银杏叶提取黄酮及分离纯化
大孔吸附树脂分离纯化银杏叶总黄酮的研究
大孔吸附树脂分离纯化银杏叶总黄酮的研究李月;陈莹【摘要】利用4种大孔吸附树脂分离纯化银杏叶总黄酮.结果表明,HPD100型大孔吸附树脂最适合分离纯化银杏叶总黄酮,该树脂的静态饱和吸附量(以干树脂计)为63.8 mg·g-1,静态洗脱率为91.2%,动态饱和吸附-洗脱量为14.0 mg·g-1,洗脱剂为70%乙醇,洗脱剂用量为4倍树脂体积,树脂可重复使用7个周期.%The total flavones from Folium ginkgo leaves were seperated and purified by four kinds of macroporous adsorption resin. The results showed that resin HPD100 was the most efficient one with static adsorption capacity of 63.8 mg·g-1, static elution rate of 91.2% and dynamic saturated adsorption capacity of 14.0 mg·g-1 with 4 BV 70% ethanol as elutingreagent.Furthurmore,resin HPD100 could be repeatly used for 7 cycles.【期刊名称】《化学与生物工程》【年(卷),期】2009(026)007【总页数】3页(P55-57)【关键词】银杏叶总黄酮;大孔吸附树脂;分离纯化【作者】李月;陈莹【作者单位】中国医科大学附属第一医院药剂科,辽宁,沈阳,110001;中国医科大学附属第一医院药剂科,辽宁,沈阳,110001【正文语种】中文【中图分类】TQ461大孔吸附树脂是一类有机高聚物吸附剂,广泛应用于中草药化学成分的分离与富集。
银杏叶中黄酮类化合物的提取工艺研究
验 " 研究了浸取温度 $ 乙醇含量和固液质量比对黄酮类化合物提取率的影响 % 结果显示温 度是影响提取率的主要因素 " 最佳工艺为浸取温度 K8 Q " 乙醇的体积分数为 F8X 和固液 质量比 >YF "银杏叶中黄酮类化合物的浸出率可达到 V!U%X % 关键词 银杏叶 & 黄酮类化合物 & 乙醇 & 提取 中图分类号 5Z!%DU![$ "5ZD#8U#[$ 文献标识码 L 文章编号 $88#9#K!VA!88#C8#988!J98%
图 % 固液质量比对银杏黄酮的影响
$"$ 正交试验
根据以上的单因素试验结果 " 采用正交试验法 " 以浸取温度 % 乙醇体积分数和固液质量比作为试验 的 0 个因素 "各设置 0 个水平试验 " 以确定银杏叶总 黄酮的最佳提取条件 ! 试验方法如下 $ 称取干燥粉碎 的银杏叶 $% / "用乙醇作溶剂进行浸取试验 "将浸取 液过滤 % 离心和浓缩定容 " 取 $ 12 按标准曲线的做 法于 *$% 51 处测定吸光度 " 计算浸取液中总黄酮含 量及浸出率 ! 正交试验结果及分析见表 $738! 正交实验结果以总黄酮浸出率为主要考察目标 " 浸出率越高越好! 从表中计算分析最佳条件为
!""# 年第 $% 卷第 # 期
!" !!!!!!" !"
化工生产与技术
&’()*+,- ./012+3*04 ,41 5(+’40-067
( ( !"
杏叶中黄酮类化合物的提取工艺研究
朱平华
!淮海工学院化工系 " 江苏 连云港 !!!88J#
银杏黄酮的提取纯化方法
精品整理
银杏黄酮的提取纯化方法
黄酮类化合物是一类广泛存在于自然界植物中的天然产物,属于次级代谢产物,主要与糖分子结合成苷元的形式存在,少部分以游离形式存在。
本文重点就银杏黄酮的提取及纯化方法进行综述,旨在为筛选银杏黄酮的提取纯化方法提供参考依据。
超滤技术是一种利用具有微米级孔径的分离膜,在压力的作用下,使小分子溶质和溶剂透过,大分子溶质被截留,使原液中大分子溶质与小分子溶质和溶剂分离,从而达到分离纯化目的的新型分离技术。
该技术具有操作方便、能耗低和产品品质高等特点,被广泛应用于天然产物有效成分的纯化中。
