x -y ),但x 1,x 2∈R 且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2=x 1-x 2x 1-x 2=1>0,∴④错.15.(2014·湖南长沙实验中学、沙城一中联考)在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,△ABC ,△BOC ,△BDC 三者面积之间关系为________.[答案] S 2△ABC =S △OBC ·S △DBC [解析] 将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DBC . 16.(文)(2014·西安市长安中学期中)21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n 个等式为________________.[答案] 2n ×1×3×…×(2n -1)=(n +1)×(n +2)×…×(2n -1)×2n[解析] 由所给4个等式可看出,第n 个等式左边是2n 与从1开始的连续的n 个奇数之积,第n 个等式右边是从n +1开始的连续的n 个正整数之积.所以第n 个等式为:2n ×1×3×…×(2n -1)=(n +1)×(n +2)×…×(2n -1)×2n .(理)(2014·江西临川十中期中)给出下列不等式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,…,则按此规律可猜想第n 个不等式为________________. [答案] 1+12+13+14+…+12n +1-1>n +12[解析] 观察不等式左边最后一项的分母3,7,15,…,通项为2n +1-1,不等式右边为首项为1,公差为12的等差数列,故猜想第n 个不等式为1+12+13+14+…+12n +1-1>n +12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·湖南长沙实验中学、沙城一中联考)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,△ABC 的面积S 满足S =32bc cos A . (1)求角A 的值;(2)若a =3,设角B 的大小为x 用x 表示c ,并求c 的取值范围. [解析] (1)在△ABC 中,由S =32bc cos A =12bc sin A ,得tan A =3, ∵0<A <π,∴A =π3.(2)由a =3,A =π3及正弦定理得:c sin C =a sin A =332=2,∴c =2sin C =2sin(π-A -B )=2sin(2π3-x ).∵A =π3,∴0<x <2π3,∴0<2π3-x <2π3.∴0<sin(2π3-x )≤1,0<2sin(2π3-x )≤2,即c ∈(0,2].18.(本小题满分12分)(文)(2014·吉林省实验中学一模)如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,ED =1,EF ∥BD 且EF =12BD .(1)求证:BF ∥平面ACE ; (2)求证:平面EAC ⊥平面BDEF ; (3)求几何体ABCDEF 的体积.[解析] (1)设AC 与BD 的交点为O ,则DO =BO =12BD ,连接EO ,∵EF ∥BD 且EF =12BD ,∴EF ∥DO 且EF =BO , 则四边形EFBO 是平行四边形, 则BF ∥EO ,又EO ⊂平面ACE , BF ⊄平面ACE ,故BF ∥平面ACE .(2)∵ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED ⊥AC . ∵四边形ABCD 为正方形,∴BD ⊥AC , 又ED ∩BD =D ,∴AC ⊥平面BDEF , 又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF . (3)因为ED ⊥平面ABCD ,∴ED ⊥BD ,又∵EF ∥BD 且EF =12BD ,∴四边形BDEF 是直角梯形,又∵四边形ABCD 是边长为2的正方形,BD =22,EF =2, ∴梯形BDEF 的面积为(2+22)×12=322,由(1)知AC ⊥平面BDEF ,所以几何体的体积V ABCDEF =2V A -BDEF =2×13S BDEF ·AO =2×13×322×2=2.(理)(2014·佛山市质检)如图1,矩形ABCD 中,AB =12,AD =6,E 、F 分别为CD 、AB 边上的点,且DE =3,BF =4,将△BCE 沿BE 折起至△PBE 位置(如图2所示),连结AP 、PF ,其中PF =2 5.(1)求证:PF ⊥平面ABED ;(2)在线段P A 上是否存在点Q 使得FQ ∥平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(3)求点A 到平面PBE 的距离.[解析] (1)连结EF ,由翻折不变性可知,PB =BC =6,PE =CE =9,在△PBF 中,PF 2+BF 2=20+16=36=PB 2,所以PF ⊥BF ,在图1中,易得EF =62+(12-3-4)2=61,在△PEF 中,EF 2+PF 2=61+20=81=PE 2, 所以PF ⊥EF ,又BF ∩EF =F ,BF ⊂平面ABED ,EF ⊂平面ABCD , 所以PF ⊥平面ABED .(2)当Q 为P A 的三等分点(靠近P )时,FQ ∥平面PBE .证明如下: 因为AQ =23AP ,AF =23AB ,所以FQ ∥BP ,又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以FQ ∥平面PBE . (3)由(1)知PF ⊥平面ABCD ,所以PF 为三棱锥P -ABE 的高.设点A 到平面PBE 的距离为h ,由等体积法得V A -PBE =V P -ABE ,即13×S △PBE h =13×S △ABE ·PF ,又S △PBE =12×6×9=27,S △ABE =12×12×6=36,所以h =S △ABE ·PF S △PBE =36×2527=853,即点A 到平面PBE的距离为853.19.(本小题满分12分)(文)(2014·佛山市质检)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm)分别是162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm)分别是:170、159、162、173、181、165、176、168、178、179.(1)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(2)现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?[解析] (1)茎叶图如图所示,篮球队的身高数据方差较小.(2)两队所有身高超过178cm 的同学恰有5人,其中3人来自排球队,记为a ,b ,c,2人来自篮球队,记为A ,B ,则从5人中抽取3名同学的基本事件为:abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;其中恰有两人来自排球队一人来自篮球队所含的事件有:abA ,abB ,acA ,acB ,bcB ,bcA 共6个,所以,恰好两人来自排球队一人来自篮球队的概率是610=35. (理)(2014·山西省太原五中月考)已知函数f (x )=x ln x . (1)求函数f (x )的单调递减区间;(2)若f (x )≥-x 2+ax -6在(0,+∞)上恒成立,求实数a 的取值范围; (3)过点A (-e-2,0)作函数y =f (x )图象的切线,求切线方程.[解析] (1)∵f ′(x )=ln x +1,∴由f ′(x )<0得ln x <-1, ∴0<x <1e ,∴函数f (x )的单调递减区间是(0,1e ).(2)∵f (x )≥-x 2+ax -6,∴a ≤ln x +x +6x ,设g (x )=ln x +x +6x,则g ′(x )=x 2+x -6x 2=(x +3)(x -2)x 2,当x ∈(0,2)时,g ′(x )<0,函数g (x )单调递减; 当x ∈(2,+∞)时,g ′(x )>0,函数g (x )单调递增. ∴g (x )最小值为g (2)=5+ln2,∴实数a 的取值范围是(-∞,5+ln2]. (3)设切点T (x 0,y 0),则k AT =f ′(x 0),∴x 0ln x 0x 0+1e 2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h (x )=e 2x +ln x +1,则h ′(x )=e 2+1x ,当x >0时h ′(x )>0,∴h (x )是单调递增函数, ∴h (x )=0最多只有一个根,又h (1e 2)=e 2×1e 2+ln 1e 2+1=0,∴x 0=1e 2,由f ′(x 0)=-1得切线方程是x +y +1e2=0.20.(本小题满分12分)(文)(2014·山东省烟台市期末)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1(其中0≤x ≤a ,a 为正常数);已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20p)万元/万件.(1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)促销费用投入多少万元时,厂家的利润最大?[解析] (1)由题意知,y =(4+20P )×P -(10+2P )-x ,将P =3-2x +1代入化简得:y =16-4x +1-x ,(0≤x ≤a ).(2)y =16-4x +1-x =17-(4x +1+x +1)≤17-24x +1×(x +1)=13, 当且仅当4x +1=x +1,即x =1时,上式取等号.当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,y =17-(4x +1+x +1)在[0,a ]上单调递增,所以在x =a 时,函数有最大值.促销费用投入a 万元时,厂家的利润最大.综上所述,当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,促销费用投入a 万元时,厂家的利润最大.(理)(2014·北京市海淀区期末)如果函数f (x )满足在集合N *上的值域仍是集合N *,则把函数f (x )称为N 函数.例如:f (x )=x 就是N 函数.(1)判断下列函数:①y =x 2,②y =2x -1,③y =[x ]中,哪些是N 函数?(只需写出判断结果);(2)判断函数g(x)=[ln x]+1是否为N函数,并证明你的结论;(3)证明:对于任意实数a,b,函数f(x)=[b·a x]都不是N函数.(注:“[x]”表示不超过x的最大整数)[解析](1)只有y=[x]是N函数.①∵当x∈N*时,{y|y=x2}N*,如3不是函数y=x2(x∈N*)的函数值,∴y=x2不是N函数;②同理,∵当x∈N*时,y=2x-1为奇数,∴y=2x-1不是N函数;③对于任意x∈N*,当n2≤x<(n+1)2时,y=[x]=n,∴y=[x]是N函数.(2)函数g(x)=[ln x]+1是N函数.证明如下:显然,∀x∈N*,g(x)=[ln x]+1∈N*.不妨设[ln x]+1=k,k∈N*.由[ln x]+1=k可得k-1≤ln x<k,即1≤e k-1≤x<e k.因为∀k∈N*,恒有e k-e k-1=e k-1(e-1)>1成立,所以一定存在x∈N*,满足e k-1≤x<e k,所以∀k∈N*,总存在x∈N*满足[ln x]+1=k,所以函数g(x)=[ln x]+1是N函数.(3)①当b≤0时,有f(2)=[b·a2]≤0,所以函数f(x)=[b·a x]都不是N函数.②当b>0时,1°若a≤0,有f(1)=[b·a]≤0,所以函数f(x)=[b·a x]都不是N函数.2°若0<a≤1,由指数函数性质易得b·a x≤b·a,所以∀x∈N*,都有f(x)=[b·a x]≤[b·a],所以函数f(x)=[b·a x]都不是N函数.3°若a>1,令b·a m+1-b·a m>2,则m>log a2 b·(a-1),所以一定存在正整数k使得b·a k+1-b·a k>2,所以∃n1,n2∈N*,使得b·a k<n1<n2<b·a k+1,所以f(k)<n1<n2≤f(k+1).又因为当x<k时,b·a x<b·a k,所以f(x)≤f(k);当x>k+1时,b·a x>b·a k+1,所以f(x)≥f(k+1),所以∀x∈N*,都有n1∉{f(x)|x∈N*},所以函数f(x)=[b·a x]都不是N函数.综上所述,对于任意实数a,b,函数f(x)=[b·a x]都不是N函数.21.(本小题满分12分)(文)(2014·北京市海淀区期末)已知函数f(x)=(x+a)e x,其中a为常数.(1)若函数f(x)在区间[-3,+∞)上的增函数,求实数a的取值范围;(2)若f (x )≥e 2在x ∈[0,2]时恒成立,求实数a 的取值范围. [解析] (1)f ′(x )=(x +a +1)e x ,x ∈R , 因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数, 所以只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1, f (x ),f ′(x )的变化情况如下:①当-a -1≤0,即a ≥-1时,f (x )在[0,2]上的最小值为f (0), 若满足题意只需f (0)≥e 2,解得a ≥e 2, 所以,此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2), 若满足题意只需f (2)≥e 2,解得a ≥-1, 所以此时,a 不存在.综上讨论,所求实数a 的取值范围为[e 2,+∞).(理)(2014·武汉市调研)甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X 表示前4局中乙当裁判的次数,求X 的分布列和数学期望. [解析] 解法1:(1)用A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛时,甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2,P (A 1)=12,P (A 2)=12,∴P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局丙和乙比赛时,结果为乙胜丙”, B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”. 则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B -1·B 3)=P (B -1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58.∴X 的分布列为∴E (X )=0×18+1×58+2×14=98.解法2:四局比赛所有可能情况如下树状图: 第一局 第二局 第三局 第四局由树状图知,(1)第4局甲当裁判的概率为P =14.(2)P (X =0)=18,P (X =1)=58,P (X =2)=14,∴E (X )=0×18+1×58+2×14=98.22.(本小题满分14分)(文)(2014·佛山质检)如图所示,已知椭圆C 的两个焦点分别为F 1(-1,0)、F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1、F 2,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值.[解析] (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意,2b =|1-9|2=4,所以b =2,又c =1,所以a 2=b 2+c 2=5, 所以椭圆C 的方程为x 25+y 24=1.(2)设Q (x ,y )(其中x 25+y 24=1),圆P 的方程为x 2+(y -t )2=t 2=1,因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 2+(y -t )2-t 2-1 =-14(y +4t )2+4+4t 2, 若-4t ≤-2即t ≥12,则当y =-2时,|QM |取得最大值,且|QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2即0<t <12,则当y =-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t 2=18,又0<t <12,所以t =24.综上,当t =24时,|QM |的最大值为322. (理)(2014·山东省烟台市期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,且|F 1F 2|=22,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.(1)求椭圆方程;(2)设椭圆与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.[解析] (1)由已知,可得c =2,a =3b , ∵a 2=b 2+c 2,∴a =3,b =1, ∴x 23+y 2=1.(2)当k =0时,直线和椭圆有两交点只需-1<m <1;当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标, 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,消去y 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1,① x P =x M +x N 2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN ,则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故所求的m 取值范围是(12,2).综上知,k ≠0时,m 的取值范围是(12,2);k =0时,m 的取值范围是(-1,1).。

