函数模型的应用举例 一次函数、二次函数、幂函数模型

合集下载

数学建模—函数模型及其应用

数学建模—函数模型及其应用

(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为

函数模型及其应用

函数模型及其应用

稿费(扣税前)为 C.3 800元 √
A.2 800元 B.3 000元
D.3 818元
1
2
3
4
5
6
解析
答案
6.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长
p+1q+1-1 率为q,则该市这两年生产总值的年平均增长率为__________________.
解析 设年平均增长率为x,则(1+x)2=(1+p)(1+q),
解析 答案
斜率应该逐渐增大,故函数的图象应一直是下凸的,故选B.
3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、 乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是 A.消耗1升汽油,乙车最多可行驶5千米 B.以相同速度行驶相同路程,三辆车中, 甲车消耗汽油量最多 C.甲车以80千米/小时的速度行驶1小时, 消耗10升汽油 D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙 √ 车更省油
∴x= 1+p1+q-1.
1
2
3
4
5
6
解析
答案
题型分类
深度剖析
题型一
用函数图象刻画变化过程
自主演练
1.高为H,满缸水量为 V的鱼缸的轴截面如图所示,其 底部破了一个小洞,满缸水从洞中流出,若鱼缸水深 为h时水的体积为v,则函数v=f(h)的大致图象是
解析 v=f(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.
f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1) f(x)=axn+b (a,b为常数,a≠0)
2.三种函数模型的性质 函数 性质
y=ax(a>1)

专题3.4 函数的应用(解析版)

专题3.4 函数的应用(解析版)

