2019年高考专题:数列试题及答案
2019年高考数学真题分类汇编专题04:数列(基础题)
2019年高考数学真题分类汇编专题04:数列(基础题)一、单选题(共4题;共8分)1.(2分)设a ,b ∈R ,数列{a n },满足a 1 =a ,a n+1= a n 2+b ,b ∈N *,则( )A .当b= 12 时,a 10>10B .当b= 14 时,a 10>10C .当b=-2时,a 10>10D .当b=-4时,a 10>102.(2分)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .23.(2分)古希腊吋期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618 ,称为黄金分割比例),著名的“断臂维纳斯“便是如此。
此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度也是 √5−12。
若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm4.(2分)记S n 为等差数列 {a n } 的前n 项和。
已知 S 4 =0, a 5 =5,则( )A .a n =2n-5B .a n =3n-10C .S n =2n 2-8nD .S n = 12n 2-2n二、填空题(共6题;共7分)5.(1分)已知数列 {a n }(n ∈N ∗) 是等差数列, S n 是其前n 项和.若 a 2a 5+a 8=0,S 9=27 ,则S 8 的值是 .6.(1分)记S n 为等差数列{a n }的前n 项和,若 a 3=5,a 7=13 ,则 S 10= . 7.(1分)记S n 为等差数列{a n }项和,若a 1≠0,a 2=3a 1,则 S 10S5= 。
8.(2分)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为.9.(1分)记S n为等比数列{a n}的前n项和。
2019年高考理数——数列(解答)
2019年高考理数——数列1.(19全国二理19.(12分))已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.2.(19北京理(20)(本小题13分))已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.3.(19天津理19.(本小题满分14分))设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .4. (19浙江20.(本小题满分15分))设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L5.(19江苏20.(本小满分16分))定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.参考答案:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(Ⅰ)1,3,5,6.(答案不唯一)(Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -L . 由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a L 是{}n a 的长度为p 的递增子列, 所以0p m r a a ≤. 所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --L 是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --L 是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m mm --⨯⨯⨯⨯⨯⨯=<L 1442443个. 与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.3.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )解:()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )解:()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .4.(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N . (2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<L 那么,当1n k =+时,121k k c c c c +++++<<L <==.即当1n k =+时不等式也成立.根据(i )和(ii),不等式12n c c c +++<L 对任意*n ∈N 成立.5.解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.。
2019年高考数学试题分项版—数列(解析版)
2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
2019年高考理科数学分类汇编:数列(解析版)
an 的前 4 项和为 15,且 a5 3a3 4a1 ,
则 a3
A . 16
B.8
C. 4
D.2
【答案】 C
【解析】设正数的等比数列
{ an} 的公比为 q ,则
a1 a1q a1q2 a1 q3 a1q4 3a1q2 4a1
15
,
a1 1,
解得
,
q2
a3
a1q2
4 ,故选 C.
【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键
(Ⅲ)由题设知,所有正奇数都是
an 中的项 .
先证明:若 2m是 an 中的项,则 2m必排在 2m- 1之前( m为正整数) .
假设 2m排在 2m- 1之后 .
设 a p1 , a p2 , , ap m 1 , 2m 1 是 数 列 an 的 长 度 为 m 末 项 为 2m- 1 的 递 增 子 列 , 则
a p1 , a p2 , , a pm 1 , 2m 1,2 m 是数列 an 的长度为 m+1末项为 2m的递增子列 .与已知矛盾 .
再证明:所有正偶数都是 an 中的项 .
假设存在正偶数不是 an 中的项,设不在 an 中的最小的正偶数为 2m.
因为 2k排在 2k- 1之前( k=1, 2, …, m- 1),所以 2k和 2k 1不可能在 an 的同一个递增子列中 .
,如本题,从已知出发,构建 a1, d 的方程组 .