银杏黄酮因具有较高的药用价值而引起许多学者做其相关研究,尽管提取、纯化银杏叶中黄酮等药用成分的研究较多,且每种纯化方法各有优点,但也存在不足,因此后期应尽可能采用多种方法联合提取或纯化,以达到提高产品质量、降低产品成本等目的。
银杏黄酮制备实验
实验四、银杏黄酮的提取与检测一、实验目的:1、了解黄酮类物质的分离提取和检测方法。
2、了解大孔吸附树脂的特性和在生化分离中的应用。
二、实验原理:1、提取原理溶剂加到原料中进行提取的过程中,由于扩散、渗透作用,逐渐通过细胞壁透入细胞中,溶剂进入细胞后溶解可溶性物质,造成了细胞内外浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入植物细胞中,可溶性成分不断被提取出来,如此多次反复,直到细胞内外浓度相等,达到动态平衡为止。
2、大孔吸附树脂纯化原理:大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,为用于固体萃取而设计。
是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。
大孔吸附树脂吸附能力高,易解吸,内部微孔即多又大,表面积也大,具有较多的活性中心,使离子、分子扩散速率增大,交换速度加快,在使用上可以缩短生产周期,提高效率,而且大孔吸附树脂可以进行再生重复使用,因此使生产成本大为降低,适于工业化生产。
3、银杏黄酮含量的分光光度法测定原理黄酮类化合物的测定使用较广泛的是络合—分光光度法,该法的基本原理是,黄酮类化合物分子结构中,凡在C 3或C 5位上有羟基,都会与铝盐形成有颜色的配位化合物,见图:O O OAl 2+O OOAl2黄酮和铝盐的络合物芦丁因此,银杏叶中的黄酮类化合物包括单黄酮、双黄酮和黄酮苷都能与铝盐形成络合物,比色测定结果是总黄酮含量。
硝酸铝络合分光光度法测定总黄酮的原理为:在中性或弱碱性及亚硝酸钠存在条件下,黄酮类化合物与铝盐生成螯和物,加入氢氧化钠溶液后显红橙色,在500波长处有吸收峰且符合定量分析的比尔定律,一般与芦丁标准系列比较定量.如果细说,硝酸铝显色法是先用亚硝酸钠还原黄酮,再加硝酸铝络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2’羟基查耳酮而显色.它的显色原理发生在黄酮醇类成分邻位无取代的邻二酚羟基部位,不具有邻位无取代邻二酚羟基的黄酮醇类成分加入上述试剂时是不显色的.三、仪器:电子天平(0.1mg )、紫外分光光度计、恒温水浴摇床、电热恒温水浴锅、索氏提取器、电热恒温干燥箱、微波炉、超声波破碎仪、超声波清洗机、旋转蒸发器、循环水式真空泵、布式漏斗、真空抽率瓶、真空泵。
银杏叶提取黄酮及分离纯化
银杏叶提取黄酮及分离纯化组员:李佳辉、黄埔、赵超武一、实验目的1.掌握传统的溶剂提取法并对银杏中的黄酮进行提取2.掌握紫外分光光度计的应用,以及相关溶液的配置3.学会自主设计实验,培养团队合作精神二、实验原理⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用;⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm;⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因为黄酮类化合物可以与铝盐发生络合显色反应。
其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。
先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。
显色原理发生在黄酮醇类邻位无取代的邻二酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。
(如二氢黄酮类化合物就不发生该显色反应)目前银杏叶黄酮的提取方法主要有:溶剂提取法、超临界流体萃取法(SFE法)、高速逆流色谱技术提取法(HSCCC)微波提取法、超色波提取法、酶提取法、分子烙印技术。
因溶剂提取法操作简单,所需试剂廉价易得,故通常使用此法来进行大规模生产。
其工艺流程如下:银杏叶—→粉碎—→NaOH-60%乙醇回流提取—→离心—→过滤—→滤液收集—→二次醇提—→合并两次滤液—→树脂吸附—→脱吸—→浓缩—→干燥—→提取物由于银杏叶黄酮中的类黄酮主要为芦丁,故用芦丁为对照物绘制标准曲线,并采用分光光度法进行测定。