专题3.4函数的应用1.一次函数模型的应用一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).一次函数是常见的一种函数模型,在初中就已接触过.2.二次函数模型的应用二次函数模型:f (x )=+bx +c (a ,b ,c 为常数,a ≠0).二次函数为生活中常见的一种数学模型,因二次函数可求其最大值(或最小值),故最优、最省等最值问题常用到二次函数模型.3.幂函数模型的应用幂函数模型应用的求解策略(1)给出含参数的函数关系式,利用待定系数法求出参数,确定函数关系式.(2)根据题意,直接列出相应的函数关系式.4.分段函数模型的应用由于分段函数在不同区间上具有不同的解析式,因此分段函数在研究条件变化前后的实际问题中具有广泛的应用.5.“对勾”函数模型的应用对勾函数模型是常考的模型,要牢记此类函数的性质,尤其是单调性:y =ax +(a >0,b >0),当x >0时,在(0,]上递减,在(,+)上递增.另外,还要注意换元法的运一、单选题1.已知函数()22x f x =-,则函数()y f x =的图象可能是()A .B .C .D .【答案】B ()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .2.设函数()2,01,0x x f x x x -⎧≤=⎨->⎩,则满足()()12f x f x +<的x 的取值范围是()A .(],1-∞B .()1,+∞C .[)1,+∞D .(),1-∞【答案】D 因为()2,01,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时,()2xf x -=显然单调递减;当0x >时,()2f x x =-也是单调递减;且()002101f ==-=,即函数图像连续不断,所以()f x 在其定义域上单调递减,由()()12f x f x +<可得12x x +>,解得1x <.故选:D.3.根据表格中的数据,可以断定方程(2)0( 2.72)x e x e -+=≈的一个根所在的区间是()x -10123ex 0.371 2.727.4020.12x +212345A .(-1,0)B .(0,1)C .(1,2)D .(2,3)【答案】C【解析】设函数()(2)0x f x e x =-+=,(1)0.3710,(0)120,(1) 2.7230f f f -=-<=-<=-<,(2)7.4040f =->,∴(1)(2)0f f <,又()(2)x f x e x =-+在区间(1,2)连续,∴函数()f x 在区间(1,2)存在零点,∴方程根所在的区间为(1,2),故选:C.4.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若实数(0,1)m ∈,则函数()()g x f x m =-的零点个数为()A .0B .1C .2D .3【答案】D【解析】令()()0g x f x m =-=,得()f x m =,根据分段函数()f x 的解析式,做出函数()f x 的图象,如下图所示,因为(0,1)m ∈,由图象可得出函数()()g x f x m =-的零点个数为3个,故选:D.5.某地一天内的气温()Q t (单位:℃)与时刻t (单位:h )之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段内最高温度与最低温度的差),则()C t 与t 之间的函数图像大致是A .B .C .D .【答案】D【解析】由题图看出,0=t 时,()0C t =,排除B ;在[]0,4上,()C t 不断增大,在[]4,8上,()C t 先是一个定值,然后增大,在[]812,上,()C t 不断增大,在[]1220,上,()C t 是个定值,在[]20,24上,()C t 不断增大,故选D.6.甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离S与所用时间t的函数用图象表示,则甲、乙对应的图象分别是A.甲是(1),乙是(2)B.甲是(1),乙是(4)C.甲是(3),乙是(2)D.甲是(3),乙是(4)【答案】B【解析】由甲先骑自行车后跑步,故图象斜率先大后小,则甲图象为(1)或(3),由乙先跑步后骑自行车,故图象斜率先小后大,则乙图象为(2)或(4),又甲骑车比乙骑车快,即甲前一半路程图象的中y随x的变化比乙后一半路程y随x的变化要快,所以甲为(1),乙为(4).故选:B.7.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元【答案】C【解析】依题意可得,因为168200<,所以购买A商品没有优惠,则A商品的价格为168元.当购买价值500元的物品时实际付款为5000.9450423⨯=>,所以购买B商品享受了9折优惠,则B商品的原价为4234700.9=元.若一次性购买两件商品则付款总额为168+470=638元,则应付款(638500)0.75000.9546.6-⨯+⨯=元,故选C8.给下图的容器甲注水,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系:().A .B .B .C .D .【答案】B 试题分析:容器下端较窄,上端较宽,当均匀的注入水时,刚开始的一段时间高度变化较大,随时时间的推移,高度的变化速度开始减小,即高度变化不太明显,四个图像中只有B 项符合特点二、解答题9.2022年第24届北京冬季奥林匹克运动会,于2022年2月4日星期五开幕,将于2月20日星期日闭幕.该奥运会激发了大家对冰雪运动的热情,与冰雪运动有关的商品销量持续增长.对某店铺某款冰雪运动装备在过去的一个月内(以30天计)的销售情况进行调查发现:该款冰雪运动装备的日销售单价()P x (元/套)与时间x (被调查的一个月内的第x 天)的函数关系近似满足()1kP x x=+(k 为正常数).该商品的日销售量()Q x (个)与时间x (天)部分数据如下表所示:x 10202530()Q x 110120125120已知第10天该商品的日销售收入为121元.(1)求k 的值;(2)给出两种函数模型:①()Q x ax b =+,②()|25|Q x a x b =-+,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量()Q x 与时间x 的关系,并求出该函数的解析式;(3)求该商品的日销售收入()f x (130x ≤≤,*N x ∈)(元)的最小值.【答案】(1)1k =(2)选择②,()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)121元【解析】(1)因为第10天该商品的日销售收入为121元,所以(10)(10)111012110k P Q ⎛⎫⋅=+⋅= ⎪⎝⎭,解得1k =;(2)由表中数据可得,当时间变化时,该商品的日销售量有增有减,并不单调,故只能选②:()|25|Q x a x b=-+代入数据可得:11010251202025a b a b ⎧=-+⎪⎨=-+⎪⎩,解得1a =-,125b =,所以()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)由(2)可得,()**100,125,N 12525150,2530,N x x x Q x x x x x ⎧+≤<∈=--=⎨-≤≤∈⎩,所以,()()()**10010125,N 150149,2530,N x x x xf x P x Q x x x x x ⎧++≤<∈⎪⎪=⋅=⎨⎪+-≤≤∈⎪⎩,所以当125x ≤<,*N x ∈时,100()101f x x x=++在区间[1,10]上单调递减,在区间[10,25)上单调递增,所以当10x =时,()f x 有最小值,且为121;当2530x ≤≤,*N x ∈时,150()149f x x x=+-为单调递减函数,所以当30x =时,()f x 有最小值,且为124,综上,当10x =时,()f x 有最小值,且为121元,所以该商品的日销售收入最小值为121元.10.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x xv x =可以达到最大,并求出最大值(精确到1辆/小时)﹒【答案】(1)()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【解析】当020x ≤≤时,()60v x =;当20200x ≤≤时,设()v x ax b =+,由已知得2000,2060,a b a b +=⎧⎨+=⎩解得132003a b ⎧=-⎪⎪⎨⎪=⎪⎩,故函数()v x 的表达式为()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)依题意并由(1)可得()260,020,()1200,202003x x f x x x x ≤≤⎧⎪=⎨-+<≤⎪⎩,当020x ≤≤时,()f x 为增函数,故当20x =时,其最大值为60×20=1200;当20200x <≤时,()21()100100003f x x ⎡⎤=---⎣⎦,∴当100x =时,()f x 在区间(20,200]上取得最大值1000033333≈,∵3333>1200,∴当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.11.某地空气中出现污染,须喷洒一定量的去污剂进行处理,据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =161,04815,4102x xx x ⎧-≤≤⎪⎪-⎨⎪-<≤⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的㳖度之和,由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(1)若一次喷洒4个单位的去污剂,则去污时间可达几天?(2)若第一次喷洒2个单位的去污剂,6天后再喷洒(14)a a ≤≤个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值.(精确到0.11.4)【答案】(1)8天(2)1.6【解析】(1)解:∵一次喷洒4个单位的净化剂,∴浓度()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-≤⎩<,则当04x ≤≤时,由64448x-≥-,解得0x ≥,∴此时04x ≤≤.当410x <≤时,由2024x -≥,解得8x ≤,∴此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天.(2)解:设从第一次喷洒起,经()610x x ≤≤天,浓度()()()1161625114428614a g x x a x a x x =-+-⎡⎤⎛⎫⎢⎥ ⎪=-+-----⎝⎭⎣⎦,∵[]1448x -∈,,而14a ≤≤,∴8[]4,,故当且仅当14x -=时,y有最小值为4a -.令44a -≥,解得244a -≤,∴y a的最小值为24 1.6-.12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益()f x 与投资额x 成正比,其关系如图1;投资股票等风险型产品的年收益()g x 与投资额x 的算术平方根成正比,其关系如图2.(1)分别写出两种产品的年收益()f x 和()g x 的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?【答案】(1)()()108f x x x =≥,())0g x x =≥(2)投资债券类产品16万元,股票类投资为4万元,收益最大为3万元【解析】(1)依题意:可设()()10f x k x x =≥,())0g x k x =≥,∵()1118f k ==,()2112g k ==,∴()()108f x x x =≥,())0g x x =≥.(2)设投资债券类产品x 万元,则股票类投资为()20x -万元,年收益为y 万元,依题意得:()()20y f x g x =+-,即)0208x y x =+≤≤,令t =则220x t =-,0,t ⎡∈⎣,则22082t t y -=+,0,t ⎡∈⎣()21238t =--+,所以当2t =,即16x =万元时,收益最大,max 3y =万元.13.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供x ([]0,10x ∈)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅- ⎪+⎝⎭(万件),其中k 为工厂工人的复工率([]0.5,1k ∈),A 公司生产t 万件防护服还需投入成本20950x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.8k =时,政府补贴多少万元才能使A 公司的防护服利润达到最大?并求出最大值.【答案】(1)3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈(2)当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元【解析】(1)由题意得()802095030820y x t x t t x =+-+-=--1236030682018082044k k x k x x x ⎛⎫=---=--- ⎪++⎝⎭,即3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈.(2)由0.8k =,得288288144820812444y x x x x =---=--+++,因()28828888432248326444x x x x +=++-≥⨯-=++,当且仅当2x =时取等号,所以6412460y ≤-+=.故当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元.14.已知函数()()21322m f x m m x -=-+是幂函数.(1)求函数()f x 的解析式;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)判断函数()f x 在()0,∞+上的单调性,并证明你的结论.【答案】(1)()2f x x -=;(2)函数()f x 为偶函数;(3)()f x 在()0,∞+上单调递减,证明见解析.(1)因为函数()()21322m f x m m x -=-+是幂函数,则2221m m -+=,解得1m =,故()2f x x -=.(2)函数()2f x x -=为偶函数.证明如下:由(1)知()2f x x -=,其定义域为{}0x x ≠关于原点对称,因为对于定义域内的任意x ,都有()()()()222211f x x x f x xx ---=-====-,故函数()2f x x -=为偶函数.(3)()f x 在()0,∞+上单调递减.证明如下:在()0,∞+上任取1x ,2x ,不妨设120x x <<,则()()221212221211f x f x x xx x ---=-=-()()2221212122221212x x x x x x x x x x -+-===,()12,0,x x ∈+∞且12x x <,222121120,0,0x x x x x x ∴-<+>>,()()12f x f x >()f x ∴在()0,∞+上单调递减.。

