人教版高三数学一轮复习优质课件:第1课时 导数与函数的单调性
高三一轮总复习理科数课件:--导数与函数的单调性 .ppt..
A.2 和-2
B.2 和 0
C.0 和-2
D.1 和 0
解析:由 f(x)=x3-3x, 求导得 f′(x)=3x2-3,由 3x2-3=0,得 x=±1,在[-1,2]上有一个极值, 且 f(-1)=2,f(1)=-2,f(2)=2. 则可得最大值和最小值分别为 2 和-2.故选 A.
答案:A
你是我心中最美的云朵
11
3.函数 f(x)=3x2+ln x-2x 的极值点的个数是( )
A.0
B.1
C.2
D.无数个
解析:f′(x)=6x+1x-2=6x2-x2x+1,由 f′(x)=0 得 6x2-2x+1=0,方程无解, 因此函数无极值点.故选 A.
答案:A
你是我心中最美的云朵
12
4.给出下列命题: ①f′(x)>0 是 f(x)为增函数的充要条件. ②函数在某区间上或定义域内的极大值是唯一的. ③函数的极大值不一定比极小值大. ④对可导函数 f(x),f′(x0)=0 是 x0 点为极值点的充要条件. ⑤函数的最大值不一定是极大值,函数的最小值也不一定是极小值. 其中真命题是________.(写出所有真命题的序号)
14
3
考点疑难突破
你是我心中最美的云朵
15
第一课时 导数与函数的单调性
你是我心中最美的云朵
16
判断或证明函数的单调性
[典 例 导 引] 已知函数 f(x)=x-2x+a(2-ln x),a>0.讨论 f(x)的单调性. 【解】 由题知,f(x)的定义域是(0,+∞), f′(x)=1+x22-ax=x2-xa2x+2. 设 g(x)=x2-ax+2,二次方程 g(x)=0 的判别式 Δ=a2-8.
求函数的单调区间
2024届高考一轮复习数学课件(新教材人教A版 提优版):导数与函数的单调性
当x>e时,f′(x)<0,函数f(x)单调递减.
因为32<2<e, 所以 f 32<f(2),
即
2ln
33 2<2ln
2,故选项
A
正确;
因为 2< 3<e, 所以 f( 2)<f( 3), 即 2ln 3> 3ln 2,故选项 B 不正确; 因为e<4<5, 所以f(4)>f(5),即5ln 4>4ln 5, 故选项C不正确; 因为e<π, 所以f(e)>f(π),即π>eln π,故选项D正确.
综上,当-2<a<0 时,g(x)的单调递减区间为0,12,-1a,+∞, 单调递增区间为12,-1a; 当a=-2时,g(x)的单调递减区间为(0,+∞),无单调递增区间; 当 a<-2 时,g(x)的单调递减区间为0,-1a,12,+∞,单调递增 区间为-1a,12.
思维升华
(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进 行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数 为零的点和函数的间断点.
当x∈(1,+∞)时,φ(x)<0, ∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减. ∴函数f(x)的单调递增区间为(0,1).
思维升华
确定不含参数的函数的单调性,按照判断函数单调性的步骤即可, 但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调 区间不能用并集,要用“逗号”或“和”隔开.
(2)若函数 f(x)=ln xe+x 1,则函数 f(x)的单调递增区间为__(_0_,_1_) __.
f(x)的定义域为(0,+∞), f′(x)=1x-lnexx-1, 令 φ(x)=1x-ln x-1(x>0), φ′(x)=-x12-1x<0, φ(x)在(0,+∞)上单调递减,且φ(1)=0, ∴当x∈(0,1)时,φ(x)>0,
高三一轮复习2021版 第三章 第2讲 第1课时 导数与函数的单调性
第2讲导数在研究函数中的应用第1课时导数与函数的单调性条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f (x)在(a,b)内是常数函数[提醒](1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)对函数划分单调区间时,需确定导数等于零的点、函数的不连续点和不可导点;(3)如果一个函数具有相同单调性的单调区间不止一个,那么单调区间之间不能用“∪”连接,可用“,”隔开或用“和”连接;(4)区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.判断正误(正确的打“√”错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.() 答案:(1)×(2)√(3)√函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数解析:选D.因为f′(x)=-sin x-1<0.所以f(x)在(0,π)上是减函数,故选D.函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是()解析:选 C.根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f(x)=e x-x的单调递增区间是________.解析:因为f(x)=e x-x,所以f′(x)=e x-1,由f′(x)>0,得e x-1>0,即x>0.答案:(0,+∞)已知f(x)=x3-ax在[1,+∞)上是增函数,则实数a的最大值是________.解析:f′(x)=3x2-a≥0,即a≤3x2,又因为x∈[1,+∞),所以a≤3,即a的最大值是3.答案:3利用导数判断或证明函数的单调性讨论函数f(x)=(a-1)ln x+ax2+1的单调性.【解】f(x)的定义域为(0,+∞),f′(x)=a-1x+2ax=2ax2+a-1x.①当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;②当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;③当0<a<1时,令f′(x)=0,解得x=1-a2a,则当x∈(0,1-a2a)时,f′(x)<0;当x∈( 1-a2a,+∞)时,f′(x)>0,故f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.(2019·温州模拟)设函数f (x )=x ln(ax )(a >0).设F (x )=12f (1)x 2+f ′(x ),讨论函数F (x )的单调性.解:f ′(x )=ln(ax )+1,所以F (x )=12(ln a )x 2+ln(ax )+1,函数F (x )的定义域为(0,+∞),F ′(x )=(ln a )x +1x =(ln a )x 2+1x.①当ln a ≥0,即a ≥1时,恒有F ′(x )>0,函数F (x )在(0,+∞)上是增函数; ②当ln a <0,即0<a <1时,令F ′(x )>0,得(ln a )x 2+1>0,解得0<x < -1ln a ; 令F ′(x )<0,得(ln a )x 2+1<0,解得x > -1ln a. 所以函数F (x )在⎝⎛⎭⎫0,-1ln a 上为增函数, 在⎝⎛⎭⎫-1ln a ,+∞上为减函数.