三.实验材料及器材1.材料酸银杏叶、芦丁、亚硝酸钠、硝酸铝、氢氧化钠、95%乙醇、磷酸氢二钠、磷二氢钠、D101大孔吸附树脂、盐酸2.相关溶液的配制和树脂预处理0.20mg/mL芦丁标准溶液(500mL)、5%NaNO2(500mL)、10%AI(NO3)3(500mL)、1mol/LNaOH 、0.4mol/LNaOH(500mL)、0.4mol /L HCl(500mL)、30%乙醇(500mL)30%乙醇(1)D101树脂预处理(500g):商品树脂均残留惰性溶剂,故使用前根据应用需要,必须进行不同深度的预处理,在提取器内,加入高于树脂层10-20厘米的乙醇浸泡3—4小时,然后放净洗涤液,为一次提取过程。
银杏叶黄酮提取工艺
银杏叶黄酮提取工艺银杏叶黄酮是一种重要的药用成分,具有抗氧化、抗炎、抗肿瘤等多种药理活性。
因此,研究银杏叶黄酮的提取工艺对于开发和利用银杏资源具有重要意义。
本文将介绍银杏叶黄酮提取的工艺流程和相关技术。
1. 银杏叶的采集和处理银杏叶的采集通常在秋季进行,选取成熟的银杏叶进行采集,并尽快进行初步处理。
采集后的银杏叶需要进行清洗、晾干等处理,以保证叶片的质量和干燥度。
2. 银杏叶的粉碎经过初步处理的银杏叶需要进行粉碎,通常采用机械破碎或者超声波破碎等方法。
粉碎后的银杏叶可以增加提取效率,并便于后续的提取工艺。
3. 银杏叶黄酮的提取银杏叶黄酮的提取通常采用溶剂提取法。
常用的溶剂包括乙醇、甲醇等。
提取过程中,可以根据需要进行多次提取,以提高提取率。
提取时间、温度、溶剂比例等因素也会对提取效果产生影响,需要根据实际情况进行优化。
4. 提取液的浓缩和纯化提取得到的液体需要进行浓缩和纯化。
常用的方法有真空浓缩、冷冻浓缩等。
浓缩后的提取液可以进行纯化,常用的纯化方法包括萃取、分离、结晶等。
通过浓缩和纯化,可以得到相对纯净的银杏叶黄酮。
5. 银杏叶黄酮的检测和分析提取得到的银杏叶黄酮需要进行检测和分析,以确定其含量和质量。
常用的检测方法包括高效液相色谱法(HPLC)、气相色谱法等。
通过检测和分析,可以评估提取工艺的效果,并确定最佳的提取条件。
6. 银杏叶黄酮的应用银杏叶黄酮具有广泛的应用价值,在医药、保健品、化妆品等领域都有重要的应用。
例如,银杏叶黄酮可以用于制备抗氧化剂、抗炎剂、抗肿瘤药物等。
同时,银杏叶黄酮还可以用于制备美容产品、保健品等。
银杏叶黄酮的提取工艺是一个复杂的过程,需要考虑多个因素的影响。
通过合理的工艺流程和技术手段,可以提高银杏叶黄酮的提取效率和质量,为其应用提供有力支持。
未来,还需要进一步研究和改进提取工艺,以满足不同领域对银杏叶黄酮的需求,并推动其在医药和化工等领域的广泛应用。
银杏叶中黄酮类化合物的提取工艺研究
银杏叶中黄酮类化合物的提取工艺研究
银杏叶中含有丰富的黄酮类化合物,这些化合物具有很多的生物活性,如抗氧化、抗炎、抗肿瘤等作用。
因此,银杏叶中黄酮类化合物的提取工艺研究具有重要的意义。
银杏叶的提取方法有很多种,如水提法、醇提法、超声波提取法等。
其中,醇提法是目前应用最广泛的一种方法。
醇提法的优点是提取效率高、提取时间短、提取物质纯度高等。
但是,醇提法也存在一些缺点,如醇的价格较高、易挥发、易燃等。
影响银杏叶中黄酮类化合物提取的因素有很多,如提取温度、提取时间、醇浓度、料液比等。
其中,提取温度和提取时间是影响提取效果的重要因素。
一般来说,提取温度越高、提取时间越长,提取效果越好。
但是,过高的温度和过长的时间也会导致黄酮类化合物的降解和损失。
银杏叶中黄酮类化合物的提取工艺研究还需要进一步深入。
未来的研究可以从以下几个方面展开:一是寻找更加环保、经济、高效的提取方法;二是研究黄酮类化合物的分离纯化方法,以提高其纯度和活性;三是探究黄酮类化合物的生物活性和作用机制,以更好地发挥其药用价值。
银杏叶中黄酮类化合物的提取工艺研究是一个重要的课题,其研究成果将有助于开发银杏叶的药用价值,为人类健康事业做出贡献。
银杏叶黄酮提取工艺
银杏叶黄酮提取工艺1. 导言银杏叶黄酮是银杏叶中的重要成分,具有抗氧化、抗炎、抗衰老等多种生物活性。
因此,提取银杏叶黄酮成为了一项重要的研究内容。
本文将介绍一种常用的银杏叶黄酮提取工艺,并深入探讨其原理、操作步骤和优化方法。