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考化学试题(Word版 无答案)

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考化学试题(Word版 无答案)

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考化学试题(本试题满分100分,考试时间90分钟)可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 Ca-40 Cu-64 Ba-137一、选择题(本题共16个小题,每小题3分,共48分。

每小题只有一项符合题目要求)1.化学与生产、生活密切相关。

下列叙述正确的是A.14C可用于文物年代的鉴定,14C和12C互为同素异形体B.绿色化学的核心是应用化学原理对环境污染进行治理C.海水淡化能解决淡水供应危机,向海水中加入净水剂明矾可以使海水淡化D.侯氏制碱法的工艺过程中应用了物质溶解度的差异2.设N A为阿伏加德罗常数的值,下列说法正确的是A.标准状况下,2.24L甲醇中含有N A个碳原子B.在过氧化钠与水的反应中,每生成0.1 mol氧气,转移电子的数目为0.4 N AC.常温常压下,1mol C10H22分子中含有共价键的数目为31N AD.用含有0.1molFeCl3的饱和溶液制得的氢氧化铁胶体中胶粒数等于0.1N A3.下列关于有机物的叙述正确的是A.乙烯和苯都能与溴水反应B.乙酸和油脂都能与NaOH溶液反应C.石油裂解、纤维素的水解和油脂皂化都是由高分子生成小分子的过程D.用银氨溶液可区分甲酸甲酯与葡萄糖4.甲、乙、丙、丁四种物质中,甲、乙、丙均含有相同的某种元素,它们之间具有如图转化关系。

下列有关物质的推断不正确的是A.若甲为焦炭,则丁可能是O2B.若甲为AlCl3,则丁可能是NaOH溶液C.若甲为Fe,则丁可能是Cl2D.若甲为NaOH溶液,则丁可能是CO25.几种短周期元素的原子半径及主要化合价如下表:下列叙述正确的是A.X、Y元素的金属性:X<YB.一定条件下,W单质可以将Z单质从其氢化物中置换出来C.气态氢化物的稳定性:Z > WD.一定条件下,Z单质与W的常见单质可直接生成ZW26.下列离子方程式书写正确的是A.碳酸氢钙溶液中加过量澄清石灰水:Ca+ OH+ HCO3= CaCO3↓ + H2OB.H218O中投入Na2O2固体:2H218O + 2Na2O2 = 4Na+ + 4OH- + 18O2↑C.锌与1mol·L-1HNO3溶液反应:Zn+2H+=Zn2++H2↑D.向铵明矾[NH4Al(SO4)2·12H2O]溶液中加入过量Ba(OH)2溶液:Al3++2SO42-+2Ba2++4OH-=AlO2-+2BaSO4↓+2H2O7.氮氧化物的排放可造成环境污染,可以用CH4催化还原NO x来消除。

2015届高考语文一轮专题训练:专题09 名句默写2

2015届高考语文一轮专题训练:专题09 名句默写2

2015届高考语文一轮专题训练:专题08 名句默写2一、(2014届安徽安庆六校高三联考)补写出下列名篇名句中的空缺部分。

(6分)【小题1】,到黄昏、点点滴滴。

(李清照《声声慢》)【小题2】元嘉草草,封狼居胥,。

(辛弃疾《永遇乐•京口北固亭怀古》)【小题3】,秋水共长天一色。

(王勃《滕王阁序》)【小题4】鹤汀凫渚,。

(王勃《滕王阁序》)【小题5】引壶觞以自酌,。

(陶渊明《归去来兮辞》)【小题6】,鸟倦飞而知还。

(陶渊明《归去来兮辞》)【答案】二、(2014届安徽亳州高三期末)补写出下列名篇名句中的空缺部分(甲乙两题任选一题作答;如果两题都答,则按甲题计分)。

(6分)【小题1】于是余有叹焉。

古人之观于天地、山川、草木、虫鱼、鸟兽,往往有得,①。

夫夷以近,②;③,则至者少。

而④,⑤,而人之所罕至焉,⑥。

(《游褒禅山记》)【小题2】①子日:“,可以为师矣。

”(《论语》)②,悠悠我心。

(《短歌行》)③芳草鲜美,。

(《桃花源记》)④,归雁入胡天。

(《使至塞上》)⑤千岩万转路不定,。

(《梦游天姥吟留别》)⑥人生自古谁无死?。

(《过零丁洋》)【答案】三、(2014安徽省合肥八中等届高三上学期联考)补写出下列名篇名句中的空缺部分。

(限选6小题)(6分)(1)熊咆龙吟殷岩泉,。

(李白《梦游天姥吟留别》)(2)梦入神山教神妪,。

(李贺《李凭箜篌引》)(3),皓腕凝霜雪。

(韦庄《菩萨蛮(其二)》)(4),可以无悔矣,其孰能讥之乎?(王安石《游褒禅山记》)(5),小楫轻舟,梦入芙蓉浦。

(周邦彦《苏幕遮》)(6),谁怕?一蓑烟雨任平生。

(苏轼定风波》)(7)寻寻觅觅,冷冷清清,。

(李清照《声声慢》)(8)遥岑远目,献愁供恨,。

(辛弃疾《水龙吟》)【答案】【解析】四、(2014届安徽省合肥市高三第一次教学质量检测语)补写出下列名篇名句中的空缺部分(甲乙两题任选一题作答;如果两题都答,则按甲题计分)。