求函数的单调区间(1)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)(2)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ),求函数f (x )的单调区间.【解】 (1)选B.y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x (x >0).令y ′<0,得0<x <1, 所以单调递减区间为(0,1).(2)f ′(x )=x 2+2x +a 开口向上,Δ=4-4a =4(1-a ).①当1-a ≤0,即a ≥1时,f ′(x )≥0恒成立, f (x )在R 上单调递增.②当1-a >0,即a <1时,令f ′(x )=0, 解得x 1=-2-4(1-a )2=-1-1-a ,x 2=-1+1-a ,令f ′(x )>0,解得x <-1-1-a 或x >-1+1-a ;令f ′(x )<0,解得-1-1-a <x <-1+1-a , 所以f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞);f (x )的单调递减区间为(-1-1-a ,-1+1-a ).综上所述:当a ≥1时,f (x )在R 上单调递增; 当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ).1.已知函数f (x )=exx -m .则函数y =f (x )在x ∈(m ,+∞)上的单调递减区间为________,单调递增区间为________.解析:f ′(x )=e x (x -m )-e x (x -m )2=e x (x -m -1)(x -m )2,当x ∈(m ,m +1)时,f ′(x )<0, 当x ∈(m +1,+∞)时,f ′(x )>0,所以f (x )在(m ,m +1)上单调递减,在(m +1,+∞)上单调递增. 答案:(m ,m +1) (m +1,+∞)2.设函数f (x )=12x 2-m ln x ,求函数f (x )的单调区间.解:函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=(x +m )(x -m )x,当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上:当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).利用导数研究函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.主要命题角度有:(1)函数y =f (x )与y =f ′(x )图象的相互判定; (2)已知函数单调性求参数的取值范围; (3)比较大小或解不等式.角度一 函数y =f (x )与y =f ′(x )图象的相互判定 (1)(2017·高考浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )(2)设函数y =f (x )的图象如图,则函数y =f ′(x )的图象可能是( )【解析】 (1)原函数先减再增,再减再增,且x =0位于增区间内,故选D. (2)由y =f (x )图象可知,当x ∈(-∞,x 1)时,y =f (x )单调递增,所以f ′(x )>0. 当x ∈(x 1,x 2)时,y =f (x )单调递减,所以f ′(x )<0. 当x ∈(x 2,+∞)时,y =f (x )单调递增,所以f ′(x )>0. 所以y =f ′(x )的图象在四个选项中只有D 符合. 【答案】 (1)D (2)D角度二 已知函数单调性求参数的取值范围(1)(2019·浙江省高中学科基础测试)若函数f (x )=2x +ax(a ∈R )在[1,+∞)上是增函数,则实数a 的取值范围是( )A .[0,2]B .[0,4]C .(-∞,2]D .(-∞,4] (2)函数f (x )=kx -ln x 在区间(1,+∞)上单调递减,则k 的取值范围是________.【解析】 (1)由题意得f ′(x )=2-ax 2≥0在[1,+∞)上恒成立,则a ≤(2x 2)min =2,所以a ≤2,故选C.(2)因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x ,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x 在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x <1,故k ≤0.【答案】 (1)C (2)(-∞,0] 角度三 比较大小或解不等式(2019·宁波市效实中学月考)定义在R 上的函数f (x )的导函数是f ′(x ),若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f ⎝⎛⎭⎫1e (e 为自然对数的底数)、b =f (2)、c =f (log 28),则a 、b 、c 的大小关系为________(用“<”连接).【解析】 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,得f ′(x )>0,所以函数在(-∞,1)上单调递增,又f (x )=f (2-x ),得函数f (x )的图象关于直线x =1对称,所以函数f (x )图象上的点距离直线x =1越近函数值越大,又log 28=3,所以log 28>2-1e >2>1,得f (2)>f ⎝⎛⎭⎫1e >f (log 28),故c <a <b .【答案】 c <a <b(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.[提醒] (1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.解析:设g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,所以当x >0时,g ′(x )>0,即g (x )在(0,+∞)上单调递增,又g (2)=f (2)2=0,所以f (x )>0的解集为(-2,0)∪(2,+∞).故填(-2,0)∪(2,+∞).答案:(-2,0)∪(2,+∞)利用导数研究函数单调性的方法(1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解,并注意函数f (x )的定义域.(2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.(3)已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.利用导数研究函数的单调性应注意4点 (1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.(3)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (4)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.[基础达标]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞) 解析:选D.