2. 银杏叶黄酮提取原理银杏叶黄酮主要存在于银杏叶的叶肉细胞中,其主要成分为黄酮类化合物,包括酮类、酚类、苷类等。
提取银杏叶黄酮的原理是利用溶剂提取和分离纯化的方法。
2.1 溶剂提取原理溶剂提取是将银杏叶中的黄酮类化合物溶解于适宜的溶剂中,利用溶剂与黄酮类化合物的亲和力差异来实现分离纯化的目的。
常用的溶剂包括乙酸乙酯、乙醇、醋酸等。
乙酸乙酯是一种非极性溶剂,对银杏叶黄酮有较好的溶解度,因此在提取过程中常用乙酸乙酯作为主要的溶剂。
2.2 分离纯化原理通过溶剂提取得到的提取液中含有多种化合物,想要得到纯度较高的银杏叶黄酮,则需要进行进一步的分离纯化。
常用的分离方法包括结晶法、色谱法等。
其中,色谱法是一种常见且效果较好的分离方法,能够对复杂的混合物进行高效、准确的分离。
3. 银杏叶黄酮提取工艺步骤银杏叶黄酮提取工艺主要分为原料处理、提取和分离纯化三个步骤。
3.1 原料处理原料处理是提取工艺中的第一步,其目的是准备好适宜的原料以用于后续的提取过程。
主要步骤包括银杏叶的采集、去杂质处理和干燥处理。
1.银杏叶的采集:选择生长健壮、无病虫害的银杏树,采摘新鲜健康的银杏叶。
2.去杂质处理:将采摘好的银杏叶进行清洗,去除叶片表面的杂质和尘土。
3.干燥处理:将清洗好的银杏叶进行晾晒或烘干处理,使其含水率在10%以下。
3.2 提取提取是银杏叶黄酮提取工艺的核心步骤,其目的是将银杏叶中的黄酮类化合物溶解到溶剂中。
1.将干燥处理好的银杏叶研磨成粉末状。
2.取一定量的银杏叶粉末,加入适量的乙酸乙酯作为溶剂。
3.进行搅拌浸泡,使溶剂与银杏叶充分接触。
4.进行过滤、浓缩,得到黄酮类化合物溶液。
3.3 分离纯化分离纯化是提取工艺的重要环节,通过对提取得到的溶液进行分离,可以得到纯度较高的银杏叶黄酮。
银杏中黄酮类化合物提取课件
紫外可见分光光度法
原理
利用黄酮类化合物在特定波长下的紫外吸收 特性进行检测。
优点
操作简便、快速、成本低。
步骤
样品处理、标准溶液配制、绘制标准曲线、 测定样品吸光度、计算含量。
缺点
精度相对较低,容易受到其他物质的干扰。
高效液相色谱法
原理
利用不同物质在固定相和流动 相之间的分配差异进行分离,
通过紫外检测器检测。
改善心脑血管疾病
银杏黄酮能够降低血脂、血压 ,改善血液循环,预防和辅助
治疗心脑血管疾病。
银杏黄酮的提取历史与现状
01
02
03
04
银杏黄酮的提取历史可以追溯 到古代中国和欧洲,当时主要
用于药用和保健。
随着现代科技的进步,银杏黄 酮的提取技术不断改进,提取
效率和纯度得到提高。
目前,银杏黄酮的提取主要采 用溶剂萃取法、超声波辅助提 取法、超临界流体萃取法等。
银杏黄酮的应用领域不断扩大 ,不仅用于药品和保健品,还 广泛应用于化妆品、食品等领
域。
02 银杏黄酮的提取方法
有机溶剂提取法
原理
特点
利用有机溶剂对银杏叶中黄酮类化合 物的溶解作用,将其从银杏叶中提取 出来。
操作简单,成本低,但提取过程中易 造成黄酮类化合物的损失和溶剂残留 问题。
步骤
将银杏叶粉碎后,加入有机溶剂进行 浸泡、搅拌或回流,使黄酮类化合物 溶出,然后过滤、浓缩、干燥得到提 取物。
抗肿瘤作用
银杏黄酮能够抑制肿瘤细胞的生长和扩散,诱导 肿瘤细胞凋亡,对多种肿瘤具有潜在的治疗作用 。
银杏黄酮在保健食品领域的应用
抗氧化作用
银杏黄酮具有较强的抗氧化作用,可以清除自由基,延缓 细胞衰老,保持细胞健康,可用于保健食品中提高人体免 疫力。
银杏叶提取物
银杏叶提取物(CBE)的提取工艺一、概述银杏Ginkgo biloba L.古代孑遗植物,又名公孙树或白果树,是我国特有树种,主产广西、四川、河南、山东、湖北、辽宁、江苏等地。
其叶和果具有重要药用价值,它的提取物(GBE,EGb,Extrector of Ginkgo biloba),具有相当强的抗氧化作用,能清除生物体内过剩的自由基,阻止体内脂质过氧化,提高机体免疫力,延缓衰老等。
自20世纪60年代开始,许多国家采用现代分离技术对银杏叶的化学成分进行研究,经药理实验和临床验证,发现银杏叶的多方面生物活性与其特定化学成分有关。
迄今为止,从银杏叶中已经发现l00多种化学成分。