一次函数、二次函数、幂函数模型的应用举例

一次函数、二次函数、幂函数模型的应用举例

一次函数、二次函数、幂函数模型的应用举例一、选择题(每小题5分,共25分)1.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y(g/m2)与大气压强x(kPa)成正比例函数关系.当x=36kPa时,y=108g/m3,则y与x的函数解析式为( )A.y=3x(x≥0)B.y=3xC.y=x(x≥0)D.y=x【解析】选A.由题意设y=kx(k≠0),将(36,108)代入解析式可得k=3,故y=3x,考虑到含氧量不能为负数,所以x≥0.【补偿训练】一个矩形的周长是40,则矩形的长y关于宽x的函数解析式为( ) A.y=20-x(0<x<10) B.y=20-2x(0<x<20)C.y=40-x(0<x<10)D.y=40-2x(0<x<20)【解析】选A.因为矩形的周长是40,所以2x+2y=40,则y=20-x(0<x<10).2.(优质试题·重庆高一检测)甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人速度相同D.甲先到达终点【解析】选D.由图象可知甲、乙两人一起出发,甲的速度比乙的速度快,甲先到达终点.3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606万元B.45.6万元C.45.56万元D.45.51万元【解析】选 B.依题意可设甲销售x辆,则乙销售(15-x)辆,所以总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(x≥0,且x∈N),所以当x=10时,S 有最大值为45.6(万元).【补偿训练】某电子产品的利润y(元)关于产量x(件)的函数解析式为y=-3x2+120x,要使利润获得最大值,则产量应为件.【解析】由二次函数关系式y=-3x2+120x=-3(x-20)2+1200可知当x=20时y取得最大值.答案:204.(优质试题·绍兴高一检测)某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( )A.15B.40C.25D.130【解析】选C.令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25.【补偿训练】国家对出书所得稿费纳税进行如下规定:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,则这个人的稿费为( )A.3818元B.5600元C.3800元D.3000元【解析】选C.设稿费为x元时,纳税y元,则由题意得y==由0.14x-112=420,解得x=3800.由0.11x=420,解得x=3818(舍去).5.(优质试题·衡阳高一检测)“弯弓射雕”描述了游牧民族的豪迈气概.当弓箭手以每秒a米的速度从地面垂直向上射箭时,t秒后的高度x米可由x=at-5t2确定.已知射出2秒后箭离地面高100米,则弓箭能达到的最大高度为( ) A.160米 B.170米 C.180米 D.190米【解析】选C.由x=at-5t2且t=2时,x=100,解得a=60.所以x=60t-5t2.由x=-5t2+60t=-5(t-6)2+180,知当t=6时,x取得最大值为180,即弓箭能达到的最大高度为180米.二、填空题(每小题5分,共15分)6.某企业生产一种机器的固定成本(即固定投入)为0.6万元,但每生产100台时,又需可变成本(即另增加投入)0.25万元,市场对该机器的需求量为1000台,销售收入(单位:万元)函数为:R(x)=5x-x2(0≤x≤10),其中x是产品的数量(单位:百台),则利润表示为产量的函数为.【解析】由题意得总成本为0.6+0.25x,从而利润为f(x)=5x-x2-(0.6+0.25x)=-x2+4.75x-0.6(0≤x≤10).答案:f(x)=-x2+4.75x-0.6(0≤x≤10)7.(优质试题·漳州高一检测)为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系为y=(a为常数)其图象如图.根据图中提供的信息,则从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的解析式为.【解析】设0≤t≤时,y=kt,将(0.1,1)代入得k=10,当t>时,又将(0.1,1)代入y=中,得a=,所以y=答案:y=8.某企业生产的新产品必须先靠广告来打开销路.该产品的广告效应应该是产品的销售额与广告费之间的差.如果销售额与广告费的算术平方根成正比,根据对市场进行抽样调查显示:每付出100元的广告费,所得的销售额是1000元.问该企业应该投入元广告费,才能获得最大的广告效应.【解析】设销售额为y元,广告费为x元,因为销售额与广告费的算术平方根成正比,得y=k,依题意,得1000=k,得k=100,所以广告效应f(x)=100-x=-(-50)2+2500,所以当x=2500时,f(x)max=2500.答案:2500三、解答题(每小题10分,共20分)9.(优质试题·衡阳高一检测)为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm) 40.0 37.0桌子高度y(cm) 75.0 70.2(1)请你确定y与x的函数解析式(不必写出x的取值范围).(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么? 【解析】(1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数解析式为y=kx+b(k≠0).将符合条件的两套课桌椅的高度代入上述函数解析式,得所以所以y与x的函数解析式是y=1.6x+11. (2)把x=42代入(1)中所求的函数解析式中,有y=1.6×42+11=78.2.所以给出的这套桌椅是配套的.10.(优质试题·龙岩高一检测)某家庭拟进行理财投资,根据预测,投资债券等稳健型产品的一年收益与投资额成正比.其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位均为万元)(1)分别写出两种产品的一年收益与投资额的函数关系.(2)该家庭现有20万元资金,拟全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?【解析】(1)设投资债券类产品的函数关系为f(x)=k1x,投资股票类产品的函数关系为g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元.则投资股票类产品(20-x)万元.依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.答:投资债券类产品16万元,则投资股票类产品4万元时,收益最大,为3万元.【补偿训练】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)满足关系y=-x+120.(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(2)若该商场获得利润不低于500元,试确定销售单价x的范围.【解题指南】(1)确定销售利润,利用配方法求最值.(2)利用该商场获得利润不低于500元,建立不等式,即可确定销售单价x的范围.【解析】(1)由题意,销售利润为W=(-x+120)(x-60)=-x2+180x-7200=-(x-90)2+900,因为试销期间销售单价不低于成本单价,且获利不得高于45%,则-(x-90)2+900≤0.45×60(-x+120),所以60<x≤87,所以当x=87时,利润最大,最大利润是891元.(2)因为该商场获得利润不低于500元,所以(x-60)(-x+120)≥500,所以70≤x≤110,由(1)知60<x≤87,所以70≤x≤87,所以70≤x≤87时,该商场获得利润不低于500元.答:(1)当x=87时,利润最大,最大利润是891元.(2)该商场获得利润不低于500元,销售单价x的范围为[70,87].(20分钟40分)一、选择题(每小题5分,共10分)1.(优质试题·鄂州高一检测)某车站有快慢两种列车,始发站距终点站7.2km,慢车到达终点站需16min,快车比慢车晚发车3min,且匀速行驶10min后到达终点站,则快车所行驶路程y关于慢车行驶时间x的函数解析式是( )A.y=B.y=C.y=D.y=【解析】选C.x的取值范围为[0,16],当0≤x≤3时,快车还未发车,3<x≤13时,快车的速度0.72千米每分钟,y=0.72(x-3),13<x≤16时,快车已到达终点站,y 始终不变为7.2.故函数解析式为y=【补偿训练】已知A,B两地相距150千米,某人开汽车以60千米每小时的速度从A地到达B地,在B地停留1小时后再以50千米每小时的速度返回A地,则汽车离开A地的距离x关于时间t(小时)的函数解析式是( )A.x=60B.x=60t+50tC.x=D.x=【解析】选D.显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数,选D.2.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据,根据函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【解析】选B.由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数p=at2+bt+c的图象上,所以解得a=-0.2,b=1.5,c=-2,所以p=-0.2t2+1.5t-2=-0.2+,因为t>0,所以当t==3.75时,p取最大值,故此时的t=3.75分钟为最佳加工时间.二、填空题(每小题5分,共10分)3.某电脑公司优质试题年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计优质试题年经营总收入要达到1690万元,且计划从优质试题年到优质试题年每年经营总收入的年增长率相同,则优质试题年预计经营总收入为万元.【解析】设从优质试题年到优质试题年每年经营总收入的年增长率为x.由题意,得优质试题年经营总收入为=1000(万元),则有1000(1+x)2=1690.解得x=0.3,故优质试题年预计经营总收入为1000(1+0.3)=1300(万元).答案:13004.(优质试题·安阳高一检测)将进货单价为8元/个的商品按10元/个销售时,每天可卖出100个,若此商品的销售单价每上涨1元,日销量就减少10个,为了获取最大利润,此商品的销售单价应定为.【解析】设销售单价应再涨x元/个,则实际销售单价为(10+x)元,此时日销售量为(100-10x)个,每个商品的利润为(10+x)-8=(2+x)(元),所以总利润y=(2+x)(100-10x)=-10x2+80x+200=-10(x-4)2+360(0≤x<10,且x∈N),。

