数字图像处理一
数字图像处理-知识点总结
图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。
模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。
图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。
上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。
图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。
2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。
图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。
2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。
3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。
4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。
5.图像信息的输出和显示:用可视的方法进行输出和显示。
数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。
1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。
数字图像处理第一章(国科大)
1Digital Image Processing数字图像处理课程简介本课程为计算机科学与技术、电子科学与技术、信息与通信工程、控制科学与工程以及电气工程等学科下研究生的专业基础课。
主要内容课程共分三大部分:第一部分:介绍数字图像处理的基础知识,包括绪论、图像与视觉系统、图像变换等;第二部分:介绍图像处理的基本方法,包括图像增强、图像复原及图像压缩等;第三部分:介绍图像分析的基本原理和技术,包括图像分割、图像描绘及特征提取等。
教学目标⏹基本:完成课程学习,通过考试,获得学分。
掌握数字图像处理的基本概念和研究方法,相关交叉学科的基本知识;⏹提高:能够将所学知识和内容用于课题研究;⏹再提高:通过数字图像处理课程的学习,改进思维方式。
教材及参考书第一章绪论绪论⏹前言⏹数字图像处理的起源⏹数字图像处理的基本概念与研究内容⏹数字图像处理与其他学科的关系⏹数字图像处理的主要应用⏹数字图像处理的发展动向前言“百闻不如一见”One picture is worth more than ten thousand words.在人类接受的信息中,听觉信息占约20%,视觉信息占约60%,其他如味觉、触觉等总起来不过占约20%。
所以,作为传递信息的重要手段—图像信息是十分重要的。
第一节数字图像处理的起源(1)世界上第一幅实景照片(1827)数字图像的应用之一是在报业,20世纪20年代的海底电缆使得伦敦与纽约之间图片的传输从过去的一个多星期缩短到3个小时以内。
1921年经编码后用电报打印机打印的图像1929年通过海底电缆从伦敦传输到纽约的一幅照片第一节数字图像处理的起源(2)二十世纪二十年代:图像远距离传输第一节数字图像处理的起源二十世纪五十年代:伴随着技术进步,数字计算机发展到一定水平,尤其是大规模的存储和显示系统的发展,数字图象处理引起巨大关注。
第一节数字图像处理的起源进实验室(Jet PropulsionLaboratory,JPL)运用计算机处理了由“旅行者7号”发回的月球表面照片。
数字图像处理 一.实验内容: 图像灰度级线性展宽(灰级窗灰级切片
数字图像处理一.实验内容:图像灰度级线性展宽(灰级窗.灰级切片)灰级图像的灰级动态范围调整(线性.非线性)二.实验目的:学会用Matlab软件对图像灰度进行变换;学会灰级线性展宽的作用。
学会灰动态范围的调整。
三.实验步骤:1.获取实验用图像:使用imread函数将图像读入Matlab。