(6分)【小题1】想等年,①,②。

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·抚顺二中期中)已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下述命题中真命题的是()A.若a⊥c,b⊥c,则a∥b或a⊥bB.若α⊥β,β⊥γ,则α∥βC.若a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则α⊥βD.若a⊥α,b⊂β,a∥b,则α⊥β[答案] D[解析]由a⊥c,b⊥c知,a与b可平行可相交,也可异面,故A错;由直棱柱相邻两个侧面与底面都垂直知B错;当α∩β=l,a⊥l,b∥c∥l时,可满足C的条件,故C错;∵a∥b,a⊥α,∴b⊥α,又b⊂β,∴α⊥β,∴D正确.2.(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是()A.l∥m,l∥β,则m∥βB.α∩β=m,l⊂α,则l∥βC.α⊥β,l⊥α,则l∥βD.l⊥m,m⊥β,l⊥α,则α⊥β[答案] D[解析]l⊄β,l∥m,m⊂β时,l∥β,故A错;α∩β=m,当l⊂α且l∥m时,l∥β,当l与m 相交时,l与β相交,故B错;α⊥β,当l⊂β,l与α和β的交线垂直,l⊥α时,但l∥β不成立,故C错;∵l⊥m,l⊥α,∴m⊂α或m∥α,又m⊥β,∴α⊥β,故D正确.3.(2014·山东省博兴二中质检)某四面体的三视图如图所示,该四面体四个面的面积值最大的是()A.8B.6 2C.8 2 D.10[答案] D[解析]由三视图知,该几何体直观图如图,其中△ABC为以B为直角的直角三角形,AB=4,BC=3,高P A=4,∴S△ABC=12×4×3=6,S△P AB=12×4×4=8,S△PBC=12PB·BC=12×42×3=62,S△P AC=12AC·P A=12×5×4=10,故选D.4.(2014·河南淇县一中模拟)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为()[答案] B[解析]在侧视图中,D1的射影为C1,A的射影为B,D的射影为C,AD1的射影BC1为实线(右下到左上),B1C为虚线,故选B.5.(文)(2014·浙北名校联盟联考)一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .4 3D .8 3[答案] B[解析] 作出几何体的直观图如图,这是一个三棱锥P -ABC ,其中P 在底面射影为D 点,PD =23,AD =3,CD =1,E 为AC 的中点,BE ⊥AC ,BE =23,故几何体的体积V =13S △ABC ·PD =13×(12·AC ·BE )·PD =8,故选B.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .2C .3D .4 [答案] A[解析] 由三视图知,该几何体是一个三棱锥P -ABC ,其中底面△ABC 为直角三角形,∠A 为直角,顶点P 到A ,C 的距离相等,P 点在底面的射影D ,满足AC ∥BD ,且BD =12AC =1,PD =3,画出其直观图如图所示,其体积V =13S △ABC ·PD =13×(12×2×1)×3=1.6.(2014·辽宁师大附中期中)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .24+4πC .28+6πD .28+4π [答案] A[解析] 由三视图知,该几何体为组合体,其上部为半球,半球的直径为22,下部为长方体,长、宽、高为2,2,3,其表面积为2×4×3 +12×4π·(222)2+π·(222)2=24+6π,故选A.7.(2014·高州四中质量监测)已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( )A .24-π3B .24-π2C .24-32πD .24-π[答案] C[解析] 由三视图知,该几何体是由长、宽、高分别为3、4、2的长方体内挖去一个底半径为1,高为3的半圆柱后剩余部分,其体积V =3×4×2-12(π×12×3)=24-32π.8.(2014·山西曲沃中学期中)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2.∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[解析] 设球心为O ,△ABO 所在平面截球O 得截面如图,∵OA =OB =AB =OS =OC =2,∠ASC =∠BSC =45°,∴SC ⊥平面ABO ,V S -ABC =V S -ABO +V C -ABO =2V S -ABO =2×13×(34×22)×2=433,故选C.9.(文)(2014·陕西工大附中四模)如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C[解析] 若俯视图为A ,则该几何体是棱长为1的正方体,体积V =1;若俯视图为B ,则该几何体是底半径为12,高为1的圆柱,其体积V =π·(12)2·1=π4;若俯视图为D ,则该几何体是底半径为1,高为1的圆柱的14,其体积V =14·π·12·1=π4;若俯视图为C ,则该几何体是直三棱柱,底面直角三角形两直角边长为1,棱柱高为1,体积为V =(12×1×1)×1=12,因此选C.(理)(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A.π6B.π4C.π3D.π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF , ∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.10.(2014·绵阳市南山中学检测)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若m ⊂β,α⊥β,则m ⊥α; ②若α∥β,m ⊂α,则m ∥β; ③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若α⊥γ,β⊥γ,m ⊥α,则m ⊥β. 其中正确命题的序号是( ) A .①③ B .①② C .③④ D .②③[答案] D[解析] 由两个平面平行的性质知②正确;∵n ⊥α,n ⊥β,∴α∥β,又m ⊥α,∴m ⊥β,∴③正确,故选D.11.(文)(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A.4π3 B .π C.2π3 D.π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.(理)(2014·吉林延边州质检)正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 由条件知AE ∥平面DD 1C 1C ,平面AEC 1与平面DD 1C 1C 相交,故交线与AE 平行,∵E 为BB 1的中点,故取DD 1的中点F ,∴AE 綊C 1F ,故截面为AEC 1F (如图1),截去正方体的上半部分后,剩余部分几何体直观图如图2,故其左视图形状与直角梯形FD 1A 1A 相同,且C 1E 的射影为虚线,由于B 1E =12AA 1,故E 点射影在直角梯形下底的中点,故选C.12.(文)(2014·吉林省实验中学一模)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若P A 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为( )A. 2B. 3C.33D.233[答案] C[解析] 由条件知,以P A 、PB 、PC 为三棱作长方体P ADB -CA 1D 1B 1,则该长方体内接于球,体对角线PD 1为球的直径,由于三棱锥P -ABC 为正三棱锥,∴AB =AC =BC ,∴P A =PB =PC ,设P A =a ,则3a =23,∴a =2.设球心到截面的距离为h ,则由V A -PBC =V P -ABC 得, 13(12×2×2)×2=13×34×(22)2×(3-h ), ∴h =33. (理)(2014·成都七中模拟)平面四边形ABCD 中,AD =AB =2,CD =CB =5,且AD ⊥AB ,现将△ABD 沿着对角线BD 翻折成△A ′BD ,则在△A ′BD 折起至转到平面BCD 内的过程中,直线A ′C 与平面BCD 所成的最大角的正切值为( )A .1 B.12 C.33D. 3[答案] C[解析] 如下图,OA =1,OC =2,在△ABD 绕直线BD 旋转过程中,OA 绕点O 旋转形成半圆,显然当A ′C 与圆相切时,直线A ′C 与平面BCD 所成角最大,最大角为30°,其正切值为33,选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·山西省太原五中月考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[答案]8+2 6[解析] 由题意可知,△BCC 1为等腰直角三角形,∵AC =6,BC =CC 1=2,∠ACB =90°,∴∠A 1B =10,BC 1=2,∵A 1B 2=A 1C 21+BC 21,∴∠AC 1B 为直角,将△BCC 1与△A 1BC 1所在平面铺平如图,设A 1C 交BC 1于Q ,则当点P 与Q 重合时,CP +P A 1取到最小值,最小值为A 1C .A 1C =A 1C 21+C 1C 2-2A 1C 1·C 1C cos135° =6+2-2×6×2×(-22)=8+2 6.14.(文)(2014·抚顺市六校联合体期中)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.[答案] 12π[解析] 由V =13Sh =13×(3)2·h =322知,h =322,设正方形ABCD 的中心为M ,则MA =62,∴OA 2=OM 2+MA 2=(322)2+(62)2=3,∴S 球=4π·OA 2=12π.(理)(2014·抚顺二中期中)右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________.[答案]433[解析] 由三视图知,几何体是正四棱锥,底面正方形边长为2,棱锥的斜高为2,故高h =22-12=3,∴体积V =13×4×3=433.15.(文)(2014·西安市长安中学期中)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________.[答案]3(8-π)6[解析] 根据三视图,该几何体是一个组合体,其中左侧是半个圆锥,右侧是底面为正方形的四棱锥,由于侧视图是一个边长为2的等边三角形,所以高为 3.所以其体积为V =13·(12π·12+22)·3=3(8+π)6.(理)(2014·浙江台州中学期中)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C -ABD ,它的主视图与俯视图如图所示,则二面角C -AB -D 的正切值为________.[答案] 2[解析] 三棱锥C -ABD 直观图如图,由主视图与俯视图知,平面CBD ⊥平面ABD ,CO ⊥平面ABD ,作OE ∥AD ,∵AD ⊥AB ,∴OE ⊥AB ,连结CE ,则CE ⊥AB ,∴∠CEO 为二面角C -AB -D 的平面角,在Rt △COE 中,OE =12AD =12,CO =22,∴tan ∠CEO =COOE= 2.16.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1. 其中正确的命题序号是________. [答案] ①②④[解析] ①VA -D 1PC =VP -AD 1C ,∵BC 1∥AD 1,AD 1⊂平面AD 1C ,∴BC 1∥平面AD 1C ,∴无论P 在BC 1上任何位置,P 到平面AD 1C 的距离为定值,∴三棱锥A -D 1PC 的体积不变,∴①正确;②∵A 1C 1∥AC ,BC 1∥AD 1,A 1C 1∩BC 1=C 1,AC ∩AD 1=A ,∴平面A 1BC 1∥平面AD 1C ,∵A 1P ⊂平面A 1BC 1,∴A 1P ∥平面ACD 1,∴②正确;③假设DP ⊥BC 1,∵DC ⊥平面BCC 1B 1,∴DC ⊥BC 1, ∴BC 1⊥平面ABCD ,与正方体ABCD -A 1B 1C 1D 1矛盾, ∴③错误;④∵B 1B ⊥AC ,BD ⊥AC ,∴AC ⊥平面B 1BD ,∴AC ⊥B 1D ,同理可证AD 1⊥B 1D ,∴B 1D ⊥平面ACD 1,∵B 1D ⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,∴④正确.(理)(2014·成都七中模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP +MP )2的最小值为________.[答案] 52[解析] 将平面ABB 1A 1展开到与平面CBB 1C 1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP )2最小.AM 2=AB 2+BM 2-2AB ×BM cos135°=12+(22)2-2×1×22×(-22)=52. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·天津市六校联考)在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,AB =CC 1=2.(1)求证:BC 1⊥平面ABC ;(2)试在棱CC 1(不包含端点C ,C 1)上确定一点E 的位置,使得EA ⊥EB 1; (3)(理)在(2)的条件下,求AE 和平面ABC 1所成角正弦值的大小. [解析] (1)∵BC =1,∠BCC 1=π3,CC 1=2,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC 1⊥BC ,∵AB ⊥侧面BB 1C 1C ,BC 1⊂平面BB 1C 1C , ∴BC 1⊥AB 且BC ∩AB =B , ∴BC 1⊥平面ABC .(2)E 为C 1C 的中点.连接BE ,∵BC =CE =1,∠BCC 1=π3,等边△BEC 中,∠BEC =π3,同理:B 1C 1=C 1E =1,∠B 1C 1E =2π3,∴∠B 1EC 1=π6,∴∠BEB 1=π2,∴EB 1⊥EB ,∵AB ⊥侧面BB 1C 1C ,EB 1⊂平面BB 1C 1C , ∴EB 1⊥AB 且EB ∩AB =B ,∴B 1E ⊥平面ABE ,EA ⊂平面ABE ,∴EA ⊥EB 1. (3)∵AB ⊥侧面BB 1C 1C ,AB ⊂平面ABC 1, ∵平面BCC 1B 1⊥平面ABC 1,过E 作BC 1的垂线交BC 1于F ,则EF ⊥平面ABC 1, 连接AF ,则∠EAF 为所求, ∵BC ⊥BC 1,EF ⊥BC 1,∴BC ∥EF , ∵E 为C 1C 的中点,∴F 为C 1B 的中点,∴EF =12,由(2)知AE =5,∴sin ∠EAF =125=510.18.(本小题满分12分)(文)(2014·长沙市重点中学月考)如图所示,圆柱的高为2,底面半径为7,AE 、DF是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC ,四边形ABCD 是正方形.(1)求证BC ⊥BE ;(2)求四棱锥E -ABCD 的体积. [解析] (1)∵AE 是圆柱的母线,∴AE ⊥底面EBC ,又BC ⊂底面EBC ,∴AE ⊥BC , 又∵截面ABCD 是正方形,所以BC ⊥AB , 又AB ∩AE =A ,∴BC ⊥平面ABE , 又BE ⊂平面ABE ,∴BC ⊥BE .(2)∵母线AE ⊥底面EBC ,∴AE 是三棱锥A -BCE 的高, 由(1)知BC ⊥平面ABE ,BC ⊂平面ABCD , ∴平面ABCD ⊥平面ABE , 过E 作EO ⊥AB ,交AB 于O ,又∵平面ABCD ∩平面ABE =AB ,EO ⊂平面ABE , ∴EO ⊥平面ABCD ,即EO 就是四棱锥E -ABCD 的高, 设正方形ABCD 的边长为x ,则AB =BC =x , BE =AB 2-AE 2=x 2-4,又∵BC ⊥BE ,∴EC 为直径,即EC =27, 在Rt △BEC 中,EC 2=BE 2+BC 2, 即(27)2=x 2+x 2-4,∴x =4, ∴S 四边形ABCD =4×4=16,OE =AE ·BE AB =2×42-44=3,∴V E -ABCD =13·OE ·S 四边形ABCD =13×3×16=1633.(理)(2014·湖南长沙实验中学、沙城一中联考)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,点D 是棱B 1C 1的中点.(1)求证:A 1D ⊥平面BB 1C 1C ; (2)求证:AB 1∥平面A 1DC ; (3)求二面角D -A 1C -A 的余弦值.[解析] (1)证明:因为侧面ABB 1A 1,ACC 1A 1均为正方形, 所以AA 1⊥AC ,AA 1⊥AB ,所以AA 1⊥平面ABC , 所以AA 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以AA 1⊥A 1D , 又因为CC 1∥AA 1,所以CC 1⊥A 1D , 又因为A 1B 1=A 1C 1,D 为B 1C 1中点, 所以A 1D ⊥B 1C 1. 因为CC 1∩B 1C 1=C 1, 所以A 1D ⊥平面BB 1C 1C .(2)证明:连结AC 1,交A 1C 于点O ,连结OD , 因为ACC 1A 1为正方形,所以O 为AC 1中点, 又D 为B 1C 1中点,所以OD 为△AB 1C 1中位线, 所以AB 1∥OD ,因为OD ⊂平面A 1DC ,AB 1⊄平面A 1DC , 所以AB 1∥平面A 1DC .(3)因为侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,所以AB ,AC ,AA 1两两互相垂直,如图所示建立直角坐标系A -xyz . 设AB =1,则C (0,1,0),B (1,0,0),A 1(0,0,1),D (12,12,1).A 1D →=(12,12,0),A 1C →=(0,1,-1),设平面A 1DC 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧n ·A 1D →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧x +y =0,y -z =0,取x =1,得n =(1,-1,-1).又因为AB ⊥平面ACC 1A 1,所以平面ACC 1A 1的法向量为AB →=(1,0,0), 设二面角D -A 1C -A 的平面角为θ,则θ=π-〈n ,AB →〉, ∴cos θ=cos(π-〈n ,AB →〉) =-n ·AB →|n |·|AB →|=-13=-33,所以,二面角D -A 1C -A 的余弦值为-33. 19.(本小题满分12分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB =2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使DE ∥平面ABC 1;若存在,求三棱锥E -ABC 1的体积.[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,有A 1A ⊥平面ABC .∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,∴A 1C ⊥平面ABC 1,∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)存在,E 为BB 1的中点.取A 1A 的中点F ,连EF ,FD ,当E 为B 1B 的中点时,EF ∥AB ,DF ∥AC 1, ∴平面EFD ∥平面ABC 1,则有ED ∥平面ABC 1. 当E 为BB 1的中点时,V E -ABC 1=V C1-ABE=13×2×12×1×1=13. (理)(2014·保定市八校联考)如图,在底面是直角梯形的四棱锥P -ABCD 中,∠DAB =90°,P A ⊥平面ABCD ,P A =AB =BC =3,梯形上底AD =1.(1)求证:BC ⊥平面P AB ;(2)在PC 上是否存在一点E ,使得DE ∥平面P AB ?若存在,请找出;若不存在,说明理由; (3)求平面PCD 与平面P AB 所成锐二面角的正切值. [解析] (1)证明:∵BC ∥AD 且∠DAB =90°,∴BC ⊥AB ,又P A ⊥平面ABCD ,∴BC ⊥P A , 而P A ∩AB =A ,∴BC ⊥平面P AB .(2)延长BA 、CD 相交于Q 点,假若在PC 上存在点E ,满足DE ∥平面P AB ,则由平面PCQ 经过DE 与平面P AB 相交于PQ 知DE ∥PQ ,∵AD ∥BC 且AD =1,BC =3, ∴PE CP =QD CQ =AD BC =13, 故E 为CP 的三等分点,PE =12CE .(3)过A 作AH ⊥PQ ,垂足为H ,连DH , 由(1)及AD ∥BC 知:AD ⊥平面P AQ , ∴AD ⊥PQ ,又AH ⊥PQ , ∴PQ ⊥平面HAD ,∴PQ ⊥HD .∴∠AHD 是平面PCD 与平面PBA 所成的二面角的平面角. 易知AQ =32,PQ =352,∴AH =AQ ·P A PQ =355,∴tan ∠AHD =AD AH =53,所以平面PCD 与平面P AB 所成二面角的正切值为53. 20.(本小题满分12分)(文)(2014·北京朝阳区期末)如图,在三棱锥P -ABC 中,平面P AC ⊥平面ABC ,P A ⊥AC ,AB ⊥BC .设D 、E 分别为P A 、AC 中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面P AB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC 平行?若存在,指出点F的位置并证明;若不存在,请说明理由.[解析](1)证明:因为点E是AC中点,点D为P A的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,又P A⊂平面P AC,P A⊥AC,所以P A⊥平面ABC.所以P A⊥BC.又因为AB⊥BC,且P A∩AB=A,所以BC⊥平面P AB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.(理)(2014·山东省博兴二中质检)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)设点M 在线段PC 上,PM MC =12,求证:P A ∥平面MQB ;(3)在(2)的条件下,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求二面角M -BQ -C 的大小.[解析] (1)连接BD ,∵四边形ABCD 为菱形,∠BAD =60°,∴△ABD 为正三角形, 又Q 为AD 中点,∴AD ⊥BQ .∵P A =PD ,Q 为AD 的中点,AD ⊥PQ , 又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,∵AD ⊂平面P AD , ∴平面PQB ⊥平面P AD . (2)连接AC 交BQ 于点N ,由AQ ∥BC 可得,△ANQ ∽△CNB ,∴AQ BC =AN NC =12.又PM MC =12,∴PM MC =ANNC.∴P A ∥MN . ∵MN ⊂平面MQB ,P A ⊄平面MQB ,∴P A ∥平面MQB . (3)∵P A =PD =AD =2,Q 为AD 的中点,∴PQ ⊥AD . 又平面P AD ⊥平面ABCD ,∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则各点坐标为A (1,0,0),B (0,3,0),P (0,0,3).设平面MQB 的法向量n =(x ,y ,z ),可得⎩⎪⎨⎪⎧ n ·QB →=0,n ·MN →=0.∵P A ∥MN ,∴⎩⎪⎨⎪⎧n ·QB →=0,n ·P A →=0.∴⎩⎨⎧3y =0,x -3z =0,取z =1,得n =(3,0,1). 取平面ABCD 的法向量m =(0,0,1). cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.21.(本小题满分12分)(文)如图,E 是以AB 为直径的半圆弧上异于A ,B 的点,矩形ABCD 所在平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①求证:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解析] (1)∵E 是半圆上异于A ,B 的点,∴AE ⊥EB , 又∵平面ABCD ⊥平面ABE ,且CB ⊥AB , 由面面垂直性质定理得CB ⊥平面ABE , 又AE ⊂平面ABE ,∴CB ⊥AE , ∵BC ∩BE =B ,∴AE ⊥平面CBE , 又EC ⊂平面CBE ,∴AE ⊥EC .(2)①由CD ∥AB ,得CD ∥平面ABE , 又∵平面CDE ∩平面ABE =EF , ∴根据线面平行的性质定理得CD ∥EF , 又CD ∥AB ,∴EF ∥AB .②V E -ADF =V D -AEF =13×12×1×32×1=312.(理)(2014·浙江台州中学期中)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上,过点E作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(折起后的点A 记作点P ),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.[解析] (1)在Rt △ABC 中,∵EF ∥BC ,∴EF ⊥AB , ∴EF ⊥EB ,EF ⊥EP ,又∵EB ∩EP =E ,∴EF ⊥平面PEB . 又∵PB ⊂平面PEB ,∴EF ⊥PB .(2)解法一:∵EF ⊥平面PEB ,EF ⊂平面BCFE ,∴平面PEB ⊥平面BCFE ,过P 作PQ ⊥BE 于点Q ,垂足为Q ,则PQ ⊥平面BCFE ,过Q 作QH ⊥FC ,垂足为H .则∠PHQ 即为所求二面角的平面角.设PE =x ,则EQ =12x ,PQ =32x ,QH =(PE +EQ )sin π4=324x ,故tan ∠PHQ =PQ QH =63,cos ∠PHQ =155,即二面角P -FC -B 的平面角的余弦值为定值155. 解法二:在平面PEB 内,经P 点作PD ⊥BE 于D , 由(1)知EF ⊥平面PEB ,∴EF ⊥PD .∴PD ⊥平面BCFE .在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .以B 点为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4)又∵AB =BC =4,∴BE =4-x ,EF =x , 在Rt △PED 中,∠PED =60°,∴PD =32x ,DE =12x , ∴BD =4-x -12x =4-32x ,∴C (4,0,0),F (x,4-x,0),P (0,4-32x ,32x ).从而CF →=(x -4,4-x,0),CP →=(-4,4-32x ,32x ).设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,则 n 1·CF →=0,n 1·CP →=0,∴⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+(4-32x )y 0+32xz 0=0,∴⎩⎨⎧x 0-y 0=0,3x 0-z 0=0, 取y 0=1,得,n 1=(1,1,3).又平面BCF 的一个法向量为n 2=(0,0,1). 设二面角P -FC -B 的平面角为α,则 cos α=|cos 〈n 1,n 2〉|=155. 因此当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值为定值155. 22.(本小题满分14分)(文)(2014·广东执信中学期中)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?[解析] (1)∵四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, ∴AA 2⊥AB ,AA 2⊥AD ,又∵AB ∩AD =A , ∴AA 2⊥平面ABCD .连接BD ,∵BD ⊂平面ABCD ,∴AA 2⊥BD . ∵底面ABCD 是正方形,∴AC ⊥BD . ∵AA 2∩AC =A ,∴BD ⊥平面ACC 2A 2, 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥BD . ∴B 1D 1⊥平面ACC 2A 2.(2)∵四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形, ∴S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1300(cm 2). 又∵四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形, 等腰梯形的高h ′=132-(20-102)2=12.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h ′=202+4×12(10+20)×12=1120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1300+1120=2420(cm 2), 故所需加工处理费为0.2S =0.2×2420=484(元).(理)(2014·西安市长安中学期中)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面P AD ;(2)若M 为棱PC 的中点,求异面直线AP 与BM 所成角的余弦值. [解析] (1)∵BC =12AD ,Q 为AD 的中点,∴BC =DQ ,又∵AD ∥BC ,∴BC ∥DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ , ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD ,又∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴BQ ⊥平面P AD ,又BQ ⊂平面PQB ,∴平面PQB ⊥平面P AD . (2)解法1:∵P A =PD ,Q 为AD 的中点,∴PQ ⊥AD .∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴PQ ⊥平面ABCD . 如图,以Q 为原点建立空间直角坐标系.则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0), ∵M 是PC 中点,∴M (-12,32,32),∴AP →=(-1,0,3),BM →=(-12,-32,32),设异面直线AP 与BM 所成角为θ,则cos θ=|cos 〈AP →,BM →〉|=AP →·BM →|AP →|·|BM →|=277,∴异面直线AP 与BM 所成角的余弦值为277.解法2:连接AC 交BQ 于点O ,连接OM ,则OM ∥P A , 所以∠BMO 就是异面直线AP 与BM 所成的角.OM =12P A =1,BO =12BQ =32,由(1)知BQ ⊥平面P AD ,所以BQ ⊥P A ,∴BQ ⊥OM , ∴BM =BO 2+OM 2=(32)2+12=72, ∴cos ∠BMO =OM BM =172=277.。