第二章函数模型及其应用

第二章函数模型及其应用
[理 要 点]
一、三种增长型函数增长速度的比较
在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1),y
=xn(n>0)都是 函数,但它们增的
不同.增随长着速x度的
增大,y=ax(a>1)的增长速度越来越 ,会超过并远快远大
于y=xn(n>0)的增长速度;而y=logax(a>1)的增长速度则会
例4.求 3 3 的近似值。(精确度0.1)
解: x=3 3
x3 3
x3 3 0 再利用二分法求近似根
解:(1)每次购买原材料后,当天用掉的400公斤原材料不 需要保管,第二天用掉的400公斤原材料需保管1天,第三 天用掉的400公斤原材料需保管2天,第四天用掉的400公 斤原材料需要保管3天,…,第x天(也就是下次购买原材料 的前一天)用掉最后的400公斤原材料需保管(x-1)天. ∴每次购买的原材料在x天内的保管费用: y1=400×0.03×[1+2+3+…+(x-1)]=6x2-6x.
不改变本题的条件下,材料厂家有如下优惠条件:若一 次购买不少于4 800公斤,每公斤按9折优惠,问该工厂 是否可接受此条件?
解:购买一次原材料平均每天支付总费用为 f(x)=1x(6x2-6x+600)+1.5×400×0.9=60x0+6x +534(x≥12), f′(x)=-6x020+6=6x2-x2600, 当 x≥10 时,函数 f(x)为增函数. f(x)min=f(12)=656, 而 714>656,故该厂可接受此条件.
解:(1)1年后该城市人口总数为 y=100+100×1.2%=100×(1+1.2%). 2年后该城市人口总数为 y=100×(1+1.2%)+100×(1+1.2%)×1.2% =100×(1+1.2%)2. 3年后该城市人口总数为 y=100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)3. …