这些化学成分主要有黄酮苷类(flavonoidglycosides)、萜内酯类(terpenoids)、聚异戊稀醇类(polyprenols)、6-羟基犬尿亏磷酸(6-hydroxykykynurenic acid,6HKA)、有机酸、银杏酚酸类(phenolic acids)、4´-甲氧基吡哆醇(4´-O-methypyridoxine)等。
1.GBE(Ginkgo biloba L 1 ext ract, GbE)GBE是以银杏Ginkgo biloba L.的叶为原料,采用适当的溶剂,提取的有效成分富集的一类产品。
GBE对常见污染菌种具有良好的抑制生长作用,且抑菌浓度较低,热稳定性强,它的强抑菌作用是因为其中含有多种苦味素,主要成分有长链酚类及内酷类、多豆酸、多草酸、咖啡酸等,这些物质具有抗细菌和消炎作用,其抑菌强度与其浓度大小有关。
(雷天堑,2002)2.银杏叶的提取通过溶剂(如乙醇)处理、蒸馏、脱水、经受压力或离心力作用,或通过其他化学或机械工艺过程从物质中制取(如组成成分或汁液),得到银杏叶提取物,对其成分进行分析研究。
3.银杏叶提取物主要成分有五种:3.1黄酮苷类:对心脑血管疾病,高血脂,高血压,清除氧自由基具有显著的疗效,是目前世界上治疗该类疾病最显著的药物。
银杏内生菌纤维素酶的分离、纯化及其在银杏总黄酮提取中的应用研究的开题报告
银杏内生菌纤维素酶的分离、纯化及其在银杏总黄酮提取中的应用研究的开题报告一、研究背景银杏又称为孔雀树、白果树,是我国传统的珍贵中药材之一。
银杏叶、种子和果实都有药用价值。
其中银杏叶中含有大量的黄酮类物质,被认为具有抗氧化、抗肿瘤、增强心血管功能等多种保健和医疗作用。
银杏总黄酮作为银杏叶中主要的有效成分,是银杏叶提取物中的重要指标成分。
为了提高银杏总黄酮的提取效率,需要先对银杏叶进行初步的处理。
在这个过程中,需要使用纤维素酶对银杏叶进行分解,以便更好地释放黄酮类化合物。
目前市场上大多数纤维素酶是用细菌或者真菌进行发酵培养得到的,但是这种纤维素酶的活性不够高,对银杏叶的分解效果较差。
二、研究内容本研究的主要目的是分离、纯化银杏内生菌中的纤维素酶,并研究其在银杏总黄酮提取中的应用。
具体研究内容如下:1. 根据银杏内生菌的生理特性,筛选出能够产生高活性纤维素酶的菌株;2. 对银杏内生菌中的纤维素酶进行提取、纯化和酶学性质的分析;3. 研究银杏内生菌纤维素酶对银杏叶进行分解的效果,并对分解产物进行分析;4. 探究银杏内生菌纤维素酶在银杏总黄酮提取中的应用效果;5. 对所得结果进行统计分析和比较,论证银杏内生菌纤维素酶在银杏总黄酮提取中的优越性。
三、研究意义银杏总黄酮作为银杏叶中主要的有效成分,在医学和保健方面具有广泛的应用前景。
然而,银杏叶中的成分结构比较复杂,提取效率也较低。
本研究旨在寻找一种高效的分解剂以促进银杏总黄酮的提取,对于改进提取工艺,降低成本,提高工作效率,具有重要的实用价值。
同时,银杏内生菌的筛选与纤维素酶的研究也有助于拓展微生物资源的应用领域,为微生物发酵和制药工业的发展提供新的思路和方向。
银杏叶中黄酮的提取原理及方法
银杏叶中黄酮提取及含量测定一、实验目的提取银杏叶中的总黄酮并测定其含量。
二、实验原理银杏系银杏科银杏属落叶乔木,银杏叶中含有多种生理活性成分,其中黄酮类化合物是重要的生理活性物质,具有保肝护肝、预防治疗心血管疾病、抗氧化、抗衰老等作用。
因此,将银杏叶作为高营养、保健功能价值的资源加以开发利用,这对于提高银杏叶综合利用率有重要意义。
银杏叶黄酮类化合物的提取方法目前研究的有水浸取法,成本低但浸取率低;有机溶剂浸取法中,乙醇浸取的效率高且无毒,是目前采用较多的方法;韩玉谦等采用超临界流体萃取法,在70%乙醇溶液中加热回流法和CO2 超临界流体萃取法提取银杏叶中的活性成分,银杏黄酮回收率为84 .4 % ,是常规萃取法回收率的2倍多;乙醇超声波浸取法, 黄酮提取率可达到8 6 . 7 %。
银杏黄酮含量的测定常用分光光度法和高效液相色谱法。
分光光度法自20世纪9 0年代以来一直是用来测定银杏黄酮的一种重要方法, 由于其成本低、便于操作等特点, 是一种快捷有效的方法[1]。
本实验采用乙醇作溶剂进行索氏提取,建立了用Al(NO3)3显色法对芦丁标准品和银杏叶提取液进行光谱扫描测定银杏叶总黄酮含量的方法[2]。