2.产生灰度变换函数T1,使得:0.3f(m,n) f(m,n) < 90G(m,n)= 27+ 2.6333(f(m,n)-90) 90≤f(m,n)≤166166+ 0.3(f(m,n)– 166) f(m,n)> 1660 f(m,n)<90G(m.n)= 27+ 2.6333(f(m,n)-90) 90<f(m,n)<1660 f(m,n)> 1660 f(m,n)<90G(m,n)= 255 166< f(m,n)<255(f(m,n)-166)*3.3553 90<f(m,n)<1660 f(m,n)<30G(m,n)= 255 230<f(m,n)(f(m,n)-30)*1.275 30<f(m,n)<230 G(m,n)=c*log10(f(m,n)+1) 0<f(m,n)<2553.代码和效果:1线性对比度展宽:%change2.mclear;I=imread('cat.jpg');[m,n]=size(I);for m=1:480for n=1:640if (I(m,n)<90) %象素值小于90G(m,n)=I(m,n)*(0.3); %映射比例是0.3else if(I(m,n)>166&I(m,n)<255)G(m,n)=(I(m,n)-166)*(0.3)+200; %映射比例是0.3elseG(m,n)=(I(m,n)-90)*(2.633)+27; %映射比例是2.633endendendendG=uint8(G);figure(1);imshow(G)2.图像灰级窗:%change3.mclear;I=imread('cat.jpg');[m,n]=size(I);for m=1:480for n=1:640if (I(m,n)<90) %象素值小于90G(m,n)=0;else if(I(m,n)>166&I(m,n)<255)G(m,n)=255;elseG(m,n)=(I(m,n)-166)*(3.3553);endendendendG=uint8(G);figure(1);imshow(G)%绘级窗实际上是线性对比度展宽的一种特殊形式。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告
实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
数字图像处理基本流程第一步
数字图像处理基本流程第一步下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!图像获取是数字图像处理的第一步,它的目的是将现实世界中的图像转换为数字形式,以便计算机进行处理和分析。
遥感数字图像处理一
STEP2
STEP3
STEP4
图像校正:包括辐射校正、几何校正。
增强处理:增强图像中的有用信息,利于识别分析。 包括彩色增强、直方图增强、图像运算、邻域增强、频率域增强、信息融合等。
图像变换:消除干扰和滤掉噪声,提高图像质量。
信息提取:图像分类(监督分类、非监督分类、神经网络分类、模糊分类)、空间信息提取、光谱信息提取。
方法:黑白扫描/彩色扫描
扫描时需注意: 扫描的空间分辨率
一般300dpi(像片)/ 600dpi(负片)可满足要求 灰度级:0-255(黑白)/ RGB(彩色)
航空像片的数字化
如何设置分辨率
过程: (1)空间采样 (2)属性量化
分辨率设置
例:将一张1:50000的航空图像扫描成分辨率是2米的数字化图(1pix=2m) 。 50000 lcm=500m 1cm内要有250个pix pix边长=1cm/250pix=0.004cm=0.001575inch (1cm=0.3937inch) 635pix/inch
辅助数据:数字图像尺寸等各种参数
多波段数字图像存储与分发的常用数据格式:
遥感数字图像的表示方法
BSQ(Band sequential)数据格式:按波段顺序依次排列, 1个文件,文件内划分1-K段,第n段数据为第n波段的图像数据[M行][N列]。 多式(Band interleaved by pixel),1个文件,[M行][N列]格式,每个单元顺序记录K个波段的相应数据。 多波段数字图像存储与分发的常用数据格式(2)
BIL数据格式(Band interleaved by line), 1个文件,逐行按波段次序排列。第1波段的第1行、第2波段的第1行、…、第K波段的第1行;第1波段的第2行、第2波段的第2行、…、第K波段的第2行;…… 多波段数字图像存储与分发的常用数据格式(3)
数字图像处理
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像处理技术
数字图像解决技术一. 数字图像解决概述数字图像解决是指人们为了获得一定的预期结果和相关数据运用计算机解决系统对获得的数字图像进行一系列有目的性的技术操作。
数字图像解决技术最早出现在上个世纪中期, 随着着计算机的发展, 数字图像解决技术也慢慢地发展起来。
数字图像解决初次获得成功的应用是在航空航天领域, 即1964年使用计算机对几千张月球照片使用了图像解决技术, 并成功的绘制了月球表面地图, 取得了数字图像解决应用中里程碑式的成功。