《函数模型的应用实例》课件

《函数模型的应用实例》课件

11
12
日均销售量/桶
480 440 400 360 320 280 240
请根据以上数据作出分析,这个经营部怎样定价才能 获得最大利润? 分析:①由表中信息可知 销售单价每增加1元,日均销售量 就减少40桶. ②利润怎样产生的? 利润=收入-成本 收入=售价 销售量
解:设在进价基础上增加x元后,日均经营利润为y元, 则有日均销售量为:Βιβλιοθήκη 函数模型的应用实例 应用实例
(2) 假设这辆汽车的里程表在汽车行驶这段路程前 的读数为2004km,试建立行驶这段路程时汽车里程表 读数s km与时间t h的函数解析式,并作出相应的图象。 v /(km/h ) 解:根据图3.2-7,有 50t+2004 0≤t<1 90 80 80(t-1)+2054 1≤t<2 70 60 2≤t < 3 50 S = 90(t-2)+2134 40 75(t-3)+2224 3≤t<4 30
58796 60266
62828 64563
函数模型的应用实例 应用实例
函数模型的应用实例例4实际数据与计算数据对比
序号 年份 人数/万人 y=55196e0.0221
t
0 1950 55196 55196
1 1951 56300 56429
2 1952 57482 57690
3 1953
4 1954
65(t-4)+2299 4≤t<5
20 10
1 2 3 4 5 t/h
函数模型的应用实例 应用实例
(2) 假设这辆汽车的里程表在汽车行驶这段路程前的 读数为2004km,试建立行驶这段路程时汽车里程表读 数s( km)与时间t (h)的函数解析式,并作出相应的图象。 s 解:根据图3.2-7,有

【高中数学】函数模型及其应用

【高中数学】函数模型及其应用

函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例 课件
2a
(3)在幂函数模型的解析式中, α的正负会影响函数的单调 性.( )
提示:(1)正确.k>0时y随x的增大而增大;k<0时y随x的增 大而减小. (2)错误.自变量的取值必须与实际结合,使得函数有意义才可 以. (3)正确.当a>0,α>0时,函数的图象在第一象限内是上升的, 在(0,+∞)上为增函数;当a>0,α<0时,函数的图象在第一象 限内是下降的,在(0,+∞)上为减函数. 答案:(1)√ (2)× (3)√
2.设利润为y元,由已知设n=kx+b(k<0),

300k 225k
b∴
b
0, 75,
k 1, b 300,
∴n=-x+300,∴y=-(x-300)(x-100)
=-(x-200)2+10 000,x∈(100,300],
∴x=200时,ymax=10 000,即商场要获取最大利润,羊毛衫 的标价应定为每件200元.
【互动探究】题2中,若通常情况下,获取最大利润只是一种 “理想结果”,如果商场要获得最大利润的75%,那么羊毛衫 的标价为每件多少元? 【解析】由题2解析得,-(x-300)(x-100)=10 000×75%, ∴x2-400x+37 500=0, ∴(x-250)(x-150)=0,∴x1=250,x2=150, 所以当商场以每件150元或250元出售时,可获得最大利润的 75%.
【知识点拨】 1.函数模型的分类及其建立 (1)第一类是确定的函数模型.这类应用题提供的变量关系是确 定的,是以现实生活为原型设计的.求解时一般按照以下几步 进行: ①第一步,阅读理解,认真审题. ②第二步,引进数学符号,建立函数模型. ③第三步,利用函数知识,如单调性,最值等求解. ④转译成具体问题作答.

4.5.3 函数模型的应用-学生版

4.5.3 函数模型的应用-学生版

1.常见函数模型题型一一次函数与二次函数模型的应用例1某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?跟踪训练一1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶赠一个茶杯;②按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?题型二分段函数模型的应用例2某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?跟踪训练二1.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(单位:百台),其总成本为G(x)(单位:万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)=假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本).(2)甲厂生产多少台新产品时,可使盈利最多?题型三指数或对数函数模型的应用例3一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?跟踪训练三1.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v(单位:m/s),鲑鱼的耗氧量的单位数为Q,研究中发现v与log3成正比,且当Q=900时,v=1.(1)求出v关于Q的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s时耗氧量的单位数;(3)一条鲑鱼要想把游速提高1 m/s,其耗氧量的单位数应怎样变化?例4某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。

函数模型及其应用

函数模型及其应用

[通关练习] 1.某公司为确定下一年度投入某种产 品的宣传费,需了解年宣传费 x(单位: 千元)对年销售量 y(单位:t)的影响. 根 据近 8 年的年宣传费 xi 和年销售量 yi(i =1,2,…,8)数据得到下面的散点图.则下列哪个作为年销 售量 y 关于年宣传费 x 的函数模型最适合( A.y=ax+b C.y=a· bx B.y=a+b x D.y=ax2+bx+c )
答案:A
)
B.y=100 ln x D.y=100· 2x
(教材习题改编)一根蜡烛长 20 cm, 点燃后每小时燃烧 5 cm, 燃烧时剩下的高度 h(cm)与燃烧时间 t(h)的函数关系用图象表示 为图中的( )
答案:B
甲、乙两人在一次赛跑中,从同一地点出发,路程 S 与时间 t 的函数关系如图所示,则下列说法正确的是( )
增函数 ________ 越来越快 __________
增函数 ________ 越来越慢 __________
增函数 ________
相对平稳 随 n 值变化而 不同
随 x 值增大, 随 x 值增大,
y轴 接 图象与____ x轴 接 图象的变化 图象与____
近平行 近平行
判断正误(正确的打“√”,错误的打“×”) (1)幂函数增长比直线增长更快.( × ) (2)不存在 x0,使 ax <xn 0 <logax0.( × )
第二章
函数概念与基本初等函数
第9讲
函数模型及其应用
1.几种常见的函数模型 函数模型 一次函数模型 二次函数模型 指数函数模型 函数解析式 f(x)=ax+b(a,b 为常数,a≠0) f(x)=ax2+bx+c(a,b,c 为常数,a≠0) f(x)=bax+c(a,b,c 为常数,a>0 且 a≠1, b≠0)