由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A.在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增. 3.(2019·台州市高三期末质量评估)已知函数f (x )=13ax 3+12ax 2+x (a ∈R ),下列选项中不可能是函数f (x )图象的是( )解析:选D.因f ′(x )=ax 2+ax +1,故当a <0时,判别式Δ=a 2-4a >0,其图象是答案C 中的那种情形;当a >0时,判别式Δ=a 2-4a >0,其图象是答案B 中的那种情形;判别式Δ=a 2-4a ≤0,其图象是答案A 中的那种情形;当a =0,即y =x 也是答案A 中的那种情形,应选答案D.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A.因为f (x )=x sin x ,所以f (-x )=(-x )sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3.所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 5.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析:选B.由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.6.(2019·温州七校联考)对于R 上可导的任意函数f (x ),若满足(x -3)f ′(x )≤0,则必有( )A .f (0)+f (6)≤2f (3)B .f (0)+f (6)<2f (3)C .f (0)+f (6)≥2f (3)D .f (0)+f (6)>2f (3)解析:选A.由题意知,当x ≥3时,f ′(x )≤0,所以函数f (x )在[3,+∞)上单调递减或为常数函数;当x <3时,f ′(x )≥0,所以函数f (x )在(-∞,3)上单调递增或为常数函数,所以f (0)≤f (3),f (6)≤f (3),所以f (0)+f (6)≤2f (3),故选A.7.函数f (x )=(x -3)e x 的单调递增区间是________.解析:因为f (x )=(x -3)e x ,则f ′(x )=e x (x -2),令f ′(x )>0,得x >2,所以f (x )的单调递增区间为(2,+∞).答案:(2,+∞)8.已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.解析:由已知得f (x )的定义域为(0,+∞).因为f ′(x )=a +1x =a ⎝⎛⎭⎫x +1a x,所以当x ≥-1a时f ′(x )≤0,当0<x <-1a 时f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. 答案:⎝⎛⎭⎫0,-1a ⎝⎛⎭⎫-1a ,+∞ 9.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)10.(2019·浙江省名校协作体高三联考)已知函数f (x )=x 2e x ,若f (x )在[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意得,f ′(x )=e x (x 2+2x ),所以f (x )在(-∞,-2),(0,+∞)上单调递增,在(-2,0)上单调递减,又因为f (x )在[t ,t +1]上不单调,所以⎩⎪⎨⎪⎧t <-2t +1>-2或⎩⎨⎧t <0t +1>0,即实数t的取值范围是(-3,-2)∪(-1,0).答案:(-3,-2)∪(-1,0)11.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5).12.(1)设函数f (x )=x e 2-x +e x ,求f (x )的单调区间.(2)设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.718 28…),若函数f (x )在区间⎣⎡⎦⎤1e ,e 上单调递减,求a 的取值范围.解:(1)因为f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).(2)由题意可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x -a ≤0在⎣⎡⎦⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎡⎦⎤1e ,e 上恒成立.令g (x )=ln x +1x. 因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1. x ⎝⎛⎭⎫1e ,1 (1,e) g ′(x )- + g (x )g ⎝⎛⎭⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e,所以g (x )max =g ⎝⎛⎭⎫1e =e -1. 故a ≥e -1.[能力提升]1.(2019·丽水模拟)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).则下面四个图象中,y =f (x )的图象大致是( )解析:选C.由条件可知当0<x <1时,xf ′(x )<0,所以f ′(x )<0,函数递减.当x >1时,xf ′(x )>0,所以f ′(x )>0,函数递增,所以当x =1时,函数取得极小值.当x <-1时,xf ′(x )<0,所以f ′(x )>0,函数递增,当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,函数递减,所以当x =-1时,函数取得极大值.符合条件的只有C 项.2.(2019·浙江新高考冲刺卷)已知定义在R 上的偶函数f (x ),其导函数f ′(x ).当x ≥0时,恒有x 2f ′(x )+f (-x )≤0,若g (x )=x 2f (x ),则不等式g (x )<g (1-2x )的解集为( ) A .(13,1) B .(-∞,13)∪(1,+∞)C .(13,+∞) D .(-∞,13) 解析:选A.因为定义在R 上的偶函数f (x ),所以f (-x )=f (x )因为x≥0时,恒有x2f′(x)+f(-x)≤0,所以x2f′(x)+2xf(x)≤0,因为g(x)=x2f(x),所以g′(x)=2xf(x)+x2f′(x)≤0,所以g(x)在[0,+∞)上为减函数,因为f(x)为偶函数,所以g(x)为偶函数,所以g(x)在(-∞,0)上为增函数,因为g(x)<g(1-2x)所以|x|>|1-2x|,即(x-1)(3x-1)<0<x<1,选A.解得133.已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是________.解析:依题意得,当x>0时,f′(x)>0,f(x)是增函数;当x<0时,f′(x)<0,f(x)是减函数.又f(-3)=f(5)=1,因此不等式f(x)<1的解集是(-3,5).答案:(-3,5)4.(2019·绍兴、诸暨高考模拟)已知函数f(x)=x3-3x,函数f(x)的图象在x=0处的切线方程是________;函数f(x)在区间[0,2]内的值域是________.