8.【 2019 年高考全国 II 卷理数】已知数列 { an} 和 { bn} 满足 a1=1, b1=0, 4an 1 3an bn 4 ,
4bn 1 3bn an 4 .
(I)证明: { an+bn} 是等比数列, { an–bn} 是等差数列; (II )求 { an} 和{ bn} 的通项公式 .
2019年高考数学真题分类汇编:专题(06)数列(文科)及答案
2019年高考数学真题分类汇编 专题06 数列 文1.【2018高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.2.【2018高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2018,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =;若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =; 故答案为5【考点定位】等差数列的性质.【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.然后利用等差数列性质m n p q m n p q a a a a +=+⇒+=+.2.本题属于基础题,注意运算的准确性.3.【2018高考广东,文13】若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = . 【答案】1【解析】因为三个正数a ,b ,c 成等比数列,所以(2551b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 【考点定位】等比中项.【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =.4.【2018高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=.【考点定位】等差中项和等比中项.【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.5.【2018高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 【考点定位】1.等差数列的定义和通项公式;2.等比中项.【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.6.【2018高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = . 【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算. 7.【2018高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 . 【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 【考点定位】本题主要考查等差数列的定义、通项公式和前n 项和公式的应用.【名师点睛】能够从递推公式判断数列的类型或采用和种方法是解决本题的关键,这需要考生平时多加积累,同时本题还考查了等差数列的基本公式的应用,考查了考生的基本运算能力. 8.【2018高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】(I )设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+. (II )由(I )可得2n n b n =+.所以()()()()231012310212223210b b b b +++⋅⋅⋅+=++++++⋅⋅⋅++()()2310222212310=+++⋅⋅⋅+++++⋅⋅⋅+()()1021211010122-+⨯=+-()112255=-+ 112532101=+=.【考点定位】1、等差数列通项公式;2、分组求和法.【名师点睛】确定等差数列的基本量是1,a d .所以确定等差数列需要两个独立条件,求数列前n 项和常用的方法有四种:(1)裂项相消法(通过将通项公式裂成两项的差或和,在前n 项相加的过程中相互抵消); (2)错位相减法(适合于等差数列乘以等比数列型);(3)分组求和法(根据数列通项公式的特点,将其分解为等差数列求和以及等比数列求和);(4)奇偶项分析法(适合于整个数列特征不明显,但是奇数项之间以及偶数项之间有明显的等差数列特征或等比数列特征).9.【2018高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等. 【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;(II )先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.试题解析:(Ⅰ)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=⨯=. 由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q -=. 10.【2018高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【答案】(Ⅰ)12n n a -=(Ⅱ) 112221n n ++--【解析】(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n q a a .(Ⅱ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .【考点定位】本题主要考查等比数列的通项公式、性质,等比数列的前n 项和,以及利用裂项相消法求和. 【名师点睛】本题利用“若q p n m +=+,则q p n m a a a a =”,是解决本题的关键,同时考生发现1111111n n n n n n n n n n a S S b S S S S S S +++++-===-是解决本题求和的关键,本题考查了考生的基础运算能力. 11.【2018高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122nn n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题. 本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:1n na q a +=(常数),等比数列的通项公式:11n n a a q -=,等差数列的通项公式:()11n a a n d =+-. 12.【2018高考湖北,文19】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.13.【2018高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。
(完整word)2019年高考试题汇编理科数学--数列,推荐文档
解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。
2019年高考数学真题专题12 数列
9.【2019 年高考江苏卷】已知数列{an}(n N*) 是等差数列, Sn 是其前 n 项和.若 a2a5 a8 0, S9 27 ,
则 S8 的值是__________.
【答案】16
【解析】由题意可得:
a2a5 S9
a8 a1 d
9a1
98 2
d
a1
27
4d
a1
7d
0
,
解得:
2
1 ( 1)
5. 8
2
【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的
计算,部分考生易出现运算错误.