322函数模型应用举例

322函数模型应用举例
复习引入
1.我们所学过的函数有那些? 一次函数、二次函数、指数函数、对数函数以及 幂函数共5种函数. 2.你能分别说出有关这些函数的解析式、函数图 象以及性质吗? 3.你能分别说说这些函数在实际生活中的应用吗?
函数模型应用实例
例3 一辆汽车在某段路程中的行驶速度与时间的关系如图所示: (1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为
6282 8
6456 3
6599 4
6720 7
(2)如果按上表的增长趋势,大约在哪一年我国的人口
达到13亿?
解:(2)将y=130000带入 y 55196 e0.0221t ,t N
由计算器可得:t ≈38.76.
函数模型应用过程
根据收集到的数据,作出散点图,然后通过观察 图象判断问题所适合的函数模型,利用计算器或计 算机的数据拟合功能得出具体的函数解析式,再用 得到的函数模型解决相应的问题,这是函数应用的 一个基本过程.
年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万 5519 5630 5748 5879 6026 6145 6282 6456 6599 6720

并作6 出函0数
y
2
6
55196
e0.60的221图t , t象6.N
8
3
4
7
函数模型应用实例
(4)将数学问题的解代入实际问题进行核查.舍去 不合题意的解,并作答.
函数模型应用框图 用框图表示如下:
知识小结
解决函数应用问题的基本步骤:
例4 人口问题是当今世界各国普遍关心的问题.认识人口 数量的变化规律,可以为有效控制人口增长提供依据.早在 1798年,英国经济学家马尔萨斯就提出了自然状态下的人口

第二章__第十节__函数模型及其应用

第二章__第十节__函数模型及其应用

[归纳领悟] 增长率问题,在实际问题中常可以用指数函数模型y =N(1+p)x(其中N是基础数,p为增长率,x为时间)和幂 函数模型y=a(1+x)n(其中a为基础数,x为增长率,n为 时间)的形式.解题时,往往用到对数运算和开方运算, 要注意用已知表格中给定的值对应求解.
Байду номын сангаас
2 2. 计算机的价格大约每 3 年下降 , 那么今年花 8 100 元买的 3 一台计算机,9 年后的价格大约是________元.
解析:设计算机价格平均每年下降 p%, 1 由题意可得 =(1-p%)3, 3 1 1 ∴p%=1-( ) 3 , 3 ∴9 年后的价格 1 1 13 9 3 y=8 100[1+( ) -1] =8 100×( ) =300(元). 3 3
解:(1)1年后该城市人口总数为 y=100+100×1.2%=100×(1+1.2%). 2年后该城市人口总数为 y=100×(1+1.2%)+100×(1+1.2%)×1.2%
=100×(1+1.2%)2.
3年后该城市人口总数为 y=100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)3. …
1.审题:弄清题意,分清条件和结论,理顺数量关系,
初步选择数学模型;
2.建模:将自然语言转化为数学语言,将文字语言转化 为符号语言,利用数学知识,建立相应的数学模型; 3.求模:求解数学模型,得出数学结论;
4.还原:将数学问题还原为实际问题的意义.
以上过程用框图表示如下:
[题组自测]
1.某林场计划第一年造林10 000亩,以后每年比前一 年多造林20%,则第四年造林 A.14 400亩 C.17 280亩 答案:C B.172 800亩 D.20 736亩 ( )

高中数学3.2.2.1一次函数、二次函数、幂函数模型的应用举例

高中数学3.2.2.1一次函数、二次函数、幂函数模型的应用举例

营这种货物的件数x与按新价让利总额y之间的函数关系

.
【解题指南】1.分析题意,明确各个量之间的关系,建立峰时段 用电量与总电量之间的关系式,弄清利润=(售价-进价)×件数,本题数学模型为一次 函数.
【自主解答】1.选D.①原来电费y1=0.52×200=104(元). ②设峰时段用电量为xkW·h,总电费为y, 则y=0.55x+(200-x)×0.35=0.2x+70, 由题意知0.2x+70≤(1-10%)y1,所以x≤118. 所以这个家庭每月在峰时段的平均用电量至多为118kW·h.
3.2.2 函数模型的应用实例
第1课时 一次函数、二次函数、 幂函数模型的应用举例
类型 一 一次函数模型的应用实例
1.某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段
(早上八点到晚上九点)的电价为0.55元/kW·h,谷时段(晚上九
点到次日早上八点)的电价为0.35元/kW·h.对于一个平均每月
【拓展延伸】解函数应用问题的基本步骤 第一步:阅读理解,审清题意. 读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上, 分析出已知什么,求什么,从中提炼出相应的数学问题. 第二步:引进数学符号,建立数学模型. 一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量, 并用x,y和辅助变量表示各相关量,然后根据问题已知条件,运 用已掌握的数学知识、物理知识及其他相关知识建立关系式, 将实际问题转化为函数问题,即所谓建立数学模型.
件不变的条件下,每裁员一人,则留岗员工每人每年可多创收
0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企
业正常运转所需人数不得少于现有员工的 3 ,设该企业裁员x

专题3.2.2 函数模型的应用实例-

专题3.2.2 函数模型的应用实例-

跟踪知识梳理1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠③指数函数模型:()x f x a b c =+g(0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤:1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。

