塑料的冲击性能及增韧剂

合集下载

塑料增韧机理

塑料增韧机理
24
25
③弹性体增韧剂玻璃化转变温度的影响
一般而言,弹性体的Tg越低,增韧效果越好,见表。 这是由于在高速冲击载荷作用下,橡胶相的Tg会有显
著提高。 对于在室温下使用的增韧塑料,橡胶的Tg要比室温低
40~60℃才会产生显著的增韧效应。/
26
④增韧剂与基体树脂界面的影响
对于弹性体增韧塑料,界面粘接强度对增韧效果的影 响,不同的体系趋势不同。
13
不足之处
未能提供银纹终止详细机理 橡胶颗粒引发多重银纹缺乏严格数学处

14
5.2.3影响增韧效果的因素
可以从三个方面考虑: 基体树脂的特性, 增韧剂的特性和用量, 两相间的结合力。/
15
(1)基体树脂的特性
¾许多研究表明,提高基体树脂的韧性有利于提高增韧塑 料增韧效果。 ¾提高基体树脂韧性的主要方法有3种。
银纹支化理论 1971年 ,
Wu氏理论等。
提出了增韧塑料脆韧转变的临界 粒间距普适判据的概念,对热塑 性聚合物基体进行了科学分类。5
弹性体直接吸收能量理论 1956年
试样收到冲击→裂纹 橡胶颗粒横跨裂纹,裂纹发展必须拉伸橡
胶颗粒→吸收大量能量→冲击强度提高
不足: 所吸收能量不足冲击能 的1/10 气泡及小玻璃珠之类的 分散有时有增韧效应
有些增韧体系,界面粘接强度大,可有效减小分散相 粒径,在增韧剂含量相同的情况下,分散相粒子数增 多,减少了基体层厚度,有利于增韧。
例如: PVC与聚丁二烯共混,由于二者完全不相容,界面粘
接极弱,冲击强度很低;/
27
对于PVC/NBR共混体系,随着 NBR 中 AN 含 量 增 加 , NBR 与PVC 的相容性增加,