一题多解:本题在求得数列的公比后,可利用已知计算
S4
S3
a4
S3
a1q3
3 4
(
1 )3 2
5 8
,
避免繁分式计算.
8.【2019 年高考全国 III 卷文数】记 Sn 为等差数列an的前 n 项和,若 a3 5, a7 13 ,则
若公比 q 1 ,则 a1 a2 a3 a4 a1 1 q 1 q2 0, 但 ln a1 a2 a3 ln a1 1 q q2 lna1 0 ,即 a1 a2 a3 a4 0 ln a1 a2 a3 ,不合题意;
因此 1 q 0, q2 0,1 ,a1 a1q2 a3, a2 a2q2 a4 0 ,故选 B.
,
a10
a92
1 2
10
,
故 A 项正确.
(ⅱ)当 b
1 4
时,令
a1=a=0 ,则
a2
1 4
, a3
1 4
2
1 4
1 2
,
所以
a4
2019年高考数学(理)第六章数列 6-4-2习题及答案
1.若a ,b 是函f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个可适当排序后成等差列,也可适当排序后成等比列,则p +q 的值等于( )A .6B .7C .8D .9答案 D解析 由题可知a ,b 是x 2-px +q =0的两根, ∴a +b =p >0,ab =q >0,故a ,b 均为正. ∵a ,b ,-2适当排序后成等比列, ∴-2是a ,b 的等比中项,得ab =4, ∴q =4.又a ,b ,-2适当排序后成等差列, 所以-2是第一项或第三项,不防设a <b , 则-2,a ,b 成递增的等差列,∴2a =b -2,联立⎩⎪⎨⎪⎧2a =b -2,ab =4,消去b 得a 2+a -2=0, 得a =1或a =-2,又a >0, ∴a =1,此时b =4, ∴p =a +b =5, ∴p +q =9,选D.2.设S n 为等比列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差列,则a n =________.点击观看解答视频答案 3n -1解析 由3S 1,2S 2,S 3成等差列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.3.设S n 是列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案 -1n解析 ∵a n +1=S n +1-S n ,∴S n +1-S n =S n +1S n ,又由a 1=-1,知S n ≠0,∴1S n -1S n +1=1,∴⎩⎨⎧⎭⎬⎫1S n 是等差列,且公差为-1,而1S 1=1a 1=-1,∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.4.设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.点击观看解答视频(1)求列{x n }的通项公式; (2)记T n =x 21x 23…x22n -1,证明:T n ≥14n.解 (1)y ′=(x 2n +2+1)′=(2n +2)x 2n +1,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=nn +1.(2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝⎛⎭⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x 22n -1=⎝⎛⎭⎪⎫2n -12n 2=n -2n2>n -2-1n2=2n -22n =n -1n. 所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得对任意的n ∈N *,都有T n ≥14n.5.设等差列{a n }的公差为d ,点(a n ,b n )在函f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函f (x )的图象上,求列{a n }的前n 项和S n ;(2)若a 1=1,函f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+ 2.解得d =a 8-a 7=2.所以,S n =na 1+n n -2d =-2n +n (n -1)=n 2-3n .(2)函f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n 2n -1.因此,2T n -T n =1+12+122+…+12n -1-n2n=2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.6.已知列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比列,且a 1=2,b 3=6+b 2.(1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记列{c n }的前n 项和为S n .①求S n ;②求正整k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b 2=8,又由a 1=2,得公比q =2(q =-2舍去),所以列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n n+2=(2)n (n +1).故列{b n }的通项为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *). ②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n n +⎣⎢⎡⎦⎥⎤n n +2n -1, 而n n +2n-n +n +2n +1=n +n -2n +1>0,得n n +2n≤+25<1.