1.2空间几何体的三视图和直观图(完整课件)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
M
F
E
A
O
D
x
y
F M E
A
O
D x
B N C
B NC
注意:与x轴平行的线段长不变,与y轴平行的线段长变为 原来的一半.
(3)连接
并擦去辅助线x’轴和y’轴,便获得
正六边形ABCDEF水平放置的直观图
y
F
Fra Baidu bibliotek
ME
A
O
D
x
y
F M E
A
O
D x
B N C
B NC
把一个空间几何体投影到一个平面上,可以获得一个平面 图形.视图是指将物体按正投影向投影面投射所得到的图形.
但只有一个平面图形难以把握几何体的全貌,因此我们需 要从多个角度进行投影.
三 视
1.光线从几何体的前面向后面正投影所得到的投影图 叫做几何体的正视图.
2.光线从几何体的左面向右面正投影所得到的投影图
所在直线为Y轴,两轴交于点O.画对应的 轴,两轴相交
于点 ,使
y
F
ME
y'
A
O
D
x
O
x'
B NC
注意:(1)建系时要尽量考虑图形的对称性 (2)画水平放置平面图形的关键是确定多边形顶点的位置.
(2)以 为中心,在 上取
,在 轴上取
以点 为中心,画B’C’ ‖x’ 轴,并等于 ,再以
轴,并等于
为中心,画
1画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,xOz 90 .
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不 变;平行于y轴的线段,长度为原来的一半.
关于水平放置的圆的直观图的画法,常用正等测画
法.在实际画水平放置的圆的直观图时,通常使用椭圆模版.
例2.用斜二测画法画长,宽,高分别是4cm,3cm,2cm的长方 体的直观图
联想水平放置的平 面图形的画法,并注意 到高的处理
图 叫做几何体侧视图.
3.光线从几何体的上面向下面正投影所得到的投影图
叫做几何体的俯视图.
根据长方体的模型,请您画出它们的三视图,并 观察三种图形之间的关系.
一个几何体的正视图和侧视图的高度一样,俯视图和正 视图的长度一样,侧视图和俯视图的宽度一样.
正视图 俯视图
高平齐
正视图
侧视图
高度
侧
视 图
长对正 长度
宽相等
宽度
俯视图
1.2.2 空间几何体的三视图
问题 2. 要制造一个工件, 设计人员先要在纸上画出工件 的图形, 请你想一下, 如何在平面的纸上既能表示出如图的正 面, 又能表示出它的底面和侧面?
正视图: 从前向后正面观看效果.
侧视图: 从左向右观看效果.
俯视图: 从上向下观看效果.
正面
1. 柱、锥、台、球的三视图 (1) 圆柱、圆锥、圆台、球的三视图:
立体几何中常用平行投影来画空间图形的直观图,这种画 法叫斜二测画法.
投影规律
1.平行性不变,但形状、长度、 夹角会改变;
2.平行直线段或同一直线上的 两条线段的比不变;
3.在太阳光下,平行于地面的 直线在地面上的投影长不变.
例1.用斜二测画法画水平放置的六边形的直观图
(1)在六边形ABCDEF中,取AD所在的直线为X轴,对称轴MN
侧
三通水管
图2
图1 如果要做一个水管的三叉接头,工人事先看到的不是图1, 而是图2,然后根据这三个图形制造出水管接头.
画出下面这个组合图形的三视图. 遮挡住看不见的线用虚线
练习: (课本15页)
1. 画出下列几何体的三视图:
(1) 解: (1)
(2) (2)
正视图 侧视图
正视图 侧视图
俯视图
俯视图
~请您总结斜二测画法画水平放置的平面图形的方法步骤~
斜二测画法的步骤
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于O点. 画直观图时,把它画成对应的x’轴、y’轴,两轴交于O’,使
,它们确定的平面表示水平平面.
(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画 成平行于x’轴或y’轴的线段.
D
MO
C y
B
Q
C
Nx
AP B
D
A D
A
C B C B
例3.已知几何体的三视图,用斜二测画法画出它的直观图
·Z
y
O y x
Ox
·
O
·
O
正视图
·
俯视图
·O
·
O
侧视图
投影
中心投影 投影线交于一点 直观强、接近实物
平行投影 投影线平行
斜投影 不改变原 正投影 物形状
正视图 侧视图 俯视图
三视图
长对正、高平齐、宽相等
根据三视图,我们可以得 到一个精确的空间几何体
视图
直观图 斜二测画法
可以根 据直观 图的结 构想象 实物的 形象
• 作业:
(保留坐标系及辅助线)
Z
y
Z
y
D QC
O
x
MO N x
AP B
3画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
上分别截取2cm长的线段AA,BB,CC,DD.
4 成图.顺次连接A,B,C,D,并加以整理(去掉辅助线,将被遮挡住的部分
改为虚线), 就可得到长方体的直观图.
Z
D
A
2. 观察下列几何体的三视图, 想象并说出它们的几何特征, 然后画出它们的示意图:
正视图 侧视图 正视图 侧视图 正视图 侧视图 正视图 侧视图
俯视图 四棱柱
俯视图 半球与圆锥
的组合
俯视图 球与四棱柱
的组合
俯视图 两圆台的组合
5.如图,已知几何体的三视图,想象对应的几何体的结构特征
圆锥与四棱柱组合的简单几何体
圆
圆
柱
锥
正
侧
俯
正
侧
· 俯
1. 柱、锥、台、球的三视图 (1) 圆柱、圆锥、圆台、球的三视图:
圆
球
台
正
侧
正
侧
俯
俯
1. 柱、锥、台、球的三视图 (2) 棱柱、棱锥、棱台的三视图:
三B
三
四
棱A
棱
棱
柱
锥
台
正 B 侧 A B
俯 A
正侧 俯
正
侧
俯
请您画出六棱柱的三视图 俯
侧
请您画出六棱锥的三视图 俯
如果将投影中心移到无穷远处,则所有的投影线都相互平 行,这种投影线为平行线时的投影称为平行投影.
正投影:投 影线垂直于 投影面
斜投影:投 影线倾斜于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛.
斜投影在实际中用的比较少,其特点是直观性强,但作图 比较麻烦,也不能反映物体的真实形状,在作图中只是作为一 种辅助图样.
练习: (补充) 画出下列几何体的三视图:
正视图 侧视图 俯视图
正视图 侧视图
· 俯视图
例2(补充). 画出下面灯泡及六角螺帽(毛坯)的三视图:
正视图 侧视图 俯视图
正视图 俯视图
侧视图
图片都是空间图形在平面上的反映,通过对图片 的研究可以了解空间图形的一些性质和特征.
三视图是用平面图形表示空间图形的一种重要方 法,但三视图的直观性较差,因此有必要绘制空间图 形的直观图.一般采用平行投影.
在不透明物体后面的屏幕上留下影子的现象叫做投影.其 中,光线叫做投影线,留下物体影子的屏幕叫做投影面.
投射线可自一点发出,也可是一束与投影面成一定角度的 平行线,这样就使投影法分为中心投影和平行投影
光由一点向外散射形成的投影,叫做中心投影.其投影 线交于一点(投影中心).
在中心投影中,如果改变物体与投影中心或投影面之间 的距离、位置,则其投影的大小也随之改变.