聚碳酸酯改性方法及原理是什么

聚碳酸酯改性方法及原理是什么

聚碳酸酯改性方法及原理是什么在材料科学领域,聚碳酸酯(PC)是一种常见的工程塑料,具有优异的力学性能和高抗冲击性。

然而,为了进一步提高其性能,人们不断探索各种聚碳酸酯改性方法。

聚碳酸酯改性是指通过添加特定的化合物或采用特殊的制备工艺,来改善聚碳酸酯的性能,从而满足不同工程应用的需求。

一种常见的聚碳酸酯改性方法是添加增韧剂。

增韧剂可以提高聚碳酸酯的韧性和抗冲击性能,降低其脆性。

常用的增韧剂包括丙烯腈丁二烯橡胶(ABS)、聚酰胺(PA)等。

这些增韧剂与聚碳酸酯的相容性很好,可以在聚碳酸酯基体中形成微相分散结构,从而有效提高材料的韧性。

除了添加增韧剂外,另一种常见的改性方法是添加填料。

填料可以改善聚碳酸酯的机械强度、热稳定性和耐磨性能。

常用的填料有玻璃纤维、碳纤维、硅胶等。

这些填料可以增加聚碳酸酯的刚性和耐热性,使其适用于更苛刻的工程环境。

此外,薄层复合是另一种常见的聚碳酸酯改性方法。

通过在聚碳酸酯表面涂覆或复合其他材料,可以有效提高其表面性能,如耐化学腐蚀性、抗划伤性等。

常见的薄层复合材料有聚氨酯、丙烯酸树脂等。

这种方法可以根据具体需求对聚碳酸酯的表面进行改性,使其更适合特定的应用场景。

最后,共聚物化是一种较为复杂但有效的聚碳酸酯改性方法。

通过在聚碳酸酯中引入其他共聚物单体,可以改变其分子结构和性能。

例如,通过与聚酯共聚合,可以提高聚碳酸酯的耐热性和耐老化性能。

这种方法需要精密的控制合成条件和共聚物的比例,以确保最终材料具有理想的性能。

综上所述,聚碳酸酯改性方法多种多样,可以根据具体应用需求选择合适的方法进行改性。

无论是添加增韧剂、填料,还是采用薄层复合或共聚物化,都旨在提高聚碳酸酯的性能,拓展其应用范围,促进材料科学的发展与创新。

1。

增韧剂原理

增韧剂原理

增韧剂原理
增韧剂(Toughening agent)是一种添加到材料中的物质,用于提高材料的韧性和抗冲击性能。

增韧剂的原理是通过改变材料的微观结构和断裂机制,以增加材料的能量吸收和变形能力,从而提高其韧性。

增韧剂的原理可以从以下几个方面解释:
断裂韧性提高:增韧剂能够通过各种机制增加材料的断裂韧性。

例如,增韧剂可以增加材料的断裂韧度(toughness),使其能够在受到冲击或拉伸载荷时更好地抵抗裂纹扩展和断裂。

能量吸收增加:增韧剂能够吸收能量并将其分散到材料中,减轻冲击或应力的影响。

通过吸收和分散能量,增韧剂可以阻止裂纹扩展和断裂的传播,从而提高材料的抗冲击性能。

微观结构调控:增韧剂可以改变材料的微观结构,例如引入弹性相或韧性相。

这些相与基体材料相互作用,形成复合结构,提供增强的能量吸收和塑性变形能力。

界面效应:增韧剂与基体材料之间的界面也起着重要作用。

界面能够阻碍裂纹扩展并分散应力,从而提高材料的韧性。

综上所述,增韧剂的原理是通过改变材料的微观结构和断裂机制,增加能量吸收和变形能力,从而提高材料的韧性和抗冲击性能。

这种原理可以应用于各种材料体系,包括塑料、复合材料、金属和陶瓷等,以改善其力学性能和耐用性。

pom增韧剂,抗冲击剂

pom增韧剂,抗冲击剂

聚甲醛塑料具有耐磨、表面硬度高、成本低廉的优异性能,还具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承、汽车配件(卡扣、紧固件、铆钉、螺丝座)。

由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),,还经常应用于电子、建材、扣具、按具、管件、卷轴、开关等零件
但POM聚甲醛产品在生产和使用过程中容易开裂,不耐弯曲,延伸率低,没有回弹性,严重影响了该产品的使用。

如塑料卡扣、塑料紧固件需要有比较好的回弹性和韧性,塑料铆钉、螺丝座需要比较高的延伸率和韧性,不使用增韧剂(抗冲击剂)就无法达到使用功能的要求。

现在很多用户逐渐开始使用增韧剂,提高了产品的使用寿命,受到良好的效果。

我公司生产的POM增韧剂产品不影响POM产品的耐磨性能,可以在注塑或挤出前直接添加搅拌均匀即可,使用方便。

在添加15%比例的情况下,抗冲击性能一般提高二倍以上;同时提高塑料制品的延
伸率60%以上;改善了回弹性;提高了耐低温性能。

添加了POM增韧剂以后也极大地改善了高收缩率的问题,不论改善何种牌号的POM,其收缩率都为零。

即模具的尺寸决定了成型制品的尺寸。

优点是模具的尺寸精度很容易做得精确,这样就能确保POM制品的高精密度,同时避免各种牌号之间收缩率不同而造成POM塑料制品的尺寸误差。

所以,在采用POM增韧剂注塑时有可能要修正原来的模具,敬请留意!。

怎么防止pet变脆的方法

怎么防止pet变脆的方法

怎么防止pet变脆的方法要防止pet变脆,我们可以从多个方面入手。

pet材料(聚对苯二甲酸乙二酯)是一种广泛应用于食品、饮料、医疗器械和包装等领域的塑料材料,而大部分PET制品的韧性和耐冲击性是非常重要的。

下面我们将从材料选择、加工工艺和使用条件等方面介绍防止PET变脆的方法。

一、材料选择1.选用合适的PET原料:PET树脂有不同等级和品牌,质量和性能也有所不同。

选用质量好的原料,如增韧剂、抗冲击剂能改善PET的韧性和耐冲击性。

2.添加增韧剂:在制造PET制品时,可适当添加增韧剂,如TPU(热塑性聚氨酯)、EVA(乙烯-醋酸乙烯共聚物)、SBS(丁苯橡胶苯乙烯共聚物)等,能够提高PET制品的韧性和耐冲击性。