所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.7.设列{a n }的前n 项和为S n ,若对任意的正整n ,总存在正整m ,使得S n =a m ,则称{a n }是“H 列”.(1)若列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 列”; (2)设{a n }是等差列,其首项a 1=1,公差d <0.若{a n }是“H 列”,求d 的值;(3)证明:对任意的等差列{a n },总存在两个“H 列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.解 (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整n ,总存在正整m =n +1,使得S n =2n =a m .所以{a n }是“H 列”.(2)由已知,得S 2=2a 1+d =2+d .因为{a n }是“H 列”,所以存在正整m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.因为d <0,所以m -2<0,故m =1,从而d =-1. 当d =-1时,a n =2-n ,S n =n-n2是小于2的整,n ∈N *. 于是对任意的正整n ,总存在正整m =2-S n =2-n-n2,使得S n =2-m =a m .所以{a n }是“H 列”.因此d 的值为-1.(3)证明:设等差列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下证{b n }是“H 列”.设{b n }的前n 项和为T n ,则T n =n n +12a 1(n ∈N *).于是对任意的正整n ,总存在正整m =n n +2,使得T n =b m .所以{b n }是“H列”.同可证{c n }也是“H 列”.所以,对任意的等差列{a n },总存在两个“H 列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.。
2019年高考数学真题分类汇编专题18:数列(综合题含解析)
2019年高考数学真题分类汇编专题18:数列(综合题)一、解答题1.(2019•江苏)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} 满足:,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: ,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} ,对任意正整数k,当k≤m时,都有成立,求m的最大值.2.(2019•上海)已知等差数列的公差,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.3.(2019•浙江)设等差数列{a n}的前n项和为S n,a3=4.a4=S3,数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n、S n+2+b n成等比数列(1)求数列{a n},{b n}的通项公式(2)记C n= ,n∈N*,证明:C1+C2+…+C n<2 ,n∈N*4.(2019•天津)设是等差数列,是等比数列,公比大于0,已知,,.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足求.5.(2019•天津)设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.6.(2019•卷Ⅱ)已知是各项均为正数的等比数列,,。
(1)求的通项公式;(2)设,求数列{ }的前n项和。
7.(2019•北京)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(I)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.8.(2019•卷Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,,.(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.9.(2019•北京)已知数列{a n},从中选取第i1项、第i2项…第i m项(i1<i2<…<i m).若a i1<a i2<…<a im.则称新数列a i1,a i2,…,a im.为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(II)已知数列{a n}的长度为P的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n0,若p<q,求证:a m0<a n0;(III)设无穷数列{a n}的各项均为正整数,且任意两项均不相等。
2019年高考数学数列综合专题AB卷及解析