【高考】高考英语一轮复习Unit3Lifeinthefuture讲新人教版必修5

【高考】高考英语一轮复习Unit3Lifeinthefuture讲新人教版必修5

【关键字】高考Unit 3 Life in the future单元知识预览晨读范文背诵背诵这篇范文【山西省长治二中、忻州一中、临汾一中、康杰中学、晋城一中2017届高三上学期第一次联考】假定你是高中学生李华,你的美国朋友Jim即将升入高中,想让你给他一些学习建议。

请你给他写一封电子邮件,内容包括:1. 与老师交流,征求老师意见;2. 上课积极参与讨论,专心听讲,做好笔记;3. 课后积极完成作业,巩固知识。

注意:1.词数100左右; 2.可以适当增加细节,以使行文连贯。

语言知识精析重点单词精讲考点1.impression n. 印象;感觉;感想;印记【教材原句】first impressions第一印象【例句研读】(1) What was your first impression of London?你对伦敦的第一印象是什么?(2) I have a good impression of him.我对他的印象很好。

【归纳拓展】【即时巩固】(1) The new teacher made a good impression __________the students.新老师给学生们留下了一个好印象。

(2) My first __________of him was that he was a kind and thoughtful young man.我对他的第一印象是他是一个善良、体贴的年轻人。

(3) It is an ______________ achievement.那是个了不起的成就.(4) His trip to India a strong impression on him.他的印度之旅给他留下了深刻的印象。

【答案】(1) on (2) impression (3) impressive (4) made考点2.previous adj.在前的;早先的;先前的;以往的;(时间上)稍前的【教材原句】This is similar to the “jet lag” you get from flying,but it seems you keep getting flashbacks from your previous time period. 这有点像坐飞机时的飞行时差,但不同的是,你的脑海中似乎在不断闪现以前的时光。

山西省忻州一中、康杰中学、临汾一中、长治二中第一次四校联考生物

山西省忻州一中、康杰中学、临汾一中、长治二中第一次四校联考生物

山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考生物试题【满分100分,考试时间90分钟】第Ⅰ卷 (单项选择题,每题2分 共50分)1.下列四种面料中,从物质组成的主要成分上看,与其他三种不同的是 A .毛织品 B .丝织品 C .棉麻织品 D .皮革制品2.右图1是活细胞中3种化合物含量的扇形图,图2是活细胞中元素含量的柱形图,下列说法不正确的是A .A 化合物是水,a 元素是碳B .B 化合物含有a 、b 、c 三种元素C .A 化合物中不含b 元素D .人体细胞完全脱水后化合物含量最多的元素为图2中的b3.下列有关细胞结构和功能的叙述,正确的是A .需氧型生物的细胞都是以线粒体作为产能的“动力车间”B .溶酶体能合成多种水解酶并降解所吞噬的物质C .噬菌体、蓝藻、酵母菌都具有核糖体D .真核细胞功能不同主要是因为各细胞内细胞器的种类和数量不同4.某植物培养液中含有甲、乙、丙3种离子,它们对植物的生长都有影响。

下表列出的5种培养液中,甲、乙、丙3种离子的浓度(单位:mmol/L)不同。

为了研究丙离子的浓度大小对植物生长的影响,进行实验时可以选用的两种培养液是A 5.下表中a 、b 、c 不符合如图所示关系的是6.人的骨髓中有许多造血干细胞,它们能够通过增殖和分化,不断产生红细胞、白细胞与血小板,补充到血液中去。