解析:函数f(x)=x3-3x,切点坐标(0,0),导数为y′=3x2-3,切线的斜率为-3,所以切线方程为y=-3x;3x2-3=0,可得x=±1,x∈(-1,1),y′<0,函数是减函数,x∈(1,+∞),y′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2].答案:y =-3x [-2,2]5.已知函数g (x )=13x 3-12ax 2+2x . (1)若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;(2)若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围. 解:(1)因为g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,所以g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3, 即实数a 的取值范围为(-∞,-3].(2)因为g (x )在(-2,-1)内不单调,g ′(x )=x 2-ax +2,所以g ′(-2)·g ′(-1)<0或⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0.由g ′(-2)·g ′(-1)<0,得(6+2a )·(3+a )<0,无解.由⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0,得⎩⎪⎨⎪⎧-4<a <-2,a 2-8>0,6+2a >0,3+a >0, 即⎩⎪⎨⎪⎧-4<a <-2,a >22或a <-22,a >-3,解之得-3<a <-22,即实数a 的取值范围为(-3,-22).6.设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数f (x )的单调性.解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞), 此时f ′(x )=2(x +1)2, 可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2. 当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; 当a <0时,令g (x )=ax 2+(2a +2)x +a ,Δ=(2a +2)2-4a 2=4(2a +1).①当a =-12时,Δ=0, f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0, f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0, 设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a, x 2=-(a +1)-2a +1a .由于x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a >0,所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时, f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.。
高考数学一轮复习-用导数研究函数的单调性ppt课件
恒成立,即 ≥
恒成立,又 =
在 , +∞ 上单调递减,故
< ,所以
+
+
+
≥ ,当 = 时,导数不恒为0.故选D.
02
研考点 题型突破
题型一 不含参数的函数的单调性
典例1 函数y = xln x(
D )
A.是严格增函数
B.在
1
0,
e
上是严格增函数,在
1
, +∞
e
上是严格减函数
为 , .故选A.
(2)函数f x
[解析] 函数
或 =
2
x2
0,
= x 的增区间为________.
ln 2
2
⋅ − ⋅ ⋅
= ,则′ =
,当
.
.令′ = ,解得 =
∈ −∞, 时,′ < ,函数 单调递减,当 ∈ ,
(2)已知函数f x = ex − e−x − 2x + 1,则不等式f 2x − 3 >
3
, +∞
1的解集为_________.
2
[解析] = − − − + ,其定义域为,
∴ ′ = + − − ≥ ⋅ − − = ,当且仅当 = 时取“=”,∴ 在
在 a, b 上单调递减,则当x ∈ a, b 时,f′ x ≤ 0恒成立.
2.若函数f x 在 a, b 上存在增区间,则当x ∈ a, b 时,f′ x > 0有解;若函数f x
在 a, b 上存在减区间,则当x ∈ a, b 时,f′ x < 0有解.
高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版
解法一:因为 f(x)=2sinx+sin2x=2sinx(1+cosx),所以[f(x)]2=4sin2x(1 +cosx)2=4(1-cosx)(1+cosx)3,设 cosx=t,则 y=4(1-t)(1+t)3(-1≤t≤1), 所以 y′=4[-(1+t)3+3(1-t)(1+t)2]=4(1+t)2(2-4t),所以当-1<t<21时, y′>0;当21<t<1 时,y′<0。所以函数 y=4(1-t)(1+t)3(-1≤t≤1)在-1,21 上单调递增,在12,1上单调递减,所以当 t=12时,ymax=247;当 t=±1 时, ymin=0。所以 0≤y≤247,即 0≤[f(x)]2≤247,所以-32 3≤f(x)≤32 3,所以 f(x)的最小值为-32 3。
(ⅱ)当 0<2a<1,即 0<a<2 时,由 f′(x)>0,得 0<x<a2或 x>1; 由 f′(x)<0,得a2<x<1。 则函数 f(x)的单调递增区间为0,a2,(1,+∞), 函数 f(x)的单调递减区间为a2,1。 (ⅲ)当2a=1,即 a=2 时,f′(x)≥0 恒成立,则函数 f(x)的单调递增区 间为(0,+∞)。
2.函数的极值与导数
(1)函数的极小值
若函数 y=f(x)在点 x=a 处的函数值 f(a)比它在点 x=a 附近其他点的函数
值 都小
,且 f′(a)=0,而且在点 x=a 附近的左侧 f′(x)<0 ,右
侧 f′(x)>0 ,则 x=a 叫做函数的极小值点,f(a)叫做函数的极小值。
(2)函数的极大值
1.函数 f(x)在区间(a,b)上递增,则 f′(x)≥0,“f′(x)>0 在(a,b)上成 立”是“f(x)在(a,b)上单调递增”的充分不必要条件。
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件
结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
高考数学一轮复习导数与函数的单调性课件
解析 (1)f′(x)=ax2-2x+1≥0⇒a≥-x得 f′(x)=1x+2(x-b)=1x+2x-2b,因为函数 f(x)在12,2上存在单调递增区
间,所以 f′(x)=1x+2x-2b>0 在12,2上有解,所以 b<21x+xmax,x∈12,2,由函数
规律方法 利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含 参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到 不重不漏.