第 1 页 共 19 页单元训练金卷▪高三▪数学卷(A )数列综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列{}n a 的通项公式为()()132nn a n =--,则{}n a 的第5项是( ) A .13 B .13-C .15-D .15【答案】B【解析】求数列{}n a 的某一项,只要把n 的值代入数列的通项即得该项.故选B . 2.记n S 为数列{}n a 的前n 项和.“任意正整数n ,均有0n a >”是“{}n S 为递增数列” 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】∵“0n a >”⇒“数列{}n S 是递增数列”, 所以“0n a >”是“数列{}n S 是递增数列”的充分条件. 如数列{}n a 为1-,0,1,2,3,4,…,显然数列{}n S 是递增数列,但是n a 不一定大于零,还有可能小于等于零, 所以“数列{}n S 是递增数列”不能推出“0n a >”,此卷只装订不密封班级 姓名 准考证号 考场号 座位号∴“0n a >”是“数列{}n S 是递增数列”的不必要条件.∴“0n a >”是“数列{}n S 是递增数列”的充分不必要条件.故答案为A .3.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…,设第n 个图形的边长为n a ,则数列{}n a 的通项公式为( )A .13nB .131n - C .13n D .113n - 【答案】D【解析】本题主要考查了等比数列的判定和等比数列的通项的求法,属于基础题. 4.若数列{}n a 满足12a =,111nn na a a ++=-,则2018a 的值为( ) A .2 B .3-C .12-D .13【答案】B【解析】12a =由题,111n n n a a a ++=-,所以121131a a a +==--,2321112a a a +==--,3431113a a a +==-,454121a a a +==-,故数列{}n a 是以4为周期的周期数列,故20185044223a a a ⨯+===-.故选B . 5.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100- B .100 C .110- D .110【答案】A【解析】由()11nn n a a n ++=-,得211a a +=-,343a a +=-,565a a +=-,…192019a a +=-, ∴n a 的前20A . 6.已知数列{}n a 的前n ,则{}n a 的通项公式n a =( )ABCD第 3 页 共 19 页【答案】B【解析】令1n =,11a =,代入选项,排除A ,D 选项.令2n =,解得212a =-,排除C 选项.故选B . 7.在数列{}n a 中,11a =-,20a =,21n n n a a a ++=+,则5a 等于( ) A .0 B .1- C .2- D .3-【答案】C【解析】因为21n n n a a a ++=+,所以3121a a a =+=-,4321a a a =+=-,5432a a a =+=-.故选C . 8.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65 B .184 C .183 D .176【答案】B【解析】由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184.本题选择B 选项.9.已知数列{}n a 的各项均为整数,82a =-,134a =,前12项依次成等差数列,从第11项起依次成等比数列,则15a =( ) A .8 B .16 C .64 D .128【答案】B【解析】设由前12项构成的等差数列的公差为d ,从第11项起构成的等比数列的公比为q ,由()2212131124d 423d a a a -+===-+,解得1d =或34d =, 又数列{}n a 的各项均为整数,故1d =,所以13122a q a ==, 所以111012213n n n n a n --≤⎧=⎨≥⎩,,,故415216a ==,故选B .10.设数列{}n a 的前n 项和为n S ,若2n S n n =--,则数列()21n n a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前40项的和为( )A .3940B .3940-C .4041D .4041-【答案】D【解析】根据2n S n n =--,可知当2n ≥时,()()221112n n n a S S n n n n n -⎡⎤=-=-------=-⎣⎦,当1n =时,112a S ==-,上式成立,所以2n a n =-,所以()221112(+11n n a n n n n ⎛⎫=-=-- ⎪++⎝⎭),所以其前错误!未找到引用源。
2019年高考真题全国I卷数学(文)真题分类汇编 专题11 数列(2)Word版含解析 10年真题
专题11:数列(2)数列大题:10年8考,若解答题考数列大题,则解三角形题一般考一道小题,若解答题考解三角形大题,则数列一般考两道小题.数列一般考查通项、求和.数列应用题已经多年不考了,总体来说数列的地位已经降低,题目难度小.1.(2019年)记S n 为等差数列{a n }的前n 项和.已知S 9=﹣a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【解析】(1)根据题意,等差数列{a n }中,设其公差为d ,若S 9=﹣a 5,则S 9=()1992a a +=9a 5=﹣a 5,变形可得a 5=0,即a 1+4d =0, 若a 3=4,则d =532a a -=﹣2, 则a n =a 3+(n ﹣3)d =﹣2n +10,(2)若S n ≥a n ,则na 1+()12n n -d ≥a 1+(n ﹣1)d , 当n =1时,不等式成立,当n ≥2时,有2nd ≥d ﹣a 1,变形可得(n ﹣2)d ≥﹣2a 1, 又由S 9=﹣a 5,即S 9=()1992a a +=9a 5=﹣a 5,则有a 5=0,即a 1+4d =0,则有(n ﹣2)14a -≥﹣2a 1, 又由a 1>0,则有n ≤10,则有2≤n ≤10,综合可得:n 的取值范围是{n |1≤n ≤10,n ∈N }.2.(2018年)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =n a n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由;(3)求{a n }的通项公式.