二、加工工艺1.控制挤出温度:PET在挤出过程中的温度控制非常重要。

过低的温度会导致PET材料不充分熔融,而高温则容易使PET分子链过度交联,从而降低韧性。

因此,在挤出过程中,应根据PET的特性和要求合理控制挤出温度。

2.控制挤出速度:过快的挤出速度容易引起PET材料分子链断裂,从而使其变脆。

适当控制挤出速度,可以保证PET材料分子链的完整性,提高制品的韧性。

3.控制冷却条件:合理的冷却条件有助于提高PET制品的韧性,减少内应力。

在制品冷却过程中,应尽量避免冷却不均匀或冷却过快等情况,以免影响制品性能。

三、使用条件1.避免高温环境:PET材料对高温敏感,长时间暴露在高温环境下容易导致其分子链断裂和结晶度下降,进而使制品变脆。

因此,在使用PET制品时,应尽量避免高温环境,尤其是避免直接暴晒于阳光下或近热源处。

2.避免使用化学品:PET材料对某些化学品敏感,如酸、碱等。

在使用PET制品时,应避免与这些化学品接触,以免对其造成腐蚀,导致变脆。

3.蓄水保湿:PET材料具有一定的吸水性,吸水后容易导致结晶度降低,从而使制品变脆。

在存储PET制品时,应避免潮湿环境,尽量保持干燥,并进行适当的蓄水保湿措施,以维持PET材料的性能和品质。

塑料粒子冲击强度标准

塑料粒子冲击强度标准

塑料粒子冲击强度标准《塑料粒子冲击强度标准》前言嘿,朋友!你知道吗?在我们的日常生活中,塑料那可是无处不在啊。

从家里的塑料杯、塑料盆,到各种电子产品的外壳,都离不开塑料粒子这个小玩意儿。

但是呢,不同的塑料粒子在不同的使用场景下,得有个标准来衡量它的好坏呀,这其中一个很重要的标准就是冲击强度。

为啥要关注这个呢?很简单,如果一个塑料产品在正常使用过程中,稍微受到点冲击就坏掉了,那可不行。

比如说,你买了个塑料手机壳,结果不小心从桌上掉下去就碎成好几块了,肯定会很懊恼吧。

所以啊,这个塑料粒子冲击强度标准就像是一把尺子,用来衡量塑料粒子在受到冲击时的表现到底咋样,这对生产厂家和消费者来说,可都是非常重要的呢。

适用范围这个冲击强度标准适用于各种各样的塑料粒子哦。

比如说,在制造业里,那些用来生产汽车零部件的塑料粒子就得符合这个标准。

你想啊,汽车在路上跑,难免会遇到一些磕磕碰碰的情况。

如果用来做保险杠的塑料粒子冲击强度不够,那在发生小碰撞的时候,保险杠一下子就碎了,这可就起不到保护汽车的作用啦。

再比如说,在建筑行业里,一些塑料管材也需要考虑冲击强度。

要是这些管材在运输或者安装过程中,稍微碰一下就破了,那整个建筑工程都会受到影响呢。

还有啊,像玩具行业,小朋友玩玩具的时候可不会小心翼翼的,玩具要是不耐冲击,很容易就坏掉了,所以生产玩具的塑料粒子也要遵循这个标准。

术语定义1. 冲击强度:说白了,就是塑料粒子在受到外力冲击时,抵抗破坏的能力。

就像一个人被打了一拳,身体强壮的人可能就没事,身体弱的人可能就受伤了。

塑料粒子的冲击强度高,就说明它比较“强壮”,不容易被冲击破坏;冲击强度低呢,就比较“脆弱”,容易在受到冲击时坏掉。

2. 塑料粒子:这就是那些小小的、一粒一粒的塑料原料啦。

它们就像是盖房子的砖头一样,是生产各种塑料制品的基础材料。

这些塑料粒子可以通过各种加工方法,变成我们看到的各种各样的塑料制品。

正文1. 化学成分与冲击强度的关系- 不同化学成分的塑料粒子,其冲击强度有很大的差别。

pe塑料增韧剂的配方

pe塑料增韧剂的配方

pe塑料增韧剂的配方
pe塑料增韧剂的配方如下:
塑料增韧剂按重量份计包括:聚乙烯10-15份;聚酰胺酰亚胺5-10份;过氧化苯甲酰3-5份;超细滑石粉10-15份;铝锆偶联剂0.3-0.5份;氯化聚乙烯3-5份。

本发明通过添加聚酰胺酰亚胺和过氧化苯甲酰,利用聚酰胺酰亚胺、过氧化苯甲酰和聚乙烯之间的协同作用,使制得的增韧剂不仅可有效增加聚乙烯波纹管道的韧性,同时使其具有良好的耐腐蚀性能。

步骤:择将配方量的聚乙烯、聚酰胺酰亚胺、过氧化苯甲酰和铝锆偶联剂于50-60℃下高速混合,然后加入配方量的超细滑石粉和氯化聚乙烯,采用双螺杆挤出机,自然排气口堵死,真空排气,整个螺杆组合使用弱组合,使用水环式切粒机组,在一定温度下挤出成形。

塑料增韧剂:
塑料增韧剂是一种增加塑料断裂伸长率和冲击强度的塑料助剂,针对不同的塑料有相适应的增韧剂,以保证增韧性的同时良好的互容性。

塑料增韧剂的形态由多种,以固体粉末或者颗粒为多。

增韧剂用于PP使它既有优异的韧性又有良好的加工性。

增韧剂分子结构中没有不饱和双键,具有优良的耐老化性能。

增韧剂分子量分布窄,具有较好的流动性,与聚烯烃相容性好。

良好的流动性可改进填料的分散效果,同时也可提高制品的熔接痕强度。

塑料的冲击性能和塑料的韧性

塑料的冲击性能和塑料的韧性

塑料的冲击性能和塑料的韧性Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998塑料的冲击性能和塑料的韧性在某些塑料中,冲击强度低是一个很大的弱点,例如PVC、PS、PP等。