【训练2】 (1)已知函数f(x)=ax+ln x(a<0),则f(x)的单调递增区间是__________;单 调递减区间是__________. (2)已知a为实数,函数f(x)=x2-2aln x.求函数f(x)的单调区间. (1)解析 由已知得 f(x)的定义域为(0,+∞).因为 f′(x)=a+1x=ax+x 1a,所以当 x >-1a时,f′(x)<0,当 0<x<-1a时,f′(x)>0,所以 f(x)的单调递增区间为0,-1a. 单调递减区间为-1a,+∞. 答案 0,-1a -1a,+∞
6.(2019·北京卷)设函数f(x)=ex+ae-x(a为常数).若f(x)为奇函数,则a=________; 若f(x)是R上的增函数,则a的取值范围是________.
解析 ∵f(x)=ex+ae-x(a 为常数)的定义域为 R,∴f(0)=e0+ae-0=1+a=0, ∴a=-1.∵f(x)=ex+ae-x,∴f′(x)=ex-ae-x=ex-eax.∵f(x)是 R 上的增函数, ∴f′(x)≥0 在 R 上恒成立,即 ex≥eax在 R 上恒成立,∴a≤e2x 在 R 上恒成立.又 e2x>0,∴a≤0,即 a 的取值范围是(-∞,0].
【训练 3】 (1)函数 f(x)=13x3-a2x2+2x+1 的递减区间为(-2,-1),则实数 a 的值 为________. (2)若 f(x)=-12x2+bln(x+2)在[-1,+∞)上是减函数,则实数 b 的取值范围是 ________. 解析 (1)f′(x)=x2-ax+2,由已知得-2,-1 是 f′(x)的两个零点,所以有 ff′′((--21))==41++2aa++22==00,,解得 a=-3.
导数与函数的单调性高三数学一轮复习课件
上单调递减
答案:g'(x)=3x^2-6x+2,g'(x)在[1,2]上单调递减,所以g(x)在[1,2]上单调递减
题目:求函数 h(x)=x^33x^2+2x+1在区 间[-2,2]上的极值
答案: h'(x)=3x^26x+2,h'(x)^26x+2,g'(x)在 区间[1,2]上单调 递减,所以g(x) 在区间[1,2]上单 调递减
综合练习题三及答案
题目:求函数f(x)=x^33x^2+2x+1在区间[-1,1]上的单 调性
题目:求函数g(x)=x^33x^2+2x+1在区间[-1,1]上的极 值
添加标题
上单调递增
综合练习题二及答案
题目:求函数 f(x)=x^33x^2+2x+1在 区间[-1,1]上的 单调性
答案: f'(x)=3x^26x+2,f'(x)在 区间[-1,1]上单 调递增,所以f(x) 在区间[-1,1]上 单调递增
题目:求函数 g(x)=x^33x^2+2x+1在 区间[1,2]上的单 调性
等
导数的应用举例
判断函数的单调性:通过导 数判断函数的增减性
求函数的极值:通过导数求 解函数的最大值和最小值
求函数的切线:通过导数求 解函数的切线方程
求函数的凹凸性:通过导数 判断函数的凹凸性
03
函数的单调性
单调性的定义与判断方法
判断方法:利用导数判断,如果 导数大于0,则函数在该区间内 单调递增;如果导数小于0,则 函数在该区间内单调递减
导数与函数的单调性课件-2025届高三数学一轮复习
解析 ,且,则 . 当时,,则在 上单调递增. 当时, , ①当时,,所以的单调递减区间为 ; ②当时,,所以的单调递增区间为 . 综上所述,当时,的单调递增区间为 ,无单调递减区间; 当时,函数的单调递减区间为,单调递增区间为 .