【解析】(1)数列{a n }满足a 1=1,na n +1=2(n +1)a n ,则:112n na n a n++=(常数), 由于n n a b n=, 故:12n nb b +=, 数列{b n }是以b 1为首项,2为公比的等比数列.整理得:1112n n n b b q --==,所以:b 1=1,b 2=2,b 3=4.(2)数列{b n }是为等比数列, 由于12n nb b +=(常数); (3)由(1)得:12n n b -=, 根据n n a b n=, 所以:12n n a n -=⨯.3.(2017年)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【解析】(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1=32a q =28q -,a 2=3a q =8q -, 由a 1+a 2=2,28q -+8q-=2,整理得:q 2+4q +4=0,解得:q =﹣2, 则a 1=﹣2,a n =(﹣2)(﹣2)n ﹣1=(﹣2)n ,∴{a n }的通项公式a n =(﹣2)n ;(2)由(1)可知:S n =()111n a q q --=()()21212n ⎡⎤---⎣⎦--=13-[2+(﹣2)n +1],则S n+1=13-[2+(﹣2)n+2],S n+2=13-[2+(﹣2)n+3],由S n+1+S n+2=13-[2+(﹣2)n+2]13-[2+(﹣2)n+3],=13-[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],=13-[4+2(﹣2)n+1]=2×[13-(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.4.(2016年)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(1)求{a n}的通项公式;(2)求{b n}的前n项和.【解析】(1)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=13,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(2)由(1)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以13为公比的等比数列,∴{b n}的前n项和S n=113113n⎛⎫- ⎪⎝⎭-=()3132n--=131223n--⨯.5.(2014年)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{2n na}的前n项和.【解析】(1)方程x2﹣5x+6=0的根为2,3.又{a n}是递增的等差数列,故a 2=2,a 4=3,可得2d =1,d =12, 故a n =2+(n ﹣2)×12=12n +1, (2)设数列{2n n a }的前n 项和为S n , S n =3112123122222n n n n a a a a a --+++⋅⋅⋅++,① 12S n =3112234122222n n n n a a a a a -++++⋅⋅⋅++,② ①﹣②得12S n =123411*********n n n a a d +⎛⎫++++⋅⋅⋅+- ⎪⎝⎭=1111311114222122212n n n -+⎛⎫-+ ⎪⎝⎭+⨯--, 解得S n =11311212222n n n -++⎛⎫+-- ⎪⎝⎭=2﹣142n n ++. 6.(2013年)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=﹣5.(1)求{a n }的通项公式;(2)求数列{21211n n a a -+}的前n 项和. 【解析】(1)设数列{a n }的首项为a 1,公差为d ,则()112n n n S na d -=+. 由已知可得()11330551552a d a d +=⎧⎪⎨-+=-⎪⎩,即11021a d a d +=⎧⎨+=-⎩,解得a 1=1,d =﹣1, 故{a n }的通项公式为a n =a 1+(n ﹣1)d =1+(n ﹣1)•(﹣1)=2﹣n ;(2)由(1)知()()212111111321222321n n a a n n n n -+⎛⎫==- ⎪----⎝⎭. 从而数列{21211n n a a -+}的前n 项和S n =1111111211132321n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎣⎦ =11122112n n n⎛⎫--= ⎪--⎝⎭. 7.(2011年)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n为{a n}的前n项和,证明:S n=12na-;(2)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【解析】(1)∵数列{a n}为等比数列,a1=13,q=13,∴a n=13×113n-⎛⎫⎪⎝⎭=13n,S n=111 113331213n n⎛⎫--⎪⎝⎭=-,又∵12na-=1132n-=S n,∴S n=12na-.(2)∵a n=13n,∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣n log33)=﹣(1+2+…+n)=()12n n+ -,∴数列{b n}的通项公式为:b n=()12n n+ -.8.(2010年)设等差数列{a n}满足a3=5,a10=﹣9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.【解析】(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5,解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n.(2)由(1)知S n=na1+()12n n-d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.。