产生这一现象的根本原因是 A .这些造血干细胞具有旺盛的分裂能力B .这些造血干细胞还没有分化,具有很强的分化能力C .这些造血干细胞能合成红细胞、白细胞与血小板等需要的蛋白质D .这些造血干细胞具有与受精卵相同的全套遗传物质7.如图表示人体内某种消化酶在体外最适温度条件下,反应物浓度对酶催化反应速率的影响,据图分析,下列说法正确的是A.如果在A点时,温度再提高5 ℃,则反应速率上升B.在其他条件不变的情况下,在B点时,往反应物中加入少量同样的酶,反应速率不变C.在A点时,限制反应速率的因素是反应物的浓度D.在C点时,限制反应速率的因素是反应物的浓度和酶的浓度8.下列有关酶与ATP的叙述,不正确的是A.蓝藻和绿藻都能进行光合作用,形成ATP,但形成的场所不同B.酶之所以能加快化学反应的速率是因为它们能降低化学反应的活化能C.若选择淀粉和淀粉酶探究酶的最适温度,检测时应选择斐林试剂D.若人体静脉滴注ATP注射液来治疗心肌炎,则ATP到达心肌细胞内至少要穿越3层细胞膜9.如图为细胞周期中部分细胞核的变化示意图,此过程A.发生在细胞分裂期的末期,核膜再度合成B.发生在细胞周期的分裂间期,染色质复制C.发生在细胞分裂期的前期,核膜逐渐消失D.发生在细胞分裂期的中期,染色体螺旋变粗10.在生长激素基因的表达过程中,细胞内伴随发生的变化,最可能是下图中的11.在同一生物体内,下列有关叙述错误的是①不同DNA分子中,可能储存有相同的遗传信息②不同mRNA分子中,不可能含有相同的密码子③不同组织细胞中,可能有相同的基因进行表达④不同核糖体中,不可能翻译出相同的多肽A.①③ B.②④ C.①④ D.②③12.下图是在显微镜下观察到的某细胞内的某些结构,下列判断正确的是A.这些结构是在光学显微镜下观察到的植物细胞结构B.以上七种结构均参与了细胞内生物膜系统的构成C.a、b、f与基因表达有关,但不一定都能发生A—T、G—C之间的互补配对D.在a内能合成葡萄糖,而在b内能将葡萄糖分解13.如图分别表示对几种生物体内正在进行分裂的细胞进行观察的结果,有关假设推论正确的是A.若图甲为有丝分裂过程中的某阶段,则下一时期细胞中央将出现赤道板B.若图乙表示有丝分裂过程中的某阶段,则染色体着丝点分裂可发生在这一阶段C.若图乙表示减数分裂过程中的某阶段,则同源染色体的分离可发生在这一阶段D.若图丙表示雄果蝇精巢内的几种细胞,则c组细胞中可能出现联会和四分体14.在一个细胞周期中,以下变化可能发生于同一时期的是A.DNA分子的复制和染色体数目加倍 B.染色单体形成和细胞板的出现C.着丝点的分裂和同源染色体的分离 D.核膜的消失和纺锤体的形成15.下列有关生物学实验的叙述,正确的是A.在“观察洋葱根尖有丝分裂”和“观察细胞中DNA和RNA分布”的实验中加入盐酸的浓度和目的都不相同B.在色素的提取和分离实验中,胡萝卜素在层析液中的溶解度最低,扩散速度最快C.双缩脲试剂和斐林试剂的用法不同,但它们的化学成分和物质的浓度都相同D.制备细胞膜和提取DNA都可以用鸡血作为实验材料16.如图是某二倍体生物减数第一次分裂形成的子细胞,正确的是A.正常情况下,基因B、b所在的染色体不可能是X染色体B.该细胞中有4条染色单体、2个染色体组C.该细胞形成过程中一定发生了基因突变D.该细胞分裂结束即可进行受精作用17.科学的发展离不开科学家们的卓越贡献。

高考语文二轮病句复习题及答案

高考语文二轮病句复习题及答案

高考语文二轮病句复习题及答案病句修改是高考语文必考的重要题型,修改病句练习训练对于高考语文复习是很重要的,以下是店铺为大家收集整理的高考病句专题练习题及答案,请考生认真复习。

高考病句专题练习一1. (2014大纲,3,3分)下列各句中,没有语病的一句是( )A.有的人看够了城市的繁华,喜欢到一些人迹罕至的地方去游玩,但这是有风险的,近年来已经发生了多次背包客被困野山的案情。

B.他家离铁路不远,小时候常常去看火车玩儿,火车每当鸣着汽笛从他身边飞驰而过时,他就很兴奋,觉得自己也被赋予了一种力量。

C.新“旅游法”的颁布实施,让很多旅行社必须面对新规定带来的各种新问题,不少旅行社正从过去拼价格向未来拼服务转型的阵痛。

D.哈大高铁施行新的运行计划后,哈尔滨至北京、上海等地的部分列车也将进一步压缩运行时间,为广大旅客快捷出行提供更多选择。

[答案] 1.D[解析] 1.A.搭配不当。

“发生”“多次”和“案情”不搭配,“多次”改为“多起”,“案情”改为“案件”。

B.语序不当。

应该把“每当”放在“火车”之前。

C.成分残缺。

“从过去拼价格向未来拼服务转型的阵痛”的中心语是“阵痛”,“阵痛”之前缺少谓语动词,可在“旅行社正”后加“承受”或“经历”等动词。

2. (2014四川,4,3分)下列各句中,没有语病的一项是( )A.城镇建设要充分体现天人合一理念,提高优秀传统文化特色,构建生态与文化保护体系,实现城镇与自然和谐发展。

B.金沙遗址博物馆的“太阳神鸟”金箔,是古蜀国黄金工艺辉煌成就的典型代表,以其精致和神秘展示了古蜀人的智慧与魅力。

C.全国规模最大的两栖爬行动物标本馆,已经收藏了10万多号标本,这些标本几乎覆盖了所有中国的两栖爬行动物种类。

D.音乐剧是19世纪末诞生的,它具有极富时代感的艺术形式和强烈的娱乐性,使它成为很多国家的观众都喜欢的表演艺术。

[答案] 2.B[解析] 2.A项,“提高优秀传统文化特色”中“提高”与“特色”搭配不当。

山西省临汾一中、忻州一中、长治二中联考高一上学期期中生物试卷

山西省临汾一中、忻州一中、长治二中联考高一上学期期中生物试卷

2016-2017学年山西省临汾一中、忻州一中、长治二中联考高一(上)期中生物试卷一、选择题(本大题共30小题,每小题2分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.家里冰箱里常常会储存些新鲜的鱼肉、水果、蔬菜等食物,在这些食物里面滋生的细菌等多种微生物,它们共同组成了()A.种群B.群落C.生态系统 D.以上都不是2.在显微镜下观察细胞时,与换成的高倍镜相比,低倍镜下观察到的物像大小、细胞数目和视野亮度应该是()A.大、多、亮 B.小、多、亮C.大、少、暗 D.小、多、暗3.英文字母bdMN(足够小)放在显微镜底下观察时,看到的图象是( )A.NWpb B.pqWN C.NWpq D.bdMN4.核糖与核酸都含有的元素是( )A.C B.C、O C.C、H、O D.C、H、O、N、P5.下列关于细胞学说建立过程的叙述,正确的是( )A.学说的建立者主要是英国的施莱登和施旺B.它揭示了动植物细胞的结构和功能统一性C.最早发现细胞并命名的是荷兰的列文虎克D.魏尔肖提出“细胞通过分裂产生新细胞”6.下列生物中属于原核生物的是()①大肠杆菌②酵母菌③颤藻④衣藻⑤乳酸菌.A.①②③B.①③④C.②④⑤D.①③⑤7.下列各组元素中,全部属于细胞生命活动必需的微量元素的一组是( )A.C、H、O、N B.P、S、K、Ca C.Ni、Cu、Cl、Mg D.B、Fe、Mn、Mo8.下表是活的植物细胞中a、b、c三种元素的含量百分比,下列说法正确的是()元素a b c含量65%18%10%A.表中b代表的元素应该是碳元素B.在该植物细胞干重中,占比例最高的元素是aC.人体细胞的元素含量与该植物细胞中的a、b、c含量完全相同D.a、b、c三种元素在活细胞中含量最多,说明它们是构成细胞的最基本元素9.活细胞中的各种物质含量从多到少的正确排序是() A.水、蛋白质、核酸、无机盐 B.水、蛋白质、无机盐、核酸C.蛋白质、水、糖类、无机盐 D.蛋白质、脂质、无机盐、核酸10.正常蛋白质含N量约在14%﹣18%,这些N主要存在于蛋白质的( )A.肽键B.游离的氨基C.R基D.游离的羧基11.蛋白质和多肽的主要区别是()A.蛋白质的相对分子质量更大B.蛋白质的空间结构更复杂C.蛋白质含有的氨基酸数目更多D.蛋白质中氨基酸的排列顺序变化更多12.对如表物质鉴定的有关分析,错误的是()液溶质的元素组成检测试剂颜色反应溶质的基本单位甲C、H、O①砖红色葡萄糖乙C、H、O、N等②紫色③A.甲可能是麦芽糖溶液B.①是斐林试剂,使用时需水浴加热C.②试剂要等量混合均匀后方可进行颜色鉴定D.③表示氨基酸13.下列有关构成蛋白质的氨基酸结构式的叙述错误的是()A.氨基酸的R基中可以有氨基或羧基B.构成氨基酸分子的化学元素只有C、H、O、NC.上述四种氨基酸的R基均不相同D.由上述四种氨基酸形成的环状八肽脱去了8个水分子14.下列对蛋白质功能的理解错误的是()A.运输氧气或二氧化碳B.调节机体的生命活动C.具有免疫功能的物质都是蛋白质D.催化细胞内的化学反应15.下列选项中,属于动物细胞、玉米植株细胞中所共有的糖类是( )A.葡萄糖、乳糖B.脱氧核糖、核糖C.糖原、核糖 D.蔗糖、脱氧核糖、核糖16.某蛋白质由120个氨基酸组成,其中有8个一SH,在肽链形成空间结构(如图)时,生成4个二硫键(﹣S﹣S﹣).若氨基酸平均分子量为125,则该蛋白质的分子量约为()A.12850 B.12858 C.12832 D.1500017.在新榨取的梨汁中,加入斐林试剂,加热后出现砖红色沉淀;将成熟的花生种子的子叶做成临时切片,用苏丹Ⅲ染液染色后在显微镜下观察,可看到橘黄色的颗粒;向新鲜豆浆中加入双缩脲试剂后,豆浆呈紫色;向马铃薯匀浆中滴加碘液呈现蓝色.在新榨取的梨汁、豆浆、花生鲜种子和马铃薯匀浆中含有的主要有机物依次是()A.还原糖、蛋白质、脂肪、淀粉B.淀粉、脂肪、蛋白质、淀粉C.糖类、蛋白质、淀粉、脂肪 D.葡萄糖、脂肪、蛋白质、淀粉18.下列关于斐林试剂和双缩脲试剂的叙述,不正确的是()A.都含有NaOH溶液和CuSO4溶液B.斐林试剂的配制是质量浓度为0。