考点三 导数与函数单调性的应用[多维探究]
命题分析预测
从近几年高考的情况来看,导数与函数的单调性是高考常考内容,试题难度中等及以上.命题热点为含有参数的函数的单调性问题,涉及分类讨论的数学思想.预计2025年高考命题情况不变
Hale Waihona Puke 基础知识·诊断函数的单调性与导数的关系
条件
恒有
结论
函数 在区间 上可导
在区间 上①__________
在区间 上②__________
,
解析 因为 ,所以 ,令,解得或 ,故的单调递增区间为, .
4.(人教A版选修②P87 · 例3改编)已知函数在 上单调递增,则实数 的取值范围为__________.
解析 因为 ,所以,因为在 上单调递增,所以恒成立,所以,解得 ,所以实数的取值范围为 .
题组3 走向高考
5.(2023 · 新高考Ⅱ卷)已知函数在区间上单调递增,则实数 的最小值为( ) .
在区间 上是③__________
单调递增
单调递减
常数函数
1. 若函数在上单调递增,则当时,恒成立;若函数 在上单调递减,则当时, 恒成立.2. 若函数在上存在单调递增区间,则当时, 有解;若函 数在上存在单调递减区间,则当时, 有解.
3. 研究函数的单调性,要坚持“定义域优先”原则.
导数与函数的单调性
基础知识·诊断
考点聚焦·突破
2025届高中数学一轮复习课件《导数与函数的单调性》ppt
高考一轮总复习•数学
(3)f′(x)=2e2x-2e=2e(e2x-1-1), 求导后,解不等式 f′(x)>0 或 f′(x)<0,得单调区间. 令 f′(x)=0,解得 x=12, x,f′(x),f(x)的变化如下:
第17页
高考一轮总复习•数学
x
-∞,12
1 2
12,+∞
f′(x)
-
0
高考一轮总复习•数学
第13页
重难题型 全线突破
高考一轮总复习•数学
题型 简单函数的单调性问题
典例 1 求下列函数的单调区间.
(1)f(x)=x+2 1-x;
(2)f(x)=2+sincoxs
; x
(3)f(x)=e2x-e(2x+1).
第14页
高考一轮总复习•数学
第15页
解:(1)f(x)的定义域为{x|x≤1},
解析
高考一轮总复习•数学
第11页
3.已知 f(x)=x3-ax 在[1,+∞)上是增函数,则 a 的最大值是____3____.
解析:f′(x)=3x2-a,由结论 1 知 f′(x)≥0,即 a≤3x2, 又∵x∈[1,+∞),∴a≤3,即 a 的最大值是 3.
高考一轮总复习•数学
第12页
4.已知函数 f(x)=x2(x-a). (1)若 f(x)在(2,3)上单调,则实数
解析
高考一轮总复习•数学
第22页
题型 含参函数单调性的讨论 典例 2 已知函数 g(x)=ln x+ax2-(2a+1)x.若 a>0,试讨论函数 g(x)的单调性.
解:因为 g(x)=ln x+ax2-(2a+1)x, 所以 g′(x)=2ax2-2ax+1x+1=2ax-1xx-1. 这样一来,使问题转化为含参二次不等式的解法,如果本题没有 a>0 这个限制条件, 那么对 a 怎样分类讨论呢?一方面讨论 a 和 0 的大小,另一方面讨论21a和 1 的大小. 两方面 应兼顾. 由题意知函数 g(x)的定义域为(0,+∞),
《函数的单调性与导数》人教版高中数学选修PPT精品课件
;
③解不等式 f ( x) 解不等式f ( x)
>0得f(x)的单调递增区间; <0得f(x)的单调递减区间.
人教版高中数学选修2-2
讲解人: 时间:
感谢你的聆听
第1章 导数及其应用
h(t) = -4.9t2 + 6.5t + 10
的图像.运动员从起跳到最高点,以及从最
高点到入水这两段时间内,随着时间的变化,运动员离水面的高度发生什么变化?
h
M
h f (t)
o
m
t
新知探究
通过观察图像,我们可以发现: (1)运动员从起跳到最高点,离水面高度h随时间t的增加而增加,即h(t)是增函数.相应的,
)
A.a 1 3
B.a 1
C.a 0
D.a 0
课堂练习
D 设函数f(x)在定义域内可导,y=f(x)的图象如右图所示,则导函数y=f’(x)的图象可能是(
(A)
(B)
(C)
(D)
课堂练习
已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0),若f(x)的单调减区间为(0,4),1则k=____.
新知探究
例4 如图1.3-6,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器 中,试分别找出与各容器对应的高度h与时间t的函数关系图像.
1 h
2 h
3 h
o A t
o B t
o C t
图1.3 6
4 h
o D t
新知探究
解 1 → B, 2 → A, 3 → D, 4 → C.
课前导入
单调函数的图象特征
G=(a,
导数与函数的单调性课件-2025届高三数学一轮复习
(
)
答案:(3)×
目录
2.如图是函数y=f(x)的导函数y=f'(x)的图象,则下列判断正确的是
(
)
A.在区间(-2,1)上f(x)单调递增
B.在区间(1,3)上f(x)单调递减
C.在区间(4,5)上f(x)单调递增
D.在区间(3,5)上f(x)单调递增
解析:C 在(4,5)上f'(x)>0恒成立,∴f(x)在区间(4,5)上单
∴f(x)在
1
0,
上单调递增,在
1
, (0,+∞)上单调递增;当a>0时,f(x)在
上单调递增,在
1
, +∞
上单调递减.