2019高考数学数列真题汇总(一题不拉)
(2019•新课标Ⅰ理9)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-【解答】解:设等差数列{}n a 的公差为d ,由40S =,55a =,得1146045a d a d +=⎧⎨+=⎩,∴132a d =-⎧⎨=⎩,25n a n ∴=-,24n S n n =-,故选:A . (2019•新课标Ⅰ理14)记n S 为等比数列{}n a 的前n 项和.若113a =,246a a =,则5S = .【解答】解:在等比数列中,由246a a =,得625110q a q a =>,即0q >,3q =,则551(13)1213133S -==-,故答案为:1213(2019•新课标Ⅰ文14)设n S 为等比数列{}n a 的前n 项和.若11a =,334S =,则4S = . 【解答】解:Q 等比数列{}n a 的前n 项和,11a =,334S =,1q ∴≠,31314q q -=-,整理可得,2104q q ++=,解可得,12q =-,则4411151611812q S q --===-+.故答案为:58 (2019•新课标Ⅲ理5文6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A .16B .8C .4D .2【解答】解:设等比数列{a n }的公比为q (q >0),则由前4项和为15,且a 5=3a 3+4a 1,有 {a 1+a 1q +a 1q 2+a 1q 3=15a 1q 4=3a 1q 2+4a 1,∴{a 1=1q =2,∴a 3=22=4,故选:C . (2019•新课标Ⅲ理14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5= .【解答】解:设等差数列{a n }的公差为d ,则 由a 1≠0,a 2=3a 1可得,d =2a 1,∴S 10S 5=10(a 1+a 10)5(a 1+a 5)=2(2a 1+9d)2a 1+4d=2(2a 1+18a 1)2a 1+8a 1=4,故答案为:4.(2019•新课标Ⅲ文14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= . 【解答】解:在等差数列{a n }中,由a 3=5,a 7=13,得d =a 7−a 37−3=13−54=2,∴a 1=a 3﹣2d =5﹣4=1. 则S 10=10×1+10×9×22=100. 故答案为:100.(2019•上海8)已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S = . 【解答】解:由2n n S a +=,①得122a =,即11a =,且112(2)n n S a n --+=…,② ①-②得:11(2)2n n a a n -=….∴数列{}n a 是等比数列,且111,2a q ==.∴5511[1()]31211612S ⨯-==-. 故答案为:3116. (2019•江苏8)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 .【解答】解:设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩.∴818788(5)56162d S a ⨯=+=⨯-+=.故答案为:16.(2019•新课标Ⅱ文18)已知{}n a 是各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解答】解:(1)设等比数列的公比为q ,由12a =,32216a a =+,得22416q q =+,即2280q q --=,解得2q =-(舍)或4q =. ∴11211242n n n n a a q ---==⨯=;(2)2122log 221n n n b a log n -===-,11b =Q ,12(1)1212n n b b n n +-=+--+=,∴数列{}n b 是以1为首项,以2为公差的等差数列,则数列{}n b 的前n 项和2(1)212n n n T n n -⨯=⨯+=. (2019•北京理10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【解答】解:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=,21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--,4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.(2019•北京文16)设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最小值.【解答】解:(Ⅰ){}n a Q 是等差数列,110a =-,且210a +,38a +,46a +成等比数列.2324(8)(10)(6)a a a ∴+=++,2(22)(43)d d d ∴-+=-+,解得2d =,1(1)1022212n a a n d n n ∴=+-=-+-=-.(Ⅱ)由110a =-,2d =,得: 22(1)1112110211()224n n n S n n n n -=-+⨯=-=--,5n ∴=或6n =时,n S 取最小值30-.