三、实验仪器和试剂材料:银杏叶粉末50g试剂:标准芦丁样品,无水乙醇(600ml),50mlAl(NO3)3(0.1mol/L),乙醚,5%NaNO2溶液,10%AL(NO3)3,4%NaOH溶液。
仪器:紫外分光光度计、电子分析天平、水浴锅、烘箱、烧杯、容量瓶(100ml1个、50ml1个、10ml6个)、索氏提取器、减压蒸馏装置、锥形瓶、沸石等。
四、实验步骤1.1提取银杏叶中总黄酮(1)将银杏叶洗净, 在103℃下烘干至恒重,用研钵捣碎制得银杏叶粉(2)准确称取10.0g,置于索氏提取器中,按下列条件加热回流提取:乙醇浓度80%,料液比1:20(g/ml),回流温度85℃,回流时间2 h,平行进行1~3次实验。
银杏叶如何提炼黄酮的原理
银杏叶如何提炼黄酮的原理银杏叶提炼黄酮的原理是通过溶剂提取、色谱层析分离以及固相萃取等工艺,去除其他杂质,得到高纯度的黄酮。
下面我会详细介绍这个过程,以及每个步骤中的原理。
1. 溶剂提取溶剂提取是将银杏叶中的黄酮溶解到溶剂中,得到黄酮溶液的过程。
常用的溶剂有乙醇、乙酸乙酯、甲醇等。
溶剂提取的原理是根据溶剂与黄酮的亲合力,通过提取溶解的方式分离黄酮与其他杂质。
溶剂中的黄酮溶液经过过滤、浓缩等操作后,可用于下一步的分离。
2. 色谱层析分离色谱层析分离是通过固定相和流动相之间的相互作用,将黄酮与其他化合物分离开。
常用的色谱法有薄层色谱、柱层析等。
这些方法的基本原理是将黄酮溶液涂布于固定相上,然后使用合适的流动相,使不同化合物通过固定相的速度不同,从而实现黄酮的分离。
薄层色谱法将黄酮溶液涂布于薄层板上,利用各种因素如极性、大小、结构等的差异,使黄酮与其他化合物分离开。
柱层析通常使用硅胶、纤维素等作为固定相,通过调节流动相的性质和浓度,使黄酮与其他化合物在固定相中以不同的速度运移,进而分离。
3. 固相萃取在色谱层析分离后,可以通过固相萃取来进一步提高黄酮的纯度。
固相萃取是利用固定在固相材料上的吸附剂,选择性地吸附和去除溶液中的某些组分。
常用的吸附剂有活性炭、硅胶、C18等。
固相萃取的原理是根据黄酮与固相材料之间的相互作用,选择性地将黄酮吸附在固定相上,去除其他杂质。
4. 结晶纯化结晶是通过控制黄酮溶液的温度、浓度等条件,使黄酮从溶液中结晶出来,得到高纯度的黄酮产品。
结晶纯化的原理是根据黄酮与溶剂之间的溶解度差异,通过改变溶剂的性质或溶液中黄酮的浓度,使黄酮从溶液中结晶出来。
结晶过程中,溶剂的移除也可以帮助提高黄酮的纯度。
综上所述,银杏叶提炼黄酮的原理是通过溶剂提取、色谱层析分离、固相萃取和结晶纯化等步骤,逐步去除其他杂质,得到高纯度的黄酮。
这些步骤各自依靠不同的原理,通过化学和物理方法配合使用,实现黄酮的提取和纯化。
银杏叶黄铜分离纯化
3 分离纯化工艺路线
采用乙醇浸提法对银杏叶黄酮进行提取,并采用大孔树脂法
对其进行纯化。
3.1 银杏叶黄酮的提取 称取一定量脱脂银杏叶粉,加入其6倍量的70%乙醇,于70℃密
闭加热提取2h,抽滤取上清,滤渣以同样的方法进行二次浸提,合
并两次提取液,作为银杏叶黄酮提取原液。
3 分离纯化工艺路线
3.2 银杏叶黄酮的纯化 树脂预处理及装柱 称取一定量的AB-8树脂,去离子水溶胀后浮选,去除上层漂浮 杂质和破碎树脂后,用5%盐酸溶液浸泡 24h并充分搅拌,用去离子 水洗至中性,然后用2%的氢氧化钠溶液浸泡 24h,用去离子水洗至 中性,再用95%乙醇浸泡24h,用去离子水洗至无醇味且无白色浑浊 现象为止,室温下干燥备用。将预处理过的大孔树脂用无水乙醇浸 泡24h,脱气处理后进行湿法装柱。
70%乙醇 脱脂银杏叶粉 70℃密闭加热提取 2小时 稀释1.5倍 样液 pH 4.8 上样200ml AB-8树脂 冷冻干燥
抽滤
上清液
pH4.95的80%乙
醇洗脱
洗脱液
蒸发浓缩
银杏叶黄酮精品
4 产品性状
银杏叶提取物为浅黄棕色可流动性棕黄色粉末,略有银杏叶香 味。
参考文献
[1] 吴海霞,吴彩娥,李婷婷,范龚健,应瑞峰.大孔树脂纯化银杏叶黄酮的研究[J].现代食
1 银杏叶黄酮简介
近年来,银杏叶提取物(GBE)的研究较为热门,国际上的
银杏制剂已达30多种,已上市的主要有片剂、胶囊、针剂、口
服液等。同时,将银杏叶提取物作为添加剂制成的保健食品、
饮料以及银杏叶茶等也已引起人们的广泛关注。
2 银杏叶黄酮功效