尤其是PVC性脆,在光照下降解,加工温度下发生热降解,几乎成为一种无用的材料。

但是,在PVC中加入改性剂,就可变成为可以接受的材料。

通过在PVC中加入大量的增塑剂就可以获得极广泛的用途。

随着科学技术的发展,出现了软质塑料和硬质塑料,当时的塑料要么柔而软,要么硬而脆。

软质塑料使用寿命短,由于增塑剂的挥发和材料在大气中老化降解而变脆成为硬质塑料。

而硬质塑料因为缺乏足够的韧性给塑料工业带来毁灭性的威胁,塑料工业就要开始发展革新性的产品。

开发高分子量和低挥发量、或低抽取性的增塑剂挽救了软质和硬质塑料制品,主要是苯乙烯类的产品开发。

它们因开发在聚合物结构中引入橡胶组分的技术获新生。

塑料添加剂的开发,可改善塑料生产工艺和提高产品性能。

其中增塑剂、稳定剂、冲击改性剂是有利于塑料冲击性能的改善。

以下就材料的韧性和刚性及反映材料韧性的冲击性能的测试作一些叙述。

1.韧性和刚性韧性和刚性是对立的概念。

在力学中有刚度和柔度两个物理量。

“刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。

可以看出, “刚度”越大的物体,越不容易发生变形(表现在伸长率很小); “柔度”越大的物体越容易发生变形(表现在伸长率较大)。

一种理想状态,物体的刚度趋近于无穷大(或者物体受力作用其变形小到可以忽略的程度),我们就称该物体为刚体。

在力学分析时,可以不考虑其自身形变。

因此,刚性是反映物体形变难易程度的一个属性。

韧性的材料比较柔软,它的拉伸断裂伸长率、抗冲击强度较大;硬度、拉伸强度和拉伸弹性模量相对较小。

而刚性材料它的硬度、拉伸强度较大;断裂伸长率和冲击强度就可能低一些;拉伸弹性模量就较大。

环氧树脂类增韧剂种类

环氧树脂类增韧剂种类

环氧树脂类增韧剂种类环氧树脂是一种重要的工程塑料,具有优异的物理机械性能、耐化学腐蚀性能和电气绝缘性能等特点。

然而,环氧树脂的脆性使其在一些应用中存在一定局限性。

为了改善环氧树脂的韧性,常常需要添加一些增韧剂。

增韧剂能够在环氧树脂中形成一种柔性的、弹性的相,从而增加其韧性和强度。

根据不同的增韧机制,环氧树脂的增韧剂可以分为以下几类。

1.弹性体类增韧剂弹性体类增韧剂是环氧树脂增韧剂的主要种类之一、弹性体类增韧剂通常由聚丁二烯橡胶、乙烯-丙烯橡胶、聚氨酯等材料制成。

这些增韧剂在环氧树脂中形成弹性相,能够有效地吸收冲击能量,并且在破裂时能够形成均匀细小的韧性断裂。

弹性体类增韧剂能够显著提高环氧树脂的韧性和耐冲击性能。

常见的弹性体类增韧剂包括丁苯橡胶、硅橡胶、聚脲醚弹性体等。

2.高分子树脂类增韧剂高分子树脂类增韧剂是一种常见的环氧树脂增韧剂。

这类增韧剂通常由硬而脆的树脂制成,如聚碳酸酯、聚酰亚胺等。

高分子树脂类增韧剂在环氧树脂中形成一种形状复杂的相,能够起到承载应力、分散裂纹、阻碍裂纹扩展等作用,从而提高材料的韧性。

高分子树脂类增韧剂的常见型号有聚碳酸酯(PCT)、聚酰亚胺(PI)、聚苯醚(PES)等。

3.纳米颗粒类增韧剂纳米颗粒类增韧剂是一种比较新型的环氧树脂增韧剂。

这类增韧剂通常是由纳米级颗粒制成,如纳米硅粉、纳米黄金、纳米银等。

纳米颗粒类增韧剂具有较高的比表面积和良好的增韧效果。

纳米颗粒类增韧剂在环氧树脂中能够形成一种大量分散的强化相,能够有效地嵌入环氧树脂中的各向异性相,在裂纹尖端形成桥梁效应,从而提高材料的韧性和强度。

4.其他增韧剂除了上述几种主要的增韧剂外,还有一些其他类型的增韧剂,如微胶囊增韧剂、纤维增韧剂、共混增韧剂等。

微胶囊增韧剂是通过包覆一层核-壳结构的微胶囊,在环氧树脂中形成一种多孔结构,能够接受外部应力并释放被壳包围的物质,从而提高材料的韧性。

纤维增韧剂是通过添加纤维增强材料,如碳纤维、玻璃纤维等,来增加环氧树脂的韧性。

塑料韧性的性能表征

塑料韧性的性能表征

本文摘自再生资源回收-变宝网()塑料韧性的性能表征一、刚性越大材料越不容易发生形变,韧性越大则越容易发生形变。

韧性与刚性相对,是反映物体形变难易程度的一个属性,刚性越大材料越不容易发生形变,韧性越大则越容易发生形变。

通常,刚性越大,材料的硬度、拉伸强度、拉伸模量(杨氏模量)、弯曲强度、弯曲模量均较大;反之,韧性越大,断裂伸长率和冲击强度就越大。

冲击强度表现为样条或制件承受冲击的强度,通常泛指样条在产生破裂前所吸收的能量。

冲击强度随样条形态、试验方法及试样条件表现不同的值,因此不能归为材料的基本性质。

二、不同的冲击试验方法所得到的结果是不能进行比较的冲击试验的方法很多,依据试验温度分:有常温冲击、低温冲击和高温冲击三种;依据试样受力状态,可分为弯曲冲击-简支梁和悬臂梁冲击、拉伸冲击、扭转冲击和剪切冲击;依据采用的能量和冲击次数,可分为大能量的一次冲击和小能量的多次冲击试验。