目录
1
0,
|解题技法|
讨论函数f(x)单调性的步骤
(1)确定函数f(x)的定义域;
(2)求导数f'(x),并求方程f'(x)=0的根;
(2)当方程f'(x)=0可解时,解出方程的实根,依照实根把函数的定义域划
分为几个区间,确定各区间f'(x)的符号,从而确定单调区间;
(3)若导函数对应的方程、不等式都不可解,根据f'(x)的结构特征,利用图
象与性质确定f'(x)的符号,从而确定单调区间.
提醒 若所求函数的单调区间不止一个,这些区间之间不能用“∪”及“或”
2
2,故
排除D选项.故选B.
目录
2.已知定义在区间(-π,π)上的函数f(x)=xsin x+cos x,则f(x)的单调
递增区间是
.
解析:f'(x)=sin x+xcos x-sin x=xcos x.令f'(x)=xcos x>0(x∈(-π,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②由h(x)在[1,4]上单调递减,
∴当 x∈[1,4]时,h′(x)=1x-ax-2≤0 恒成立,(**) 则 a≥x12-2x恒成立,设 G(x)=x12-2x,所以 a≥G(x)max. 又 G(x)=1x-12-1,x∈[1,4],因为 x∈[1,4],所以1x∈14,1, 所以 G(x)max=-176(此时 x=4),所以 a≥-176. 当 a=-176时,h′(x)=1x+176x-2=16+71x62x-32x=(7x-4)16(x x-4),
规律方法 求函数单调区间的步骤: (1)确定函数f(x)的定义域; (2)求f′(x); (3)在定义域内解不等式f′(x)>0,得单调递增区间; (4)在定义域内解不等式f′(x)<0,得单调递减区间.
【训练 1】 已知函数 f(x)=4x+ax-ln x-32,其中 a∈R,且曲线 y=f(x)在点(1,f(1))
2.(教材例题改编)函数 y=12x2-ln x 的单调递减区间为(
)
A.(-1,1)
B.(0,1)
C.(1,+∞)
D.(0,+∞)
解析 函数 y=12x2-ln x 的定义域为(0,+∞), y′=x-1x=(x-1)x(x+1),令 y′<0,则可得 0<x<1. 答案 B
3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则 函数y=f(x)的图象可能是( )
(2)当 a>0 时,f′(x)=(x+
a)(x- x
a),则有
①当 x∈(0, a)时,f′(x)<0,所以 f(x)的单调递减区间为(0, a).
②当 x∈( a,+∞)时,f′(x)>0,所以 f(x)的单调递增区间为( a,+∞). 综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间. 当 a>0 时,函数 f(x)的单调递减区间为(0, a),单调递增区间为( a,+∞).
由
f′(x)>0,得
1+ 0<x< 2
5;由
f′(x)<0,得
1+ x&g间为0,1+2 5,单调递减区间为1+2 5,+∞.
【迁移探究 2】 若本例的函数变为“f(x)=x22-aln x,a∈R”,求 f(x)的单调区间. 解 因为 f(x)=x22-aln x,所以 x∈(0,+∞),f′(x)=x-ax=x2-x a. (1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.
解析 利用导数与函数的单调性进行验证.f′(x)>0的解集对应y=f(x)的增区间,f′(x) <0的解集对应y=f(x)的减区间,验证只有D选项符合. 答案 D
4.(2017·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)·ex-1的极值点,则f(x)的极小值
为( )
A.-1
B.-2e-3
【迁移探究 1】 若本例中函数 f(x)变为“f(x)=ln x-12x2+x”,试求 f(x)的单调区间.
解 因为 f(x)=ln x-12x2+x,且 x∈(0,+∞),
所以 f′(x)=1x-x+1=-x-1-2
5x-1+2 x
5 .
令 f′(x)=0,所以 x1=1+2 5,x2=1-2 5(舍去).
最小值为 f ln-a2=a234-ln-a2,
故当且仅当
a234-ln-a2≥0,即
3
0>a≥-2e4时,f(x)≥0.
3
综上,a 的取值范围是[-2e4,0].
规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行 分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数 的间断点. 2.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x =0时取到),f(x)在R上是增函数.
(2)已知函数 f(x)=ln x,g(x)=12ax2+2x.
①若函数 h(x)=f(x)-g(x)存在单调递减区间,求 a 的取值范围;
②若函数 h(x)=f(x)-g(x)在[1,4]上单调递减,求 a 的取值范围. 解 ①h(x)=ln x-12ax2-2x,x>0.∴h′(x)=1x-ax-2. 若函数h(x)在(0,+∞)上存在单调减区间, 则当 x>0 时,1x-ax-2<0 有解,即 a>x12-2x有解. 设 G(x)=x12-2x,所以只要 a>G(x)min.(*) 又 G(x)=1x-12-1,所以 G(x)min=-1.所以 a>-1. 即实数a的取值范围是(-1,+∞).