银杏黄酮类化合物的生理活性作用非常广泛,具有软化血 管、生物抗氧化性、抗衰老、清除自由基作用、降低毛细血 管通透性、降血脂降血压作用、抗菌作用、降低血糖作用、 免疫作用、抗癌作用、镇痛作用、抗炎作用、对消化性溃疡 的保护作用等药用保健功能,其对冠状动脉硬化、高血压及 心绞痛等疾病疗效明显,具有较强的药用价值。
银杏叶中黄酮类化合物的提取
超声波法提取银杏叶中黄酮类化合物
黄酮类化合物的简介 银杏叶类化合物的提取工艺
常规提取法的溶剂一般选用水,醇水溶液,酮 水溶液。醇酮对黄酮成分提取率相近,而水的提 取率比较低,考虑到提取物的收率,提取溶剂的 成本以及操作安全陛,使用乙醇水溶液比酮水溶 液和水更合适。
恒压滴液漏斗法
• • • •
• • • •
1、向恒压滴液漏斗中加入10克银杏叶粉末。 2、向烧瓶中加入200ml70%乙醇和适量沸石。 3、冷凝回流,水浴加热,进行连续萃取。 4、恒压滴液漏斗中的银杏叶粉末逐渐变白,烧瓶中的液 体变为绿色。 5、将萃取液进行减压蒸馏,得银杏浸膏粗产物,称重, 计算产率。 6、在500ml烧杯中,将银杏浸膏粗产物加250ml去离子水, 搅拌均匀。 7、再将此溶液转移至分液漏斗(大于350ml)中,分别用 60ml二氯甲烷萃取三次。合并萃取液。 8、用无水硫酸钠干燥。用旋转蒸发器蒸去二氯甲烷,蒸 馏剩余物为黄酮提取物。经干燥后称重,计算产率。
银杏叶中活性物质的药用价值
近代医学研究表明,银杏叶中的黄酮类物质能增强 动脉,静脉和毛细血管的强度和弹性,使它们免受伤害; 还能通过降1氏血小板粘度,保护红细胞免受损伤并保持 其分布均匀,来直接促进血液循环。可治疗心血管病,心 绞痛,心肌梗塞等;黄酮甙还是一种过氧化自由基的清除 剂删,能消除心、脑血管内对细胞有毒害作用的自由基, 此类在脑和神经系统中的自由基被广泛认为是加速衰老的 主要原因,因此银杏黄酮具有抗衰老,防癌等保健作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银杏叶提取黄酮及分离纯化
组员:李佳辉、黄埔、赵超武
一、实验目的
1.掌握传统的溶剂提取法并对银杏中的黄酮进行提取
2.掌握紫外分光光度计的应用,以及相关溶液的配置
3.学会自主设计实验,培养团队合作精神
二、实验原理
⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用;
⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm;
⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因
为黄酮类化合物可以与铝盐发生络合显色反应。
其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。
先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。
显色原理发生在黄酮醇类邻位无取代的邻二酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述
试剂时是不显色的。
(如二氢黄酮类化合物就不发生该显色反应)
目前银杏叶黄酮的提取方法主要有:溶剂提取法、超临界流体萃取法(SFE法)、高速逆流色谱技术提取法(HSCCC)微波提取法、超色波提取法、酶提取法、分子烙印技术。
因溶剂提取法操作简单,所需试剂廉价易得,故通常使用此法来进行大规模生产。
其工艺流程如下:
银杏叶—→粉碎—→NaOH-60%乙醇回流提取—→离心—→过滤—→滤液收集—→二次醇提—→合并两次滤液—→树脂吸附—→脱吸—→浓缩—→干燥—→提取物
由于银杏叶黄酮中的类黄酮主要为芦丁,故用芦丁为对照物绘制标准曲线,并采用分光光度法进行测定。
三.实验材料及器材
1.材料
酸银杏叶、芦丁、亚硝酸钠、硝酸铝、氢氧化钠、95%乙醇、磷酸氢二钠、磷二氢钠、D101大孔吸附树脂、盐酸
2.相关溶液的配制和树脂预处理
0.20mg/mL芦丁标准溶液(500mL)、5%NaNO2(500mL)、10%AI(NO3)3(500mL)、1mol/LNaOH 、0.4mol/LNaOH(500mL)、0.4mol /L HCl(500mL)、30%乙醇(500mL)30%乙醇