不同材料或不同用途可选择不同的冲击试验方法,并得到不同的结果,这些结果是不能进行比较的。

塑料增韧机理及影响因素一、银纹-剪切带理论在橡胶增韧塑料的共混体系中,橡胶颗粒的作用主要有两个方面:一方面,作为应力集中的中心,诱发基体产生大量的银纹和剪切带;另一方面,控制银纹的发展使银纹及时终止而不致发展成破坏性的裂纹。

银纹末端的应力场可以诱发剪切带而使银纹终止。

当银纹扩展到剪切带时也会阻止银纹的发展。

在材料受到应力作用时大量的银纹和剪切带的产生和发展要消耗大量的能量,从而使得材料的韧性提高。

银纹化宏观表现为应力白发现象,而剪切带则与细颈产生相关,其在不同塑料基体中表现不同。

例如,HIPS基体韧性较小,银纹化,应力发白,银纹化体积增加,横向尺寸基本不变,拉伸无细颈;增韧PVC,基体韧性大,屈服主要由剪切带造成,有细颈,无应力发白;HIPS/PPO,银纹、剪切带都占有相当比例,细颈和应力发白现象同时产生。

二、影响塑料增韧效果的因素1、基体树脂的特性研究表明,提高基体树脂的韧性有利于提高增韧塑料的增韧效果,提高基体树脂的韧性可通过以下途径实现:增大基体树脂的分子量,使分子量分布变得窄小;通过控制是否结晶以及结晶度、晶体尺寸和晶型等提高韧性。

ABS的增韧配方研究

ABS的增韧配方研究

ABS的增韧配方研究ABS(丙烯腈-丁二烯-苯乙烯共聚物)是一种常用的工程塑料,具有优异的机械性能、良好的耐久性和热塑性。

然而,由于其脆性特性,ABS材料在一些领域的应用受到了限制。

因此,研究ABS的增韧配方具有重要的意义,可以提高ABS材料的韧性和抗冲击能力。

增韧ABS的方法主要有两种:添加增韧剂和改变共聚物配比。

下面将详细介绍这两种方法的研究成果。

1.添加增韧剂:增韧剂可以在一定程度上改善ABS的韧性。

常用的增韧剂包括橡胶颗粒、纳米粒子和增容剂。

橡胶颗粒的添加能够明显增加ABS的韧性。

研究表明,橡胶颗粒的尺寸、分散性和添加量对ABS的增韧效果有重要影响。

较小的颗粒尺寸和良好的分散性有助于提高增韧效果。

此外,适量的添加量也是关键,过多的橡胶颗粒可能导致ABS的力学性能下降。

纳米粒子的添加可以提高ABS材料的力学性能和韧性。

纳米粒子的添加可以填充ABS的微观缺陷,形成增强相,并阻碍裂纹扩展。

常用的纳米粒子包括纳米硅胶、纳米碳黑和纳米蒙脱石。

研究发现,纳米硅胶的添加能够显著提高ABS的断裂韧性。

增容剂的添加也是一种常见的增韧方法。

增容剂可以提高ABS材料的抗冲击能力和韧性。

常用的增容剂包括丁二酸酯类和醋酸酯类。

研究表明,适量的增容剂能够显著提高ABS的冲击强度和断裂韧性。

2.改变共聚物配比:改变ABS的共聚物配比也可以增强ABS的韧性。

ABS是由丙烯腈、丁二烯和苯乙烯三种单体共聚而成的,改变各单体的配比可以调节ABS的力学性能。

增加丁二烯的含量可以提高ABS的韧性。

丁二烯是一种弹性体,具有良好的韧性和弹性。

研究发现,适量增加丁二烯的含量可以显著提高ABS的断裂韧性。

减少丙烯腈的含量也有助于增强ABS的韧性。

丙烯腈是一种脆性单体,其含量的降低可以减缓ABS的脆性。

除了上述两种方法,还可以通过改变共聚物结构以及添加其他助剂来增强ABS的韧性。

例如,通过引入交联剂可以形成网络结构,提高ABS的韧性。

综上所述,ABS的增韧配方研究有利于提高ABS材料的韧性和抗冲击性能。

两种增韧剂增韧尼龙6的配方研究

两种增韧剂增韧尼龙6的配方研究

接枝POE和EPDM增韧尼龙6的配方研究前言PA6是一种通用的工程塑料,因其本身具有较高的拉伸强度、冲击强度、良好的耐磨性和耐腐蚀性、自润滑性等优点,被广泛应用于机械、汽车、电器、铁路等行业。