最新高考数学预测题 数列

最新高考数学预测题 数列

数列预测题(一) 选择题(12*5=60分)1.【浙江省嘉兴一中高三上学期入学摸底数学(理)】等差数列}{n a 中,已知121-=a ,013=S ,使得0>n a 的最小正整数n 为 ( )A .7B .8C .9D .102.【广东省广州市执信、广雅、六中高三10月三校联考(理)】等差数列{a n }中,“a 1<a 3”是“a n <a n +1”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.【浙江省温州市十校联合体高三10月测试数学试题(理科)】已知实数列2,,,,1--z y x 成等比数列,则xyz = ( )A .4-B .4±C .22-D .22±4.【河北省唐山市高三年级摸底考试理科】设等差数列{}n a 的前n 项和为n S ,且513S =,1563S =,则20S =( )A .90B .100C .110D .1205.【江西师大附中高三年级开学考试】设{}n a 是公比为q 的等比数列,令1(1,2,)n n b a n =+= ,若数列{}n b 的连续四项在集合}{53,23,19,37,82--中,则q 等于( ) A .43-B .32-C .32-或23-D .34-或43-6.【安徽省示范高中高三上学期第一次联考数学(理)】已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =,2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n7.【安徽省望江四中高三上学期第一次月考数学(理)】已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A B . C .12D .12-8.【山西省忻州一中 康杰中学 临汾一中 长治二中高三第一次四校联考理改编】已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为( )A.-1B.-2C.-3D.-49.【河北省唐山市高三年级摸底考试理科改编】已知数列{}n a 满足10a =,21a =,2132n n n a a a ++=-,则{}n a 的前n 项和n S =( )A.21nn -- B.21nn -+ C.221nn -- D.21n-10.【内蒙古赤峰市全市优质高中高三摸底考试(理)】已知数列{n a }的前n 项和为n S ,且12n n S a +=,则使不等式22211252n n a a a ++++<⨯ 成立的n 的最大值为( )A.2B.3C.4D.511.【湖北孝感高中高三年级九月调研考试】已知函数()f x 是R 上的单调增函数且为奇函数,数列{}n a 是等差数列,30a >,则()()()135f a f a f a ++的值( )A .恒为正数B .恒为负数C .恒为0D .可以为正数也可以为负数12.【四川省德阳中学高三“零诊”试题理科改编】定义在(0,)+∞错误!未找到引用源。

山西省康杰中学等四校2015届高三第二次联考英语试题 Word版含解析

山西省康杰中学等四校2015届高三第二次联考英语试题 Word版含解析

2015届高三年级第二次四校联考英语试题2014.12 命题:忻州一中康杰中学临汾一中长治二中【试卷综述】本套试卷按照《考试说明》,结合新课标《考试大纲》精心命制的,难度适中。

阅读理解难度适中、选材广泛。

文章涉及社会生活、文化教育、人物传记类及新闻报道类。

阅读材料紧跟社会热点,如A涉及到中国的神曲“小苹果”。

题型设计多样,细节理解题、推理判断题考查较多,兼顾对主旨大意、词义猜测题的考查,试题整体难度适中。

七选五的话题不晦涩,重在考查上下文衔接识别。

【本试题分第I卷和第II卷两部分,时间120分钟,总分150分,听力不计入总分。

】第I卷第一部分听力(共两节,满分30分)做题时,先将答案表在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面五段对话。

每段对话后有一个小题。

从题中所给的A. B. C三个选项选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What can we learn from the conversation?A. The two speakers are climbing stairs.B. The two speakers took the stairs.C. The woman suggested walking2. What is the man going to do?A. Take another flight.B. Give the ticket to someone.C. Catch the plane at 6:003. What is the relationship between the speakers?A. Boss and employee.B. Customer and waitress.C. Customer and salesgirl.4. What will the speakers do over the weekend?A. Go hikingB. Stay at home.C. Climb mountains.5. Where does this conversation probably take place?A. In a bookstore.B. In a classroom.C. In a library.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。

高中语文重难点第一课《湘夫人》练习(含解析)新人教版选修《中国古代诗歌散文》

高中语文重难点第一课《湘夫人》练习(含解析)新人教版选修《中国古代诗歌散文》

高中语文重难点第一课《湘夫人》练习(含解析)新人教版选修《中国古代诗歌散文》《湘夫人》【单元说明】“以意逆志”(探究诗旨),从作品的整体出发,由表及里、由浅入深地理解诗作的主旨,用自己的切身体会去推测作者的本意。

这也就是说,我们在鉴赏诗歌的时候常常结合自己的生活经验,也就是把自己当作诗人,然后“将心比心”去领会、推测诗人在诗中所寄寓的情感,从而理解诗歌的内容和主旨,这就是我们所说的“以意逆志”的诗歌鉴赏方法。

“知人论世”(从作者层面探讨了诗歌欣赏的方法)诗人不同,诗风各异;境遇不同,诗情有别;时代不同,精神迥异。

全面掌握诗人一生的思想变化流程,以及由此而呈现出不同的感情基调和旨趣;全面了解了作者所处的政治、经济、文化、思想、宗教、风俗等反映特定时代的社会风气和时代精神,力求真正理解作品的内容以及作品反映现实的深度和广度。

如同为离别诗,汉末多离别的哀怨,而盛唐普遍呈现乐观的基调。

《湘夫人》诗中的抒情主人公却是湘君。

诗歌讲述的是湘君和湘夫人的神恋故事,是由一次约会在时间上的误差而引出的悲剧。

这个故事的感情基调是幽怨、哀婉。

这首诗写湘君为追求理想和爱情,是多么执著和痴情,一再遭到挫折却决不退缩。

但在失望多于希望的情况下,又透露出不可抑制的哀怨、焦虑之情。

这一切也正是屈原自身的写照。

屈原有崇高的理想,为了实现理想,他苦苦追求,尽管屡受打击,还是坚持不懈九死而未悔。

《拟行路难》(其四)诗的开头两句运用了比兴的表现手法,说明了如同水是依照高低不同的地势流向各方一样,人的遭际也是由家庭门第的高低贵贱决定的。

从诗歌本身看,作者所说的“命”指门第决定人生,有什么样的门第就有什么样的遭遇。

作者认为非常不公平,但没法改变,只能将社会生活中一切不正常的现象归结于“命”,只能发出无言的控诉。

《蜀相》最传神的是“寻”字。

诗人借“寻”字表明此行是有目的的专程来访。

它有力地表达了诗人急欲瞻仰武候祠、追慕诸葛亮的心情,为后面颂扬诸葛亮埋下伏笔,使全诗和谐统一。

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考数学理试题

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考数学理试题

山西省康杰中学、长治二中、临汾一中、忻州一中2015届高三上学期第一次联考数学理试题)(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1. 设全集为R ,集合}1log {},4{22≥=>=x x N x x M ,则=N MA .[-2,2]B .)2,(--∞C .),2(+∞D .),2(+∞- 2. 已知i 是虚数单位,则复数2)i1i 2(-的值为 A .1 B .1- C .i D .i -3. 执行如图所示的程序框图,当输出值为4时,输入x 的值为A .2B .2±C .-2或-3D .2或-34. 实数y x ,满足⎪⎩⎪⎨⎧≤≥-+≤-+1033032y y x y x ,则y x z -=的最大值是A .-1B .0C .3D .4 5. 二项式102)2(xx +展开式中的常数项是 A .180 B .90C .45D .3606. 三棱锥的三视图如图,正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积为A B C D 7. 已知双曲线)0,0(12222>>=-b a b y a x 的离心率为26,则此双曲线的渐近线方程为A .x 2y ±=B .x y 2±=C .x y 22±= D .x y 21±=8. 等比数列}{n a 的前n 项和为n S ,若0323=+S S ,则公比q =A .-2B .2C .3D .-39. 点D C B A ,,,均在同一球面上,且AB 、AC 、AD 两两垂直,且,1=AB ,2=AC 3=AD ,则该球的表面积为正视图俯视图A .π7B .π14C .27π D .3147π 10. 若a 满足4lg =+x x ,b 满足410=+xx ,函数⎩⎨⎧>≤+++=0202)()(2x x x b a x x f ,,,则关于x 的方程x x f =)(解的个数是A .1B .2C .3D .411. 抛物线)0(2:2>=p px y C 的焦点为F ,M 为抛物线C 上一点,若OFM ∆的外接圆与抛物线C 的准线相切(O 为坐标原点),且外接圆的面积为9π,则=p A .2 B .4 C .6 D .812. 已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13. 已知b a ⊥,2=a ,3=b ,且b a 2+与b a-λ垂直,则实数λ的值为 ▲ .14. 数列}{n a 的前n 项和记为n S ,11=a ,)1(121≥+=+n S a n n ,则}{n a 的通项公式 为 ▲ . 15.函数)432(31sin 232sin3)(2ππ≤≤-=x x x x f 的最小值是 ▲ . 16.在等比数列}{n a 中,1041=<<a a ,则能使不等式0)1()1()1(2211≤-+⋅⋅⋅+-+-nn a a a a a a 成立的最大正整数n 是 ▲ .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17. (本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,其面积为S ,且S a c b 334222=-+. (1)求A ; (2)若35=a ,54cos =B ,求c . 18.(本小题满分12分)BCD如图,在四棱锥ABCD P -中, ABCD PA 面⊥,BC AD //,︒=∠90BAD ,2,1,===⊥PA AD BC BD AC ,F E ,分别为AD PB ,的中点.(1)证明:EF AC ⊥;(2)求直线EF 与平面PCD 所成角的正弦值. 19. (本小题满分12分)为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率; (2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用X 表示抽得甲班志愿者的人数,求X 的分布列和数学期望. 20. (本小题满分12分)已知椭圆2222:1(0)y x C a b a b +=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.B A 、是椭圆C 的右顶点与上顶点,直线)0(>=k kx y 与椭圆相交于F E 、两点. (1)求椭圆C 的方程;(2)当四边形AEBF 面积取最大值时,求k 的值. 21. (本小题满分12分)已知函数)1ln()1()(--=x x x f .(1)设函数)()1()(x f x a x g +--=在区间]1,2[2+e 上不单调,求实数a 的取值范围; (2)若Z k ∈,且0)2(1)(>---+x k x x f 对2>x 恒成立,求k 的最大值.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,ABC ∆内接于直径为BC 的圆O ,过点A 作圆O 的切线交CB 的延长线于点P ,BAC ∠的平分线分别交BC 和圆O 于点E D 、,若102==PB PA . (1)求证:ABAC 2=; (2)求DE AD ⋅的值.PE22题图23.(本小题满分10分)选修4—4:坐标系与参数方程已知直线l :⎩⎨⎧=+-=ααsin cos 1t y t x (t 为参数,α为l 的倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 为:05cos 62=+-θρρ. (1)若直线l 与曲线C 相切,求α的值;(2)设曲线C 上任意一点的直角坐标为),(y x ,求y x +的取值范围. 24.(本小题满分10分)选修4—5:不等式选讲已知正实数b a 、满足:ab b a 222=+. (1)求11+的最小值m ;一、选择题(每小题5分,共60分) 1-5:CDDCA 6-10:BCABC 11-12:BB 二、填空题(每小题5分,共20分) 13. 2914. n n a 3= 15. 13- 16. 7 三、解答题: 17 (本小题满分12分)解:(1)由已知得:A bc A bc sin 21334cos 2⋅=………4分 3tan =∴A ………5分由A 是内角,∴ 060=A ………6分 (2)由54cos =B 得53in =B s ………7分 ∴10343c 23sin 21)3(si inC +=+=+=osB B B n s π………10分 由正弦定理得:343sin sin +==ACa c ………12分18 (本小题满分12分)解:(1)易知AB,AD ,A P 两两垂直.如图,以A 为坐标原点,AB,AD, AP 所在直线分别为x轴,y 轴,z 轴建立空间直角坐标系.设AB t =,则相关各点的坐标为:(0,0,0)A ,(,0,0)B t ,(,1,0)C t ,(0,2,0)D ,(0,0,2)P ,(,0,1)2tE (0,1,0)F . ………2分从而(,1,1)2tEF =--,AC =(,1,0)t ,BD =(,2,0)t -.因为AC BD ⊥,所以AC ·BD =2200t -++=.解得t =t =舍去). ………4分于是EF =(2-,1,-1),AC =(2,1,0).因为AC ·EF =-1+1+0=0,所以AC ⊥EF ,即AC EF ⊥. ………6分(2)由(1)知,PC =,PD =(0,2,-2). 设(,,)x y z =n 是平面PCD 的一个法向量,则0,0,PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,220.y z y z +-=-=⎪⎩令z =n =(1. ………9分设直线EF 与平面PCD 所成角为θ,则sin θ=|cos 〈n ,EF 〉|=|EFEF ⋅⋅n n |=15.即直线EF 与平面PCD 所成角的正弦值为15. ………12分19. 解:(1)由已知得问卷调查中,从四个班级中抽取的人数分别为15,20,10,5…2分从参加问卷调查的50名志愿者中随机抽取两名的取法共有2501225C =种, 这两名志愿者来自同一班级的取法共有215C +220C +210C +25C =350. ………5分∴721225350p ==. ………6分 (2)由(1)知,在参加问卷调查的50名志愿者中,来自甲、丙两班的人员人数分别为15,10.X 的可能取值为0,1,2, ………8分==)0(X P 203225210=C C , 21)1(225110115===C C C X P , 207)2(225215===C C X P . ∴X 的分布列为:x………11分………12分20.(1) 由题意知:c e a ==3 ∴222222c a b e a a -===34,∴224a b =. ……2分 又∵圆222x y b +=与直线0x y -=相切, ∴1b =,∴24a =, ……3分故所求椭圆C 的方程为2214y x += ………4分 (2)设1122()()E x kx F x kx ,,,,其中12x x <,将y kx =代入椭圆的方程2214y x +=整理得:22(4)4k x +=, 故21x x =-=.① ………5分又点E F ,到直线AB 的距离分别为1h ==2h ==AB ==………7分所以四边形AEBF 的面积为121()2S AB h h =+21525(4)k =+=………9分===≤ ………11分 当24(0)k k =>,即当2k =时,上式取等号.所以当四边形AEBF 面积的最大值时,k =2. ………12分 21.解:(1))1ln(1)(-++-='x a x g 在),1(+∞上递增 ………1分由已知,有⎩⎨⎧>+-=+'<+-='03)1(01)2(2a e g a g 解得31<<a a ∴的取值范围为)3,1(. ………4分(2)由题知21)1ln()1(--+--<x x x x k 对2>x 恒成立. ………5分令=)(x u 21)1ln()1(--+--x x x x 则=')(x u 2)2(3)1ln(--+--x x x令3)1ln()(-+--=x x x v 12111)(--=--='x x x x v 0)(2>'∴>x v x 即)(x v 在),2(+∞上递增 ………8分 又022ln 2)5(,013ln )4(>+-=<+-=v v )5,4(0∈∃∴x ,使得0)(0=x v 即0)(0='x u∴)(x u 在),4(0x 上递减,在)5,(0x 上递增. ………10分 2)1()1ln()1()()]([00000min --+--==∴x x x x x u x u)4,3(12)1()3)(1(00000∈-=--+--=x x x x x1)]([0min -=<x x u k 又k Z k ∴∈, 的最大值为3. ………12分 22. 解:(1)∵PA 是圆O 的切线 ∴ACB PAB ∠=∠ 又P ∠是公共角∴ABP ∆∽CAP ∆ ………2分∴2==PBAPAB AC ∴AB AC 2= ………4分 (2)由切割线定理得:PC PB PA ⋅=2∴20=PC又PB=5 ∴15=BC ………6分又∵AD 是BAC ∠的平分线 ∴2==DBCDAB AC ∴DB CD 2= ∴5,10==DB CD ………8分又由相交弦定理得:50=⋅=⋅DB CD DE AD ………10分 23. 解:(1)曲线C 的直角坐标方程为05622=+-+x y x即4)3(22=+-y x 曲线C 为圆心为(3,0),半径为2的圆. 直线l 的方程为:0sin cos sin =+-αααy x ………3分 ∵直线l 与曲线C 相切 ∴2cos sin |sin sin 3|22=++αααα即21sin =α ………5分 ∵ α∈[0,π) ∴α=656ππ或 ………6分(2)设θθsin 2,cos 23=+=y x则 y x +=θθsin 2cos 23++)4sin(223πθ++= ………9分∴ y x +的取值范围是[]223,223+-. ………10分24. 解:(1)∵ab b b 2a a 222≥+= 即ab ≥ab ∴1a ≤b ………2分 又2ab211≥≥+b a 当且仅当b =a 时取等号 ∴m =2 ………5分 (2)2|1||1|||)(f ≥+≥++-=tt tx t x x ………9分 ∴满足条件的实数x 不存在. ………10分。