最近几十年来, 科学技术的不断发展使数字图像解决在各领域都得到了更加广泛的应用和关注。
许多学者在图像解决的技术中投入了大量的研究并且取得了丰硕的成果, 使数字图像解决技术达成了新的高度, 并且发展迅猛。
二. 数字图象解决研究的内容一般的数字图像解决的重要目的集中在图像的存储和传输, 提高图像的质量, 改善图像的视觉效果, 图像理解以及模式辨认等方面。
新世纪以来, 信息技术取得了长足的发展和进步, 小波理论、神经元理论、数字形态学以及模糊理论都与数字解决技术相结合, 产生了新的图像解决方法和理论。
比如, 数学形态学与神经网络相结合用于图像去噪。
这些新的方法和理论都以传统的数字图像解决技术为依托, 在其理论基础上发展而来的。
数字图像解决技术重要涉及:⑴图像增强图像增强是数字图像解决过程中经常采用的一种方法。
其目的是改善视觉效果或者便于人和机器对图像的理解和分析, 根据图像的特点或存在的问题采用的简朴改善方法或加强特性的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像还原, 其目的是尽也许的减少或者去除数字图像在获取过程中的降质, 恢复被退化图像的本来面貌, 从而改善图像质量, 以提高视觉观测效果。
从这个意义上看, 图像恢复和图像增强的目的是相同的, 不同的是图像恢复后的图像可当作时图像逆退化过程的结果, 而图像增强不用考虑解决后的图像是否失真, 适应人眼视觉和心理即可。
⑶图像变换图像变换就是把图像从空域转换到频域, 就是对原图像函数寻找一个合适变换的数学问题, 每个图像变换方法都存在自己的正交变换集, 正是由于各种正互换集的不同而形成不同的变换。
中科大数字图像处理作业1
数字图像处理(中国科学技术大学)HOMEWORK#1编号:59SA16173027李南云[在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
]SA16173027 李南云P1:a: The size of lena.tiff is 512x512 ;The size of mandril.tiff is 256x256.b: The values of pixels lena(29, 86) is 105;The values of pixels mandril(198, 201) is 158. c:d:P1代码如下:clear all;f = imread('C:\Users\Administrator\Desktop\images\lena.tiff'); figure(1);imshow(f);i = imread('C:\Users\Administrator\Desktop\images\mandril.tiff'); figure(2);imshow(i);s1 = size(f);s2 = size(i);v1 = f(30,87);v2 = i(199,202);p1 = f(103,:);p2 = i(:,69);figure(3);subplot(211);plot(p1);figure(3);subplot(212);plot(p2);n = 128;for j=1:nb(x,j)=i(x,j);f(x,j)=b(x,j);endendfigure(4);imshow(f);P2代码如下:clear all;a = imread('C:\Users\Administrator\Desktop\images\campusdrive.tif'); figure(1);subplot(231);imshow(a);a1 = double(a);b = floor(a1/8);b = b*8;b = uint8(b);subplot(232);imshow(b);c = floor(a1/16);c = c*16;c = uint8(c);subplot(233);imshow(c);d = floor(a1/32);d = d*32;d = uint8(d);subplot(234);e = floor(a1/64);e = e*64;e = uint8(e);subplot(235);imshow(e);f = floor(a1/168);f = f*168;f = uint8(f);subplot(236);imshow(f);4bit时已经出现伪轮廓,5bit基本可以保存图像质量。
《数字图像处理》课件1上海交大 (全)
• 应用举例:
1. 公共安全:视频监控,人脸识别与跟踪,指纹识别 2. 交通/导航:汽车牌照识别,车型识别,船型识别,电子警察等 3. 宇宙探测:神舟飞船,月球照片等 4. 遥感:气象云图,农作物产量估计,矿产探测 5. 国防:无人机,自主行走车,巡航导弹