但又由于自身吸水性大,低温冲击强度低以及吸水后变形等缺点,使用又受到了一定的限制。

因此PA6的改性研究已成为改性料研究领域的一个重要课题。

我们根据多年的经验,就接枝POE及接枝EPDM两种增韧剂对PA6增韧料各种性能的影响作了分析研究。

结果讨论:1,增韧剂对PA6常温冲击性能的影响PA6改性主要解决两个问题:一是吸水性的降低;二是冲击强度的提高。

对于吸水性而言,各种改性剂的加入都会改善PA6的吸水性。

问题研究的重点应放在PA6冲击性能的研究上。

由于PA6是极性聚合物,而POE和EPDM是非极性聚合物,二者的相容性是关键问题。

接枝后的POE由于和PA6的相容性好,冲击强度成倍的增加;而没接枝的POE由于和PA6的相容性不好,其冲击强度几乎不增加。

除了接枝POE对PA6增韧料的冲击性能有增加外,接枝EPDM对PA6增韧料冲击的影响更加明显。

接枝EPDM由于自身冲击性能优越,因而对PA6增韧料冲击性能的影响明显优于接枝POE。

对于尼龙6增韧料,其自身的水分含量对尼龙6增韧料冲击性能也有一定影响.含有水分的尼龙6增韧料比干态(不含水分)的尼龙6增韧料冲击强度高.2,不同粘度PA6随增韧剂含量变化时其冲击性能的变化PA6自身的粘度大小对PA6增韧料冲击性能的影响很大。

不同粘度PA6随增韧剂含量变化时其冲击强度的变化。

当PA6相对粘度为2.4时和相对粘度为2.8的PA6相比,在相同的增韧剂含量下,其PA6增韧料冲击强度提高的更多,可生产出理想的超韧级PA6。

这主要是由于粘度低的PA6其官能团相对增加,与接枝增韧剂的相溶性更好所至。

3,增韧剂对PA6增韧料低温冲击性能的影响改善PA6低温冲击性是PA6增韧料研究的重要问题。

PBT增韧剂

PBT增韧剂

PBT性能 :
聚对苯二甲酸丁二醇酯,英文名polybutylene terephthalate(简称PBT),属于聚酯系列,是由1.4-pbt丁二醇(1.4-Butylene glycol)与对苯二甲酸(PTA)或者对苯二甲酸酯(DMT)聚缩合而成,并经由混炼程序制成的乳白色半透明到不透明、结晶型热塑性聚酯树脂。

与PET一起统称为热塑性聚酯,或饱和聚酯。

PBT理化特性 :
PBT为乳白色半透明到不透明、结晶型热塑性聚酯。

具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为0.1%,在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。

耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。

缺点是缺口冲击强度低,成型收缩率大。

故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。

可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。

改性PBT塑料是指在聚合物(树脂)中加入小分子无机物或有机物,通过物理或化学作用,从而赋予其某种性能(机械加工性能)或使其某种性能获得改善。

如增韧、增强、增塑、阻燃等,而通过改性技术使得塑料变得具有鲜特征,而这其中要属在汽车和家电领域,改性PBT塑料的应用以及发展潜力最为巨大了。

这里介绍一种南京塑泰的PBT增韧剂(ST-1):
用于PBT及其合金材料的相容剂与增韧剂PBT增韧剂(ST-1)性能指标:
外观:白色透明颗粒
接枝率:1.0~1.3MA%
熔指:0.6~2.0g/10min(190℃,2.16kg)。