2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。

3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。

4)将所解得函数问题的解,翻译成实际问题的解答。

在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制.核心能力必练一、选择题1.张先生从家到公司相距150千米,张先生开汽车以60千米/小时的速度从家到公司,在公司停留1小时后再以50千米/小时的速度返回家,把汽车离开家的距离x (千米)表示为时间t (小时)的函数表达式是 ( )A .x =60tB .x =60t +50tC .()()600 2.515050 3.5t t x t t ≤≤⎧⎪=⎨->⎪⎩ D .()()()()600 2.51502.5 3.515050 3.5 3.5 6.5t t x t t t ≤≤⎧⎪=<≤⎨⎪--<≤⎩【解析】根据题意可得从家到达公司共需要2.5小时,所以0 2.5t ≤≤时,60x t =,因为在公司停留1小时,所以当2.5 3.5t <≤时,150x =,因为以50千米/小时的速度返回A 地,共需要3小时,所以3.5 6.5t <≤时,()15050 3.5x t =--,故选D.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10% (相对进货价),则该家具的进货价是 ( ) A .108元 B .105元 C .106元 D .118元 【-=-=-=答案=-=-=-】A【解析】设该家具的进货价为x 元,由题意,得1329.01.1⨯=x ,解得108=x ,即该家具的进货价是108元.3.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积与天数t 的关系式为e kt Va -=⋅,已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为 ( )A .75天B .100天C .125天D .150天 【-=-=-=答案=-=-=-】A4.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林( ) A. 14 400亩 B. 172 800亩 C. 17 280亩 D. 20 736亩 【-=-=-=答案=-=-=-】C【解析】根据题意得()31000010.217280+=(亩),故选C.5.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y =ka x,若牛奶在0℃的冰箱中,保鲜时间约为100 h ,在5℃的冰箱中,保鲜时间约为80 h ,那么在10℃的冰箱中,保鲜时间约为 ( )A .49 hB .56 hC .64 hD .72 h【解析】由题意得05100,80,ka ka ⎧=⎪⎨=⎪⎩得k =100,a 5=45,所以在10℃冰箱中,保鲜时间为100·a 10=()2410064h 5⎛⎫⨯= ⎪⎝⎭,故选C.6.某商人如果将进货单价为8元的商品按每件10元出售,则每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件,如果使得每天所赚的利润最大,那么他应将每件的销售价定为 ( ) A .11元 B .12元 C .13元 D .14元 【-=-=-=答案=-=-=-】D7.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为2121L x x =-+和22L x =,其中x 为销售量(单位:辆).若该公司这两地共销售15辆车,则能获得最大利润为( ) A .120.25万元 B .120万元 C. 90.25万元 D .132万元 【-=-=-=答案=-=-=-】B【解析】设该公司在甲地销售x 辆车,在两地共获得的利润为y 万元,则在乙地销售15x -辆车,由题意可得()22219212151930120.252y x x x x x x ⎛⎫=-++-=-++=--+ ⎪⎝⎭,当9x =或10时,能获得最大利润120万元,故选B.8.已知某一种物质每100年其质量就减少10%.设该物质原来的质量为m ,则过x 年后,该物质的质量y 与x 的函数关系式为 ( )A.1000.9xy m = B.1000.9x y m = C.10010.1xm ⎛⎫- ⎪⎝⎭D.()10010.1x y m =-【-=-=-=答案=-=-=-】B【解析】这种物质第一年质量减少后为m ⋅10019.0,第二年减少后为m ⋅10029.0,…,第x 年质量减少后为m x ⋅1009.0,所以函数关系式为m y x ⋅=1009.0.二、填空题9.一块形状为直角三角形的铁皮,两直角边长分别为40 cm 、60 cm ,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm 2. 【-=-=-=答案=-=-=-】60010.用清水洗衣服,每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要 洗 次. 【-=-=-=答案=-=-=-】4【解析】由题意可知,洗x 次后存留的污垢为314x y ⎛⎫=- ⎪⎝⎭,令3114100x⎛⎫-≤ ⎪⎝⎭,解得13.32lg 2x ≥≈,因此至少要洗4次. 11.把物体放在冷空气中冷却,如果物体原来的温度是 o 1C θ,空气的温度是 o0C θ,min t 后物体的温度 oC θ可由公式()0.24010e tθθθθ-=+-求得.把温度是 o100C 的物体,放在o10C 的空气中冷却mint 后,物体的温度是o40C ,那么t 的值约于 .(保留三位有效数字,参考数据:ln 3取1.099,ln 2取0.693)【-=-=-=答案=-=-=-】4.58【解析】将401010001===θθθ,,代入公式()0.24010e t θθθθ-=+-可得,0.241e 3t -=,解得584243..ln≈=t.三、解答题12.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()x x*∈N件.当20x≤时,年销售总收入为()233x x-万元;当20x>时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,(1)求y(万元)关于x(件)的函数关系式;(2)该工厂的年产量为多少件时,所得年利润最大?并求出最大值.(年利润=年销售总收入−年总投资)【-=-=-=答案=-=-=-】(1)()232100,020,160,20x x xy xx x*⎧-+-<≤=∈⎨->⎩N(2)16件,156万元13.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?【-=-=-=答案=-=-=-】(1)50.1,0151.52log(14),15x xyx x<≤⎧=⎨+->⎩(2)他的销售利润是39万元【解析】(1)由题意,得50.1,015,1.52log(14),15.x xyx x<≤⎧=⎨+->⎩(2)∵(]0,15x∈时,0.1 1.5x≤,又5.5 1.5>,∴15x>,令51.52log (14) 5.5x +-=,解得39x =. 答:老张的销售利润是39万元.14.某家庭进行理财投资,根据长期收益率市场预测,投资A 类产品的收益与投资额成正比,投资B 类产品的收益与投资额的算术平方根成正比.已知投资1万元时,B A ,两类产品的收益分别为0.125万元和0.5万元.(1)分别写出B A ,两类产品的收益与投资额的函数关系式;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?【-=-=-=答案=-=-=-】(1)()()108f x x x =≥,()()0xg x x =≥ (2)投资A 类为16万元,投资B类为4万元,最大收益为3万元【解析】(1)设B A ,两类产品的收益与投资额的函数式分别为()1f x k x =,()2g x k x =. 由已知得()1118f k ==,()2112g k ==,所以()()108f x x x =≥, ()()0xg x x =≥.。