2010年度春季
数字图像处理 (Digital Image Processing)
• 概念
上海交通大学
数字图像处理(Digital Image Processing)就是用( 数字电子)计算机对各种图像进行处理,以得到某些预期 的效果或从图像中提取有用信息。
2010年度春季
数字图像处理 (Digital Image Processing)
• 数字图像处理系统构成
上海交通大学
2010年度春季
2010年度春季
上海交通大学
数字图像处理 (Digital Image Processing)
课件下载与联系方式
上海交通大学
Байду номын сангаас
Ftp: user name: zhang_rui Password: public Directory: download
Email:zhang_rui@ Tel: 34205231 (EIEE 5-317)
上海交通大学
6. 生物医学:CT,B超,血球计数仪 7. 应力分析:光弹性数据采集与分析 8. 无损探伤:增强(用12位表示) 9. 提花织物&印染CAD系统 10. 其他:
手机,数码相机,DV,DVD,VOD,MSN,…
图像压缩编码(用于图像传输/存储)是最成功的应用之一
2010年度春季
数字图像处理 (Digital Image Processing)
数字图像处理习题参考答案
《数字图像处理》习题参考答案第1 章概述连续图像和数字图像如何相互转换答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
采用数字图像处理有何优点答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
数字图像处理主要包括哪些研究内容答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
讨论数字图像处理系统的组成。
列举你熟悉的图像处理系统并分析它们的组成和功能。
答:如图,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。
图像处理系统包括图像处理硬件和图像处理软件。
图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。
软件系统包括操作系统、控制软件及应用软件等。
图数字图像处理系统结构图1常见的数字图像处理开发工具有哪些各有什么特点答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。
两种开发工具各有所长且有相互间的软件接口。
Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。
数字图像处理习题1基础知识
第一章引言一.填空题1.数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为 __ 像素 ___ 。
2.数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是 __ 从图像到非图像的一种表示 __ ,如图像测量等。
3.数字图像处理可以理解为两个方面的操作:一是 __,如图像增强等;二是从图像到非图像的一种表示,如图像测量等4.图像可以分为物理图像和虚拟图像两种。
其中,采用数学的方法,将由概念形成的物体进行表示的图像是 ___ 虚拟图像 ____ 。
5. 数字图像处理包含很多方面的研究内容。
其中,_____的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的 4 种。
答:①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2.什么是图像识别与理解?答:指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
3. 简述数字图像处理的至少 3 种主要研究内容。
答:①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
② 图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
数字图像处理的概念
数字图像处理的概念数字图像处理是指利用计算机对数字图像进行各种操作和处理的技术。
数字图像处理广泛应用于医学影像、遥感图像、工业检测、安防监控、图像识别等领域。
本文将详细介绍数字图像处理的概念、原理、方法和应用。
一、概念数字图像处理是指对数字图像进行各种算法和技术处理的过程。