第1课时 导数与函数的单调性
考点一 求函数的单调区间(典例迁移) 【例 1】 (经典母题)已知函数 f(x)=ax3+x2(a∈R)在 x=-43处取得极值.
(1)确定 a 的值; (2)若 g(x)=f(x)ex,求函数 g(x)的单调减区间.
解 (1)对f(x)求导得f′(x)=3ax2+2x,
【训练2】 (2015·全国Ⅱ卷改编)已知函数f(x)=ln x+a(1-x),讨论f(x)的单调性. 解 f(x)的定义域为(0,+∞),f′(x)=1x-a. 若a≤0,则f′(x)>0恒成立, 所以f(x)在(0,+∞)上单调递增. 若 a>0,则当 x∈0,1a时,f′(x)>0;x∈1a,+∞时,f′(x)<0, 所以 f(x)在0,1a上单调递增,在1a,+∞上单调递减.
3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则__f_(a_)_为函数的最小值,__f(_b_)_为函数的最大值; 若函数f(x)在[a,b]上单调递减,则_f_(_a_) _为函数的最大值,_f_(b_)__为函数的最小值. (3)求可导函数f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的_极__值__; ②将f(x)的各极值与__f_(a_)_,__f_(b_)__进行比较,其中最大的一个是最大值,最小的一个 是最小值.
考点三 导数在函数单调性中的应用(易错警示)
【例 3】 (1)(2018·武汉模拟)已知定义域为 R 的奇函数 y=f(x)的导函数为 y=f′(x),
当 x>0 时,xf′(x)-f(x)<0,若 a=f(ee),b=f(llnn 22),c=f(--33),则 a,b,
c 的大小关系正确的是( )
②若 a<0,则由 f′(x)=0,得 x=ln -a2. 当 x∈-∞,ln-a2时,f′(x)<0; 当 x∈ln-a2,+∞时,f′(x)>0. 故 f(x)在-∞,ln-a2上单调递减, 在区间ln-a2,+∞上单调递增.
(2)①当a=0时,f(x)=e2x≥0恒成立.
②若 a<0,则由(1)得,当 x=ln-a2时,f(x)取得最小值,
处的切线垂直于直线 y=12x. (1)求 a 的值; (2)求函数 f(x)的单调区间. 解 (1)对 f(x)求导得 f′(x)=14-xa2-1x, 由 f(x)在点(1,f(1))处的切线垂直于直线 y=12x 知 f′(1)=-34-a=-2,解得 a=54.
(2)由(1)知 f(x)=4x+45x-ln x-32(x>0).则 f′(x)=x2-44xx2-5. 令f′(x)=0,解得x=-1或x=5. 但-1∉(0,+∞),舍去. 当x∈(0,5)时,f′(x)<0;当x∈(5,+∞)时,f′(x)>0. ∴f(x)的增区间为(5,+∞),减区间为(0,5).
因为 f(x)在 x=-43处取得极值,所以 f′-43=0, 即 3a·196+2·-43=163a-83=0,解得 a=12. (2)由(1)得 g(x)=12x3+x2ex, 故 g′(x)=32x2+2xex+12x3+x2ex=12x3+52x2+2xex=12x(x+1)(x+4)ex. 令g′(x)<0,得x(x+1)(x+4)<0, 解之得-1<x<0或x<-4, 所以g(x)的单调减区间为(-1,0),(-∞,-4).
C.5e-3
D.1
解析 f′(x)=[x2+(a+2)x+a-1]·ex-1,
则f′(-2)=[4-2(a+2)+a-1]·e-3=0⇒a=-1,
则f(x)=(x2-x-1)·ex-1,f′(x)=(x2+x-2)·ex-1,
令f′(x)=0,得x=-2或x=1,
当x<-2或x>1时,f′(x)>0,
知识梳理
1.函数的单调性与导数的关系 设函数y=f(x)在区间(a,b)内可导,如果在(a,b)内,___f′_(x_)_>_0___,则f(x)在此区 间是增函数;如果在(a,b)内,__f_′(_x_)<_0____,则f(x)在此区间是减函数.
2.函数的极值与导数的关系
已知函数y=f(x),设x0是定义域(a,b)内任一点,如果对x0附近所有点x,都有 ___f_(x_)_<_f_(x_0_)___,则称函数f(x)在点x0处取极大值,记作__y_极_大_=__f_(x_0_)_,并把x0称为 函数f(x)的一个__极__大__值__点____;如果在x0附近都有__f_(_x)_>_f_(x_0_)_,则称函数f(x)在点x0 处取极小值,记作_y_极_小__=__f(_x_0)_,并把x0称为函数f(x)的一个__极__小__值__点____.
[常用结论与微点提醒] 1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在
(a,b)上单调递增”的充分不必要条件. 2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分