(1)D101树脂预处理(500g):商品树脂均残留惰性溶剂,故使用前根据应用需要,必须进行不同深度的预处理,在提取器内,加入高于树脂层10-20厘米的乙醇浸泡3—4小时,然后放净洗涤液,
为一次提取过程。
用同样方法反复洗至出口洗涤液在试管中加3倍量水不显浑浊为止,后用清水充分淋洗至无明显乙醇气味,即可进行一般使用。
(2)芦丁标准溶液:精密称取在105℃常压干燥至恒重的芦丁对照品20mg,置于100 mL容量瓶中,加30%乙醇约30mL,置水浴微热使之溶解,放冷,加30%乙醇稀释至刻度,摇匀得芦丁标准溶液(0.20mg/mL)
(3)、5% NaNO2的配制:准确称取5g NaNO2加入到95g蒸馏水中溶解。
(4)、10% AI(NO3)3的配制:准确称取10g AI(NO3)3加入到90g蒸馏水中溶解。
(5)、1mol/L NaOH的配制:称取5g NaOH 于一定量蒸馏水中溶解,再定容至100mL。
(6)、0.4mol/L NaOH 的配制:称取1.6gNaOH 于一定量蒸馏水中溶解,再定容至100mL。
(7)、0.4mol/L HCl的配制:取4ml的36.5%的HCl溶于100ml 蒸馏水中
3.仪器
紫外可见光分光光度计、干燥箱、旋转蒸发仪、离心机、回流装置、恒温水浴锅、中药粉碎机、容量瓶
四、实验步骤
1.原料准备:称取200g银杏叶洗净,于80℃下干燥,干燥后于中药
粉碎机中粉碎,备用。
2.黄酮的提取(银杏叶每组10g)
(1)一次醇提:准确称取银杏叶粉末10g,放入索是氏提取器中,用浓度为60%乙醇溶液按1:8(g/ml)混合均匀,在80℃下回流1.5h,
(2)离心:在3500r/min下离心10min;
(3)过滤:真空抽率,滤液收集;
(4)二次醇提:滤渣用浓度为60%乙醇溶液按1:8(g/ml)混合均匀,进行二次醇提,方法同上
(5)合并两次滤液,将滤液置于100ml容量瓶中,加入60%乙醇溶液稀释至刻度
3.黄酮的纯化
层析柱制备:
(1) 准备:D101大孔吸附树脂预处理并充分吸涨
(2) 湿法装柱:将吸涨后的树脂与溶剂的混合物倒入色谱柱中,让其自行沉积。
(50ml)
(3) 上样:将样品溶液从柱的上端以较快速度加入
(4) 洗脱:待样品完全上柱后,用30%乙醇进行洗脱,并在下端收集洗脱液。
(5) 浓缩:将洗脱下来的样品进行浓缩
(6) 干燥
(7)得到产品
(8)样品浓度测定
操作方法:
3.1装柱
将D101大孔吸附树脂用丙酮浸泡过夜(大约15-18h),用水浴回流8h,过滤(或抽滤),用水洗至溶液:水(1:2)不产生混浊为止,浸泡在水中,再进行装柱,并在柱顶加少量氧化铝,制成预处理柱,备用。
3.2样品预处理
精密吸取样品5ml(固体样品制成相当浓度的溶液),加入已处理好的D101大孔树脂层析柱中,用100ml水洗脱(含蔗糖样品用300ml 水),洗液弃去(流速1.5ml/min)。
再以原流速用30ml无水乙醇分次洗脱,收集洗脱液,蒸干,残渣用无水乙醇溶解,定量转移至5ml 容量瓶中,稀释至刻度,作为供试品溶液。
4.黄酮含量的测定
(1)标准曲线绘制
精密量取0.2mg/ml芦丁标准溶液0.0、0.5、1.0、1.5、2.0、2.5、3.0 mL,分别置于10.0 mL容量瓶中,各加30%乙醇至5mL,加5%亚硝酸钠溶液0.3 mL,摇匀;放置6min,加10%硝酸铝溶液0.3mL,摇匀;再放置6 min,加4%氢氧化钠溶液2mL,加30%乙醇至刻度,摇匀,放置15 min,以第1管作空白对照,在波长510nm处测各试管中溶液的吸光度(1号做空白),以吸光度为纵坐标,浓度为横坐标,绘制出标准曲线,并得到回归方程。
葡聚糖标准曲线的测定结果
编号 1 2 3 4 5 6
芦丁浓度(mg/ml)
吸光值(A510nm)
(2)样品含量的测定
取1.0ml样品液于10.0容量瓶中,,加30%乙醇至5mL,加5%亚硝酸钠溶液0.3 mL,摇匀;放置6min,加10%硝酸铝溶液0.3mL,摇匀;再放置6 min,加4%氢氧化钠溶液2mL,加30%乙醇至刻度,摇匀,放置15 min,在波长510nm处测吸光度。
代入线性回归方程,算出黄酮提取液中黄酮的质量浓度。
银杏叶总黄酮提取率(%)=[提取物所含黄铜质量(g)/银杏叶质量(g)]×100%
5.实验结果与分析。