基本初等函数综合复习

基本初等函数综合复习

基本初等函数综合复习题型一 幂函数的定义及应用例1.已知y =(m 2+2m -2)·211m x -+(2n -3)是幂函数,求m 、n 的值.探究提升 (1)判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:①指数为常数;②底数为自变量;③幂系数为1.(2)若一个函数为幂函数,则该函数解析式也必具有以上的三个特征.已知f (x )=(m 2+2m )21m m x +-,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.2.【江西省2014届高三新课程适合性考试文科数学】由幂函数n y x =的图像过点(8,2),则这个幂函数的定义域是( )A .[0,)+∞B .(,0)(0,)-∞+∞C .(0,)+∞D .R题型二 指数式与根式,对数式的化简,求值问题例2. 【2014届新余一中宜春中学高三年级联考数学(文)】已知函数)241(log )(22x x x f -+=,则4(tan )(tan )55f f ππ+=( ) A .1- B .0 C .1 D .2变式训练:1.【安徽省池州一中2014届高三第一次月考数学(文)】求值:()70log 23log lg 25lg 472013++++-= .2. 【江西师大附中高三年级2013-2014开学考试】已知函数,则 . 题型三 基本初等函数的单调性问题例3.【安徽省示范高中2014届高三上学期第一次联考数学(文)】已知函数3,0()2,0x x a x f x a x --<⎧=⎨-≥⎩,(0a >且1a ≠)是R 上的减函数,则a 的取值范围是( ) A .2(0,]3 B .1(0,]3C .(0,1)D .(0,2]变式训练 1.【宁夏银川一中2014届高三年级第一次月考文科】已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论准确的是( ) A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+ 2log ,0,()2,0x x x f x x >⎧=⎨<⎩1()(2)4f f +-=C .)()(1221x f x x f x >D .)()(1122x f x x f x >2.【广东省珠海市2014届高三9月摸底考试数学(文)】下列函数中,既是偶函数又在区间上单调递增的函数为( )A .B .C .D . 3. 【江西省2014届高三新课程适合性考试文科数学】函数()f x 的定义域为{|1}x R x ∈≠,对定义域中任意的x ,都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的递减区间是( ) A .5[,)4+∞ B .5(1,]4 C .7[,)4+∞ D .7(1,)4 题型四 基本初等函数的奇偶性与周期性问题例4【宁夏银川一中2014届高三年级第一次月考文科】已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则( )A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数变式训练1.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①②③④,其中是奇函数的是( ) A. ①② B. ①④ C. ②④ D. ③④2.【广东省广州市海珠区2014届高三入学摸底考试数学文】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A.1-B. 2-C. 2D.13.【吉林省白山市第一中学2014届高三8月摸底考试文】已知定义在R 上的偶函数f (x )满足:∀x ∈R 恒有f (x +2)=f (x )-f (1).且当x ∈[2,3]时,f (x )=-2(x -3)2.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A .(0,22)B .(0,33)C .(1,2)D .(1,3)题型五 函数的零点问题例5.【广东省汕头四中2014届高三第一次月考数学(文)】函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数为( ) 0,+∞()1y x -=2log y x =||y x =2y x =-cos y x x=2sin y x =2y x x =-x xy e e -=-A .0 B.1 C.2 D.3变式训练1.【安徽省池州一中2014届高三第一次月考数学(文)】定义在R 上的偶函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点的个数为( )A .2个B .4个C .6个D .至少4个2.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】在下列区间中函数()24x f x e x =+-的零点所在的区间为( ) A.1(0,)2 B.1(,1)2 C.(1,2) D.⎪⎭⎫ ⎝⎛23,1 3.【江西省2014届高三新课程适应性考试文科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .12 题型六 函数的图象问题例6【吉林省白山市第一中学2014届高三8月摸底考试文】象是 ( )变式训练1.【安徽省示范高中2014届高三上学期第一次联考数学(文)】函数()f x 的图像如图所示,若函数()y f x c =-与x 轴有两个不同交点,则c 的取值范围是( )A .(2,0.5)--B .[2,0.5)--C .(1.1,1.8)D .[2,0.5)(1.1,1.8)--2.【成都外国语学校2014级高三开学检测试卷】设()f x 是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则(2013)f +(2014)f =( )A 、3B 、2C 、1D 、03.【2014届新余一中宜春中学高三年级联考数学(文)】已知在函数()的图象上有一点,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题型七 基本初等函数的函数值大小比较问题例7.【宁夏银川一中2014届高三年级第一次月考文科】下列大小关系正确的是( )A. 3log 34.044.03<< B. 4.03434.03log << C. 4.04333log 4.0<< D. 34.044.033log <<变式训练1.【成都外国语学校2014级高三开学检测试卷】 设0.33log 3,2,log sin 6a b c ππ===,则( )A 、a b c >>B 、c a b >>C 、b a c >>D 、b c a >>2.【广东省广州市海珠区2014届高三入学摸底考试数学文】设||y x =[1,1]x ∈-(,||)P tt0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( )A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<题型八 基本初等函数的定义域,值域,取值范围问题例8 【吉林市普通中学2013—2014学年度高中毕业班摸底测试文】设函数的最小值为,则实数的取值范围是( )变式训练1.【江西省2014届高三新课程适应性考试文科数学】已知函数32,0()2,04x a x f x x x x ⎧≤<=⎨-+≤≤⎩的值域是[8,1]-,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,0)- C .[2,1]-- D .{2}-2.【江苏省苏州市2014届高三九月测试试卷】已知函数2, 0,()2, 0x x f x x x x -≤⎧⎪=⎨->⎪⎩,则满足()1f x <的x 的取值范围是______.【宁夏银川一中2014届高三年级第一次月考文科】已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______.3.【成都外国语学校2014级高三开学检测试卷】函数x x f 6log 21)(-=的定义域为____.4.【安徽省望江四中2014届高三上学期第一次月考数学(文)】函数的定义域为 。

高考物理必刷题一)

高考物理必刷题一)

精品题库试题物理1.(2015课标Ⅰ,18,6分)一带有乒乓球发射机的乒乓球台如图所示。

水平台面的长和宽分别为L1和L2,中间球网高度为h。

发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。

不计空气的作用,重力加速度大小为g。

若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是()A.<v<L1B.<v<C.<v<D.<v<2.(2015浙江理综,17,6分)如图所示为足球球门,球门宽为L。

一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。

球员顶球点的高度为h。

足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=B.足球初速度的大小v0=C.足球末速度的大小v=D.足球初速度的方向与球门线夹角的正切值tan θ=3.(2015福建理综,17,6分)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上。

若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小4.(2015浙江理综,19,6分)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r和2r。

一辆质量为m的赛车通过AB线经弯道到达A'B'线,有如图所示的①、②、③三条路线,其中路线③是以O'为圆心的半圆,OO'=r。

赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max。

选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等5.(2015天津理综,4,6分)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省忻州一中14-15高三第一次四校联考地理试题(满分100分,考试时间90分钟)一、选择题(共25小题,每小题2分,共50分。