塑料材料改性

塑料材料改性

塑料材料改性塑料是一种常见的材料,在日常生活和工业生产中被广泛应用。

然而,传统的塑料材料在某些方面存在着一些缺陷,比如耐热性、耐候性、机械性能等方面。

为了克服这些缺陷,人们对塑料材料进行改性,以获得更好的性能和更广泛的应用。

塑料材料改性是指在塑料材料中添加一些特殊的化学物质,改变其分子结构和性能,从而获得特定的性能和应用特性。

常见的塑料材料改性方法包括增韧剂的添加、填充剂的应用、改性剂的引入等。

首先,增韧剂的添加是常见的塑料改性方法之一。

传统的塑料材料在低温下容易脆化,影响其使用寿命和安全性。

为了提高塑料材料的韧性,可以向其中添加一些增韧剂,如聚乙烯醇、聚丙烯醇等。

这些增韧剂可以在塑料材料中形成网状结构,增加其抗拉伸和抗冲击性能,提高其使用温度范围。

其次,填充剂的应用也是常见的塑料改性方法。

填充剂可以填充在塑料材料中,增加其硬度、强度和耐磨性。

常用的填充剂包括玻璃纤维、碳纤维、硅酸盐等。

这些填充剂可以在塑料材料中形成纤维状结构,增加其抗拉伸和抗压性能,提高其耐磨性和耐腐蚀性能。

此外,改性剂的引入也是塑料改性的重要手段之一。

改性剂可以改变塑料材料的分子结构,从而改变其性能和应用特性。

常用的改性剂包括增塑剂、抗氧化剂、光稳定剂等。

这些改性剂可以改善塑料材料的加工性能、耐老化性能和耐光性能,提高其使用寿命和稳定性。

综上所述,塑料材料改性是一种重要的技术手段,可以改善塑料材料的性能和应用特性,拓展其应用领域。

通过增韧剂的添加、填充剂的应用和改性剂的引入,可以使塑料材料具有更好的耐热性、耐候性、机械性能等特性,满足不同领域的需求。

随着科学技术的不断进步,相信塑料材料改性技术将会得到进一步的发展和应用,为人类社会的可持续发展做出更大的贡献。

增韧剂基本原理

增韧剂基本原理

一、概述增韧剂,是指能增加胶黏剂膜层柔韧性的物质。

某些热固性树脂胶黏剂,如环氧树脂、酚醛树脂和不饱和聚酯树脂胶黏剂固化后伸长率低,脆性较大,当粘接部位承受外力时很容易产生裂纹,并迅速扩展,导致胶层开裂,不耐疲劳,不能作为结构粘接之用。

因此,必须设法降低脆性,增大韧性,提高承载强度。

凡能减低脆性,增加韧性,而又不影响胶黏剂其他主要性能的物质即为增韧剂。

可分为橡胶类增韧剂和热塑性弹性体类增韧剂。

增韧剂一般都含有活性基团,能与树脂发生化学反应,固化后不完全相容,有时还要分相,会获得较理想的增韧效果,使热变形温度不变或下降甚微,而抗冲击性能又明显改善。

一些低分子液体或称之为增塑剂之物加入树脂之中,虽然也能降低脆性,但刚性、强度、热变形温度却大幅度下降,不能满足结构粘接要求,因此,增塑剂与增韧剂是完全不同的。

有些线型高分子化合物,能与树脂混溶,含有活性基团,可以参与树脂的固化反应,提高断裂伸长率和冲击强度,但热变形温度有所下降,这种物质称之为增柔剂(flexibizer),常用的有液体聚硫橡胶、液体丁腈橡胶,由于它们与树脂适量配合,可以制成结构胶黏剂,所以也将增柔剂归入增韧剂之类。

增柔与增韧虽是相互关联又不相同的概念,但实际上却很难严格区分开来。

从理论上讲增韧与增柔不同,增韧它不使材料整体柔化,而是将环氧树脂固化物均相体系变成一个多相体系,即增韧剂聚集成球形颗粒在环氧树脂的交联网络构成的连续相中形成分散相,抗开裂性能发生突变,断裂韧性显著提高,但力学性能、耐热性损失较小。

二、增韧机理不同类型的增韧剂,有着不同的增韧机理。

液体聚硫橡胶可与环氧树脂反应,引入一部分柔性链段,降低环氧树脂模量,提高了韧性,却牺牲了耐热性。

液体丁腈橡胶作为环氧树脂的增韧剂,室温固化时几乎无增韧效果,粘接强度反而下降;只有中高温固化体系,增韧与粘接效果较明显。

端羧基液体丁腈橡胶增韧环氧树脂,固化前相容,固化后分相,形成“海岛结构”,既能吸收冲击能量,又基本不降低耐热性。

06-第五章 几种常用增韧剂及典型-6

06-第五章  几种常用增韧剂及典型-6

(1)悬臂梁冲击试验法
此方法适用于韧性好的材料。
悬臂粱冲击试验法又称为艾祖德(Izod)试验法,它是 将冲击样条的一端固定而另一端悬空(悬臂),用摆锤冲击试 样的一种试验方法。 悬臂梁冲击强度的定义为: 冲击试样在悬臂梁冲击破坏过程中所吸收能量与试样原 始横截面积之比,单位为KJ/m2。 对于韧性较好的材料,试样一般开一个小口(缺口),小口的放置 方向分正置和反置两种。 正置为缺口方向面对着摆锤方向,称为正置缺口悬臂梁冲击强度; 反置为缺口背着摆锤方向,称为反置缺口悬臂梁冲击强度。
(2)常用弹性体增韧材料的选用 ①塑料与弹性体的相容性要好 a.极性相近原则 塑料的极性:纤维系塑料>PA>PF>EP>PVC> EVA>PS>HDPE、LDPE、LLDPE等; 弹性体的极性:PU胶>丁腈胶>氯丁胶>丁苯胶> 顺丁胶>天然胶>乙苯胶。 b.溶度参数相近原则 几种塑料与弹性体溶度积参数如表5-2所示,选用 时、塑料与弹性体的溶度参数差一般要小于1.5;
值得注意的是,对于不同的增韧基体,其增韧机理不 大相同。常见的四种增韧基体分类如下:
实际上:银纹剪切带理论也具有局限性,它只能解释以无 定型脆性树脂为基体的弹性体增韧体系,而对其它三种增韧 体系无效。
到目前为止,另外三种增韧体系的理论虽然已开发不 少,但尚无成熟的增韧理论可用。尤其是以纳米型聚 合物为基体的增韧体系,增韧机理的研究十分困难。 其主要原因为:
通常采用氯含量为36%的CPE作为PVC的增韧改性剂。
从图5-1中可以看出: 随着CPE用量的增加, 缺口冲击强度上升,且 曲线呈S型,在CPE用 量为5~20质量份时,冲 击强度上升幅度较大。 断裂伸长率在CPE用量 为15质量份以内时呈上 升趋势,在超过15份后 不再增大。 拉伸强度则随着CPE用 量增加而呈下降趋势。