函数模型及其应用

函数模型及其应用

1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【总结提升】 二次函数解析式的三种形式 (1)一般式:f(x)=ax2+bx+c (a≠0) (2)顶点式:f(x)=a(x-h)2+k (a≠0) (3)两点式:f(x)=a(x-x1)(x-x2)(a≠0) 具体用哪种形式可根据具体情况而定.
【变式练习】 某车间有30名木工,要制作200把椅子和100张课 桌,已知制作一张课桌与制作一把椅子的工时之 比为10:7,问30名工人应当如何分组(一组制 作课桌,另一组制作椅子),才能保证最快完成 全部任务?
测,其产品的利润(y)和投资(x)的算术平方根成
正比,其关系如图所示,则该产品的利润表示为
投资的函数解析式f(x)=___54__x_(_x__0_)___.
【解析】由题设可知 f x k x, y
根据图象知f(9)=3.75,
3.75
所以得 3.75 k 9, k 5 ,
4
所以 f x 5 x x 0.
480-40(x-1)=520-40x(桶)
分析表格,
找出规律,
由于x>0,且520-40x>0,即0<x<13,于是可得 设出变量,
y=(520-40x)x-200 =-40x2+520x-200, 0<x<13. 二次函数求
建立关系 式
易知,当x=6.5时,y有最大值. 最值
所以,只需将销售单价定为11.5元,就可获得最大的 利润.
运,据市场分析,每辆客车营运的总利润y万元与
营运年数x(x∈N)的关系为y=-x2+12x-25,则每辆
客车营运多少年可使其营运总利润最大( D )
A.2
B.4
C.5
D.6
【解析】y=-x2+12x-25=-(x-6)2+11,所以x=6时,
可使其营运总利润最大.
3.一民营企业生产某种产品,根据市场调查和预
的读数为2 004 km,试建立行驶这段路程时汽车里
程表读数s km与时间t h的函数解析式,并作出相应
的图象.
五个矩形
解:(1)阴影部分的面积为
的面积和
50 1 80 1 90 1 751 651 360
阴影部分的面积表示汽车在这5小时内行驶的路程 为360km.
(2)根据图示,可以得到如下函数解析式
4
o
9
x
实际问题 抽象概括
实际问 题的解
还原说明
数学 模型
推 理 演 算
数学模 型的解
答:用13名工人制作课桌,17名工人制作椅子最 快完成任务.
1.一辆汽车的行驶路程s关于时间t变化的图象如图
所示,那么图象所对应的函数模型是 ( A )
A.一次函数模型
y
B.二次函数模型
C.幂函数模型
O
x
D.对数函数模型
【解析】观察得图象是一条直线,所以是一次函数模型.
2.某汽车运输公司购买了一批豪华大客车投入客
50t 2 004,
0 t 1,
s
8900((tt
1) 2 2) 2
054, 134,
1 t 2, 2 t 3,
分段
75(t 3) 2 224, 3 t 4,
函数
65(t 4) 2 299, 4 t 5.
这个函数的图象如图所示.
s
2 400 2 300
2 200
函数模型的应用举例
一次函数、二次函数、 幂函数模型的应用举例
到目前为止,我们已经学习了哪些常用函数?
一次函数 y ax b(a 0) 现实中经常遇到一
二次函数 y ax2 bx c (a≠0) 次函数、二次函数、
指数函数 y ax (a 0,且a 1)
对数函数 y loga x(a 0,且a 1)
2 100
2 000
O 12 3
4 5t
【总结提升】 使用数学模型解决实际问题的基本步骤如下:
实 际 问 题 抽象概括 数 学 模 型
推 理 演 算
实际问题 的解
还原说明 数学模型 的解
例2.某桶装水经营部每天的房租、人员工资等固 定成本为200元,每桶水的进价是5元.销售单价 与日均销售量的关系如下表所示:
幂函数型的应用问 题,如何利用我们 所学的知识来解决
幂函数 y xa
呢?
例1.一辆汽车在某段路程中的行驶速率与时间的关系 如图所示
v/(km·h-1)
90 80 70 60
50
40 30 20
10
O
1
2
3
4 5 t/h
(1)求图中阴影部分的面积,并说明所求面积的实
际含义.
(2)假设这辆汽车的里程表在汽车行驶这段路程前
思路分析: 完成全部任务的时间就是两组中需要用时较多的 那组所用的时间,因此要想最快完成任务,两组 所用时间之差应为0或越小越好.
解:设x名工人制作课桌,(30 名x)工人制作椅
子,由题意知,一个工人制作一张课桌与制作一 把椅子用时之比为10:7,则一个工人制作7张桌 子和制作10把椅子所用时间相等,不妨设为1个时 间单位, 那么制作100张课桌所需时间为函数f (x) 100
f (12) 100 1.19 7 12
g(12)
200
1.11
10(30 12)
所以最少时间为 t(12) 1.19,
因为 f (13) 100 1.10,
7 13

g(13)
200
1.18
10(30 13)
所以最少时间为 t(13) 1.18
因为 t(12) t(13)
所以 x 1时3,用时最少.
7x
制作200把椅子所需时间为函数 g(x) 200
10(30 x)
则完成全部任务所需时间 t(x) maxf (x),g(x)
当 f (x) g时(x,)用时最少,
即 t(x) maxf (取x)得,g最(x小)值.
由 100 200
7x 10(30 x)
解得
x 12.5
因为 x N* 判断 t(12) 与 t(13)
销售单价(元) 6 7 8 9 10 11 12 日均销售量(桶) 480 440 400 360 320 280 240
请根据以上数据作出分析,这个经营部怎样定价 才能获得最大利润?
能看出数据变 化的规律吗?
解:根据表可知,销售单价每增加1元,日均销售量就 减少40桶.设在进价基础上增加x元后,日均销售利润 为y元,而在此情况下的日均销售量就为
相关文档
最新文档