在题目所给的四个选项中,只有一项是最符合题目要求的)读右图,完成1~2题。

1.图中甲、乙、丙、丁按形成的先后顺序排列,正确的是A.甲、乙、丙、丁B.丙、丁、乙、甲C.丙、乙、丁、甲D.丙、丁、甲、乙2.有关图中区域的说法,正确的是A.可以在A地修建采石厂B.岩浆岩乙可能含有化石C.若A处有河谷形成,是因为A位于向斜顶部,容易被侵蚀D.可以在A处修建水库堤坝,是因为A位于岩性坚硬的背斜顶部读“某区域海平面等压线(单位:hPa)分布图”,完成3~4题。

3. 假如气压变化只和气温有关,选项中的四个地点气温日较差最大的是A.(40°N,130°E)B.(40°N,140°E)C.(30°N,120°E)D.(30°N,130°E)4. 该时间段内,M点①气压降低②气温降低③天气由晴朗转为阴雨④由偏东风转为偏西风⑤风力减弱A.①②③B.②④⑤C.③④⑤D.②③⑤阿克库勒湖位于新疆阿勒泰地区(阿尔泰山南麓、准噶尔盆地北缘),因其湖水呈乳白半透明状又称“白湖”。

其成因是上游冰川中的冰碛物(冰川沉积的岩块物质)经冰川运动,被挤压、研磨成白色的粉末带入河流,进入湖泊使湖水成白色。

读“该湖附近的等高线地形图”,完成5~6题。

5.下列关于湖泊和河流的叙述,正确的是A.白湖为内流湖,其水位的变化受气温的影响小B.图中①②③河流均注入白湖C.④河与③河相比,流量的季节变化大D.①河与②河相比,流速更快6.根据材料信息,可以推测下列说法正确的是 A.站在A处不能看到B处B.该湖周围是我国著名的长绒棉产地C.宿营地可以选择在C处以方便取水D.引起湖水呈现白色的主要地质作用为冰川的搬运、堆积作用右图中①、②、③、④为四个不同的区域,读图完成7~8题。

7. 立足于农业可持续发展,最适合农牧业结合发展的是A.①B.②C.③D.④8. 下列描述符合①、②、③、④四地区实际情况的是A.①地水土流失严重,应大力植树种草,恢复植被B.②地区洪涝灾害严重,应加强水利工程建设 C.③地区土地盐碱化严重,大水漫灌可缓解该问题 D.④地区土地荒漠化严重,应退耕还牧读某农业生态园生态链循环模式图,完成9~11题。

9. 该产业链体现了可持续发展的A.持续性原则B.公平性原则C.共同性原则D.效益最大化原则10.该农业生态园的主要生态效益有①延长产业链,提高产品附加值②废弃物资源化,减少环境污染③使用有机肥料,发展绿色生产④使用沼气能源,减少植被破坏⑤果草套种,提高土地利用率⑥促进餐饮、休闲旅游等第三产业发展A.①②③④B.③④⑤⑥C.②③④⑤D.①③④⑥11.该农业生态园废弃物再利用体现在①食品加工产生的废弃物和秸秆、粪便用于生产沼气 ②养黄粉虫作为贵妃鸡、孔雀等珍禽的饲料③在红心蜜柚等水果林地中套种黑麦草、玉米草等牧草 ④收集珍禽的羽毛制作成观赏标本A.①②B.②③C.③④D.①④读“某国人口增长模式转变过程示意图”和“该国人口年龄结构图”,完成12~13题。

12.读左图可知,下列说法正确的是A.该国人口增长模式转变过程是L —Q —N —P —MB.P 时期劳动力不足C.N 点时人口数量达最大值D.Q 点过后人口数量开始增加 13. 读右图数据可知A.移民缓解了该国的老龄化问题B.中青年比重高主要是劳动力导向型工业大量迁入C.外来移民人口超过本国人口D.该国可能是印度下图所示地区为完整的昼半球,读图完成14~16题。

14. 下列关于图中标注的四个点的说法,正确的是 A.X 、Y 、P 三点的太阳高度相同 B.Y 、P 两点的地方时相同 C.X 、Y 两点的地方时相同 D.A 点太阳高度达到一年中最大值 15. 下列四幅图能够正确反映Y 点位置的是外来移民人口年龄结构本地人口出生率(%)自然增长率(%) A B C D16. 此时,下列说法最有可能的是A.春江水暖鸭先知B.科考人员在北极地区进行科考活动C.延安果园硕果累累D.我国大陆等温线向南凸出读“某市市区人口与用地变化示意图”,完成17~18题。

图例------ 市区人口变化建成区面积变化………城镇化水平变化………市区非农业人口变化17. 1998~2006年,该市A.城镇化水平增速最慢B.城市总面积逐年增长C.农业人口逐年增长D.建成区面积与市区人口变化趋势相反18. 图示反映该市城镇化进程中面临的最突出的问题是A.城市人口增长过快B.环境污染加剧C.土地资源浪费严重D.交通拥堵日益加重下图中箭头表示洋流的分布位置及流向,o为极点。

读图完成19~20题。

19. a洋流经过处形成渔场的原因是A.寒暖流交汇B.有上升流存在C.位于大陆架浅海区D.位于温带海区20. b、c、d、e四支洋流中,对沿岸热带沙漠形成起重要作用的是A.bB.cC.dD.e①②③④四图是某大陆从地质历史时期至今沿45°纬线的地形剖面示意图(图中箭头指地形演变趋向)。

读图完成21~23题。

21. 该大陆最有可能为A.非洲大陆南端B.澳大利亚大陆C.南美大陆南端D.亚欧大陆22. 推测图④中大陆东岸植被类型最可能是A.常绿硬叶林B.落叶阔叶林C.常绿阔叶林D.温带荒漠23. 导致图①和图④大陆东岸植被差异的根本原因是A.地壳运动B.海陆分布C.洋流性质D.大气环流服务外包属于现代高端服务业的重要组成部分,当前,全球服务外包正成为国际商务活动中的新浪潮,也是当今世界新一轮产业革命和转移的新趋势。

读“全球服务外包产业转移示意图”,完成24~25题。

24.影响全球服务外包产业第一阶段转移的最主要区位因素是A.大量廉价劳动力B.教育水平较高C.便利的交通D.工业基础雄厚25.中国正成为全球服务外包产业转移的主要国家之一,其最有利的区位条件是A.便利的交通B.IT产业迅猛发展C.自然资源丰富D.消费市场广大二、非选择题(共50分)26. (20分)读世界某区域图,完成下列要求。

甲(1)简述丙河瀑布以上河段的自然地理状况及其流向。

(6分)(2)甲乙两地都有大面积沼泽,分析两地沼泽形成的不同原因。

(8分)(3)当地政府计划引进甲地的生产经验,在戍地建设“本国的粮仓”。

你是否赞成当地政府的计划?请说明理由。

(6分)27. (20分)世界经济发展的一个很重要的经验,就是注意发挥江河湖海的地理位置、自然资源和经济文化等优势,形成经济地带,从而带动区域经济的发展。

长江沿江地带东起上海、西至四川攀枝花,东西绵长3000多千米;南北宽度大致在长江两岸100-200千米的范围内。

长江沿江地带不仅地理位置优越,而且自然条件得天独厚。

读“长江沿江地带简图”,完成下列要求。

(1)结合材料,分析长江沿江地带社会经济发展的区位优势。

(8分)(2)试简析长江沿江地带的上中游内陆地区与下游沿海经济区应当怎样进行相互协作,优势互补以实现共同发展。

(8分)(3)重庆是长江上游最大的中心城市,也是唯一通江达海的综合交通枢纽。

结合下列表格,简要说明重庆城市等级高于成都的依据。

(4分)长江上游区域各大城市的等级体系统计表请考生在第28、29、30三道地理题中任选一题做答,如果多做,则按所做的第一个题目计分。

28.【旅游地理】(10分)右图所示岛屿为世界著名旅游胜地。

某游客在日记中写道:“风景优美的海岛,休闲度假的天堂,四季绿水青山,万花烂漫,林木参天,是我曾经的梦想。

我们的航班是晚上9点多到达该岛的,虽然是晚上,但是异国的美丽风景一下就吸引了我,高大笔直的椰子树、碧绿的芭蕉,我不禁惊叹好美啊!短短的4天行程,我用手中的相机拍了很多:令人陶醉的自然风光、使人神往的宗教文化,精美的木雕工艺,以及碧海蓝天,细腻沙滩上,休闲度假的不同肤色的人群。

”(1)根据材料列举该岛的旅游资源。

(4分)(2)结合该岛环境特点,分析到该岛旅游需要准备的生活用品及注意事项。

(6分)29. 【自然灾害与防治】(10分)材料一据中国地震台网测定,2014年8月3日16时30分,云南鲁甸发生6.5级地震,震源深度12公里。

地震造成398人遇难、3人失踪、1801人受伤、108.84万人受灾。

鲁甸一位官员坦言,“倒塌房屋中至少80%是土坯房,若震区没有那么多土房子,防震工程的推广能再加大些力度,这次地震的伤亡一定会大幅减少。

”材料二鲁甸县地处小江断裂带,总面积1519平方千米,人口密度每平方公里170人,近年已多次遭受过地震侵害。

此次地震是18年来云南震级最高的一次,地震还引发正在建设的红石岩水电站上游河段一处山体滑坡,牛栏江堵塞形成堰塞湖,导致该河段水位急剧上涨,致使湖区村民生命财产受到威胁。

材料三据中国气象局介绍:“ 8月3日震区将有雷阵雨天气,气温为16~25℃。

预计未来三天,将有明显降雨天气,并伴有雷电,其中4日夜间至5日有中到大雨。

”材料四读鲁甸位置图及堰塞湖景观图。

(1)包括鲁甸在内的西南地区是地质灾害多发区,根据上述材料分析归纳云南鲁甸此次地震的特点。

(5分)(2)简要说明图中堰塞湖的成因,并分析堰塞湖的形成对该区域地理环境可能带来的不利影响。

(5分)30. 【环境保护】(10分)记者7月12日从有关部门获悉,15年间,中国最大沙漠淡水湖红碱淖水域面积从55平方公里缩小到约30平方公里,而作为世界上最大的遗鸥繁殖与栖息地,红碱淖遗鸥种群的数量在下降。

据今年遗鸥共筑巢4500个、较去年减少50巢左右,种群数量比起2010年前后15000多只的鼎盛时期更是下降了三分之一。

遗鸥喜欢栖息于开阔平原和荒漠与半荒漠地带的咸水或淡水湖泊中,遗鸥的繁殖期为5~6月,以枯水草为材,杂食性,繁殖期以水生昆虫等动物性食物为主,10月南迁。

试推断红碱淖遗鸥数量下降,种群减少的主要原因。

(10分)2015届高三第一次四校联考地理试题参考答案1~25:CABDC ACBAC DCAAC DBCBD CDABB26.(20分)(1)自然地理状况:该河段支流较长;流速和缓;水位季节变化大;无结冰期;含沙量小。

(任答2点可得4分)流向:总体呈西北向东南流(2分)(2)甲地:地势低平,排水不畅;纬度高,气温低,蒸发量小;温带季风气候,降水丰富,集中在夏季,而且多暴雨;纬度高,下部土层冻结(永冻层),阻滞水分下渗;(凌汛等导致)河水泛滥。

(任答2点可得4分)乙地:(结合图中等高线的分布可判断出)乙地地势地平,有内流河注入,雨季容易积水;乙地处于内陆,东侧地势高,减弱了东南信风(来自海洋的湿润气流)的影响,降水较少;乙地所处纬度低,气温较高,干季降水少,蒸发旺盛。

相关文档
最新文档