增韧机理与方法

增韧机理与方法

弹性体增韧理论
Wu氏逾渗增韧模型
➢ 指出聚合物的基本断裂行为是银纹与屁服存在竞争。链缠结密度γe 较小及链的特征比 C∞较大时,基体易于以银纹方式断裂,韧性较低; γe 较大及 C∞ 较小的基体以屁服方式断裂,韧性较高。 ➢认为给定的共混体系,都有一临界Tc, Tc仅是聚合物本身的参数。
T= d[(π /6Ør)1/3-1
预增韧体系
项目
PVC
冲 击 强 度 2.5
拉 仲 强 度 58.4
杨 氏 模 量 14.7
CPE 10份,PS 3份
PVC/CPE 16.2 41.0 11.1
PVC/CPE/PS 69.5 43.7 12.1
PC/AS体系:
PC/AS=90/10 冲击强度达 到峰值,AS 大于冲击强度 降低
刚性增韧剂 (刚性粒子)
刚性有机粒子(ROF) 刚性有机粒子(ROF)
PS、AS、PMMA等 SiO2、CaCO3、滑石粉、 凹棒土、BaSO4等
刚性粒子增韧对象,必须是有一定韧性的塑料基体,如尼龙、聚碳酸酯
对于脆性基体,则需要用弹性体对其进行增韧,变成有一定韧 性的基体,然后再用刚性粒子对其进行进一步增韧改性。
弹性体增韧理论
➢弹性体直接吸收能量理论 1956年
➢屈服理论
➢裂纹核心理论 1960年 ➢多重银纹理论 1965年 ➢银纹—剪切带理论 ➢银纹支化理论 1971年
由于成功地解释一系列 的实验事实,因而被广 泛接受。
➢Wu氏渗增韧模型等
提出了增韧塑料脆性转变的临界粒间距判断的概念, 对热塑性聚合物进行科学分类。
弹性体增韧材料增韧剂考量
增韧剂粒径的选择:
对于弹性体增韧塑料,基体树脂的特性不同,弹性体分散相粒径的 最佳值也不同。

PC/ABS合金的增韧研究

PC/ABS合金的增韧研究

PC/ABS合金的增韧研究PC/ABS合金是一种由聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯(ABS)共混而成的增韧材料。

它具有PC和ABS的双重优点,如高强度、耐冲击性和耐化学腐蚀性。

在本文中,我们将讨论PC/ABS合金的增韧研究。

增韧改性是指在基础材料中添加一种或多种增韧剂,以改善材料的耐冲击性能。

对于PC/ABS合金,常见的增韧剂包括弹性体、聚碳酸酯弹性体(PC-TPU)和聚碳酸酯接枝聚烯烃弹性体(PC-g-POE)。

这些增韧剂能在材料中形成分散的弹性相,使其具有更好的韧性和冲击性能。

在增韧研究中,研究人员关注的一项重要指标是冲击强度。

冲击强度是指材料在受到冲击时能够承受的最大应力。

研究表明,添加增韧剂可以显著提高PC/ABS合金的冲击强度。

例如,研究人员使用共混法将丁二烯酸酯类弹性体添加到PC/ABS合金中,发现冲击强度有明显改善。

除了冲击强度,添加增韧剂还可以改善PC/ABS合金的拉伸强度和韧性。

拉伸强度是指材料在拉伸过程中承受的最大荷载。

韧性是指材料在拉伸过程中具有良好的延展性和抗断裂性。

研究结果表明,添加弹性体增韧剂可以提高PC/ABS合金的拉伸强度和韧性。

在增韧研究中,还需要考虑增韧剂的添加量和分散性对材料性能的影响。

过多或过少的增韧剂添加量都会对材料性能产生不利影响。

此外,增韧剂的分散性也对材料的性能有重要影响。

良好的分散性可以确保增韧剂与基础材料之间形成的相互作用更有效,从而提高材料的性能。

此外,研究人员还在增韧研究中探索不同的增韧剂组合和复合材料的制备方法,以改善PC/ABS合金的性能。

例如,研究人员将纳米粒子添加到PC/ABS合金中,发现纳米粒子的添加可以显著提高材料的强度和硬度。

总结而言,PC/ABS合金的增韧研究是一个相对较新的领域,但已取得了显著的进展。

通过添加不同的增韧剂,并对其添加量和分散性进行优化,可以改善材料的冲击强度、拉伸强度和韧性。

此外,还需要进一步探索不同的增韧剂组合和制备方法,以进一步提高PC/ABS合金的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档