数字图像是由离散的像素点组成的,每个像素点都有自己的亮度值或颜色值。
数字图像处理通过对这些像素点进行操作,改变图像的亮度、对比度、颜色、清晰度等特征,从而达到图像增强、图像复原、图像分割、图像压缩等目的。
二、原理数字图像处理的原理基于图像的数字化表示和计算机的处理能力。
首先,将模拟图像通过采样和量化的方式转换为数字图像。
然后,利用计算机的算法和技术对数字图像进行处理。
常用的处理方法包括滤波、变换、编码、分割、识别等。
最后,将处理后的数字图像重新转换为模拟图像,以便显示和输出。
三、方法1. 图像增强图像增强是指通过调整图像的亮度、对比度、清晰度等特征,使图像更加清晰、鲜明和易于观察。
常用的图像增强方法有直方图均衡化、灰度拉伸、滤波、锐化等。
2. 图像复原图像复原是指通过消除图像受到的噪声和失真,恢复图像的原始信息。
常用的图像复原方法有空域滤波、频域滤波、最小二乘法、反卷积等。
3. 图像分割图像分割是将图像分成若干个区域,每个区域具有相似的特征。
常用的图像分割方法有阈值分割、边缘检测、区域生长等。
4. 图像压缩图像压缩是通过减少图像的数据量,以达到减小存储空间和传输带宽的目的。
常用的图像压缩方法有无损压缩和有损压缩。
5. 图像识别图像识别是指通过计算机对图像中的目标进行自动识别和分类。
常用的图像识别方法有模板匹配、特征提取、机器学习等。
四、应用数字图像处理在各个领域都有广泛的应用。
1. 医学影像数字图像处理在医学影像领域中起到了重要的作用。
它可以帮助医生对病人进行诊断和治疗,如CT扫描、MRI、X光等。
2. 遥感图像数字图像处理在遥感图像领域中用于地理信息系统、农业、林业、环境保护等方面。
数字图像处理课件ppt
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
数字图像处理
数字图像处理(1)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.名词解释1. 数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。
2.图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。
3. 数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。
4. 图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
5. 灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。
或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。
6. 细化:提取线宽为一个像元大小的中心线的操作。
连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。
8.中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。
9.像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。
即{(x=p,y=q)}p、q为任意整数。
像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1)10.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。
11.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。
12.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。
13.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。
14.图像锐化:是增强图象的边缘或轮廓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理问题:人为什么能分辨出见过一次的东西?眼睛是生物体上十分神奇的器官,人类的眼睛可分辨约一千万颜色。
他可以感知光线,是人们获得外界信息最主要的途径;同时,眼睛包括含心理意识在内的丰富信息。
一、人眼构造人眼是人身体中最重要的感觉器官,人获取的信息90%以上通过眼睛来获取。
人眼的构造决定了人眼成像的原理,同时决定了人眼的特性。
人眼相当于一架摄像机或照相机,但在构造方面有别于摄像机和照相机。
人眼的成像系统是由角膜、晶状体、前房、后房和玻璃体组成。
角膜——直径为11mm的透明膜,镶嵌于巩膜前面圆孔内,其中央部的曲率半径为8mm,周边部比较平坦。
晶状体——形似双凸镜的透明组织,由小带纤维悬挂于瞳孔后面,睫状肌收缩时小带松弛,晶状体依靠其本身的弹性而变厚,前后表面的曲度增加,整体屈光度增加,利用看清近处物体,称为调节。
在角膜和水晶体之间为虹膜,中间开有一个可以自动控制大小的孔,让适当的光线进来,称为瞳孔。
前方、后房——前房为角膜后面、虹膜和晶状体前面的孔隙,充满着房水。
后房为位于虹膜后面、睫状体、晶状体周边部之间的孔隙,也充满着房水。
房水的主要功能是维持眼内压,并维持晶状体的代谢。
玻璃体——一透明胶样组织,充填于视网膜内的空间。
占眼球4/5的容积。
具有保护视网膜、缓冲震动功能。
视网膜——是接近黑的深红色,反光很弱,其上面布满感光细胞。
正对眼球中心有一个直径约为2mm的黄色区域,称为黄斑,黄斑中心有一小凹,称为中央凹,面积为1平方毫米。
视网膜上面有两种感光细胞,一种叫做视锥细胞,另一种叫做视杆细胞。
视锥细胞是像一个玉米的锥形,尖向外,只对较强的光敏感,至少有分别感觉红、蓝、绿三种颜色的视锥细胞存在,因此能够感知颜色。
视杆细胞只有一种,因此没有颜色感觉,但灵敏度非常高,可以看到非常暗的物体。
视锥细胞在黄斑里面非常集中,尤其是在中央凹里面最为集中,是产生最清晰视觉的地方。
视杆细胞恰好在黄斑里面最少,除此之外分布的比较均匀,距离中心10~20度的范围内相对集中些。
在比较暗的情况下,视锥细胞就不再起作用了,只能是分布广而相对稀疏的视杆细胞起作用,一次人眼的分辨能力大大下降。
中心黄斑部分视力下降到0.05,反而不如黄斑以外,非黄斑区域视力基本不变,最好视力在黄斑附近,大约偏离中心15度左右,为0.1,这时的视力,称为暗视觉。
但由于视杆细胞只有一种,因此是分辨不出物体颜色的,因此我们观察星云时,看不出颜色。
二、人眼的视觉特征人眼的视觉系统是世界上最好的图像处理系统,但它远远不是完美的。
人眼的视觉系统对图像的认知是非均匀的和非线性的,并不是对图像中的任何变化都能感知。
例如图像系数的量化误差引起的图像变化在一定范围内是不能为人眼所觉察的。
因此,如果编码方案能利用人眼视觉系统的一些特点,是可以得到高压缩比的。
对人眼视觉特性的深入研究及由此而建立的各种数学模型,一直是各种图像数字压缩算法的基础。
人眼对380~780纳米内不同波长的光具有不同的敏感程度,称为人眼的视敏特性。
衡量描述人眼视敏特性的物理量为视敏函数和相对视敏函数。
1.1视敏函数在相同亮度感觉的条件下,不同波长上光辐射功率的倒数可以用来衡量人眼对各波长光明亮感觉的敏感程度。
称为视敏函数 K(λ)=1/pr(λ) 。
1.2 相对视敏函数实验表明,人眼对波长为555纳米的光最敏感,因此把任意波长的光的视敏函数与最大视敏函数值K(555)相比的比值称为相对视敏函数。
2.1对比灵敏度人眼对亮度光强变化的响应是非线性的,通常把人眼主观上刚刚可辨别亮度差别所需的最小光强差值称为亮度的可见度阈值。
也就是说,当光强I增大时,在一定幅度内感觉不出,必须变化到一定值I+ΔI时,人眼才能感觉到亮度有变化,ΔI/I一般也称为对比灵敏度。
因此恢复图像的误差如果低于对比灵敏度,即不会被人眼察觉。
此外,高频部分在相同的灵敏度阈值下,色差信号Y-R空间频率只有亮度Y的一半,色差信号Y-B空间频率只有亮度Y的1/4。
人眼对于运动图像的对比灵敏度与时间轴上信息的变化速度有关,随着时间轴变化频率的增加,人眼所能感受到的图像信息的误差阈值呈上升趋势,视觉上的这种动态对比灵敏度特性表现为图像序列之间相互掩盖效应。
可见度阈值和掩盖效应对图像编码量化器的设计有重要作用,利用这一视觉特性,在图像的边缘可以容忍较大的量化误差,因而可使量化级减少,从而降低数字码率。
2.2分辨率当空间平面上两个黑点相互靠拢到一定程度时,离开黑点一定距离的观察者就无法区分它们,这意味着人眼分辨景物细节的能力是有限的,这个极限值就是分辨率。
研究表明人眼的分辨率有如下一些特点:①当照度太强、太弱时或当背景亮度太强时,人眼分辨率降低。
②当视觉目标运动速度加快时,人眼分辨率降低。
③人眼对彩色细节的分辨率比对亮度细节的分辨率要差,如果黑白分辨率为1,则黑红为0.4,绿蓝为0.19。
2.3马赫效应当亮度发生跃变时,会有一种边缘增强的感觉,视觉上会感到亮侧更亮,暗侧更暗。
马赫效应会导致局部阈值效应,即在边缘的亮侧,靠近边缘像素的误差感知阈值比远离边缘阈值高3~4倍,可以认为边缘掩盖了其邻近像素,因此对靠近边缘的像素编码误差可以大一些。
三、视觉感知对时间频率的感知时间频率即画面随时间变化的快慢。
Kelly.D.H用亮度按时间正弦变化的条纹做实验,亮度Yt) = B(1+mcos2πft)。
改变m, 测试不同时间频率f下的对比敏感度。
实验表明时间频率响应还和平均亮度有关。
在一般室内光强下,人眼对时间频率的响应近似一个带通滤波器。
对15~20Hz信号最敏感,有很强闪烁感(flick),大于75Hz响应为0,闪烁感消失。
刚到达闪烁感消失的频率叫做临界融合频率(CFF)。
在较暗的环境下,呈低通特性,且CFF会降低,这时对5Hz信号最敏感,大于25Hz闪烁基本消失。
电影院环境很暗,放映机的刷新率为24Hz也不感到闪烁, 这样可以减少胶卷用量和机器的转速。
而电脑显示器亮度较大,需要75Hz 闪烁感才消失。
闪烁消失后,亮度感知等于亮度时间平均值(塔鲁伯法则)。
这种低通特性,也可以解析为视觉暂留特性,即当影像消失/变化时,大脑的影像不会立刻消失,而是保留一个短暂时间。
生活中常感受到的动态模糊,运动残像也和这个有关。
有很多电子产品设计利用了这一现象,例如LED数码管的动态扫描,LED旋转字幕等。
对运动物体感知观察一个运动物体,眼球会自动跟随其运动,这种现象叫随从运动(eye pursuit movement)。
这时眼球和物体的相对速度会降低,我们能更清晰地辨认物体。
例如观看球类比赛(如棒球),尽管棒球的运动速度很快,由于随从运动,我们仍够看得到球的大概样子(但会有运动模糊)。
如果我们把眼睛跟着风扇转动方向转动,会发现对扇叶细节看得较清楚。
眼球随从最大速度为4~5度/秒,因此我们不可能看清楚一颗子弹飞行。
空间频率即影像在空间中的变化速度。
用亮度呈空间正弦变化的条纹做测试,亮度Y(x,y) = B(1+mcos2πfx), 给定条纹频率f为一固定值(看作是宽度),改变振幅m(看作对比度),测试分辨能力。
显然m越大分辨越清楚,测试不同条件下(不同cpd)可分辨的最少m值,定义1/mmin为对比敏感度(contrast sensitivity)。
定义人眼的对空间感觉的角度频率:cpd: cycle / degree ,表示眼球每转动一度扫过的黑白条纹周期数。
对给定的条纹,这个值与人眼到显示屏的距离有关,对于同样大小的屏幕,离开越远,cpd越大。
通常人眼对空间的感觉相当于一个带通滤波器。
最敏感在2~5个cpd ,空间截止频率为30cpd。
比如我们看油画和电视机屏幕时,当距离离开一定远,cpd 增大,人的眼睛就分辨不了象素点细节,便感觉不到颗粒感了。
当人观察一个静止影像时,眼球不会静止一处(精神病人除外), 通常停留在一处几百毫秒完成取像后,移到别处取像,如此持续不断。
这种运动称为跳跃性运动(saccadic eye movement)。
研究表明跳跃性运动可以增大对比敏感度,但敏感度峰值却减少。
四、模式识别人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。
字符识别就是一个典型的例子。
例如数字“4”可以有各种写法,但都属于同一类别。
更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。
人脑的这种思维能力就构成了“模式”的概念。
在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。
为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果80年代初(1982,1984,1985),陈霖提出视觉拓扑理论(visual topological theory)。
该理论认为,在视觉处理的早期阶段,人的视觉系统首先检测图形的拓扑性质;它对图形的大范围拓扑性质敏感,而对图形的局部几何性质不敏感。
图形的拓扑性质(topological properties):指在拓扑变换下图形保持不变的性质和关系,如连通性(connectedness)、封闭性(closedness)、洞(hole),都是典型的拓扑性质,而大小、角度、平行性等几何性质则不是拓扑性质。
按照人们的直觉经验,圆盘、三角形和正方形是明显不同的图形;但按拓扑学的观点,由于它们都是实心图形,因而在拓扑性质上是等价的。
相反,圆盘和圆环按直觉经验是相似的,而按其拓扑性质讲,则是不等价的。
陈霖认为,图形的封闭性、连通性、洞都是图形的拓扑学性质。
图形的具体形状可能千差万别,但只要它们的拓扑性质相同,就可以说它们是拓扑性质等价的图形。
在视觉早期信息加工中,视觉系统对这些大范围的拓扑学性质更加敏感。
视觉系统先加工图形的拓扑性质,然后才加工它的局部性质。
近年来,陈霖用神经心理学和电生理学的实验技术,进一步证明了视觉系统的这一特点。