(2019•新课标Ⅰ文18)记n S 为等差数列{}n a 的前n 项和.已知95S a =-. (1)若34a =,求{}n a 的通项公式;(2)若10a >,求使得n n S a …的n 的取值范围.【解答】解:(1)根据题意,等差数列{}n a 中,设其公差为d ,若95S a =-,则19955()992a a S a a +⨯===-,变形可得50a =,即140a d +=,若34a =,则5322a ad -==-,则3(3)210n a a n d n =+-=-+,(2)若n n S a …,则11(1)(1)2n n na d a n d -++-…,当1n =时,不等式成立,当2n …时,有12ndd a -…,变形可得1(2)2n d a --…,又由95S a =-,即19955()992a a S a a +⨯===-,则有50a =,即140a d +=,则有11(2)24an a ---…,又由10a >,则有10n …,则有210n 剟,综合可得:n 的取值范围是{|110n n 剟,}n N ∈.(2019•天津文18)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.【解答】解:(Ⅰ){}n a 是等差数列,{}n b 是等比数列,公比大于0. 设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,0q >.由题意可得:332q d =+①;23154q d =+②解得:3d =,3q =,故33(1)3n a n n =+-=,1333n n b -=⨯= (Ⅱ)数列{}n c 满足,21,,n n n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,*112222()n n a c a c a c n N ++⋯+∈135212142632()()n n n a a a a a b a b a b a b -=+++⋯+++++⋯+23(1)[36](6312318363)2n n n n n -=+⨯+⨯+⨯+⨯+⋯+⨯2236(13233)n n n =+⨯+⨯+⋯+⨯ 令2(13233)n n T n =⨯+⨯+⋯+⨯①,则231313233n n T n +=⨯+⨯+⋯+②,②-①得:231233333nn n T n +=---⋯-+1133313n n n +-=-⨯+-1(21)332n n +-+=;故2222*112222(21)36936332()2n n n n n n n a c a c a c n T n T n N +-++++⋯+=+=+⨯=∈ (2019•天津理19)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式;()ii 求2*1()ni i i a c n N =∈∑.【解答】解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,依题意有:26626124q d q d =+⎧⎨=+⎩,解得32d q =⎧⎨=⎩,4(1)331n a n n ∴=+-⨯=+,16232n nn b -=⨯=⨯. (Ⅱ)()i Q 数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. 222(1)(1)(321)(321)941n n n n n n n a c a b ∴-=-=⨯+⨯-=⨯-,∴数列22{(1)}n n a c -的通项公式为: 22(1)941n n n a c -=⨯-.(Tex translation failed)12(21)(243)(941)2n n nni i =-=⨯+⨯+⨯-∑2114(14)(3252)914n n n n ---=⨯+⨯+⨯--2112725212n n n --=⨯+⨯--.*()n N ∈.(2019•新课标Ⅱ理19)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.(1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式.【解答】解:(1)证明:1434n n n a a b +=-+Q ,1434n n n b b a +=--;114()2()n n n n a b a b ++∴+=+,114()4()8n n n n a b a b ++-=-+;即111()2n n n n a b a b +++=+,112n n n n a b a b ++-=-+;又111a b +=,111a b -=,{}n n a b ∴+是首项为1,公比为12的等比数列,{}n n a b -是首项为1,公差为2的等差数列;(2)由(1)可得:11()2n n n a b -+=,12(1)21n n a b n n -=+-=-;11()22n n a n ∴=+-,11()22n n b n =-+.全国卷的同学,下面的题不会也没关系:(2019•浙江20)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 【解答】解:(Ⅰ)设数列{}n a 的公差为d ,由题意得11124333a d a d a d +=⎧⎨+=+⎩,解得10a =,2d =,22n a n ∴=-,*n N ∈.2n S n n ∴=-,*n N ∈,Q 数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.212()()()n n n n n n S b S b S b ++∴+=++,解得2121()2n n n n b S S S ++=-,解得2n b n n =+,*n N ∈.(Ⅱ)证明:n c ===,*n N ∈,用数学归纳法证明: ①当1n =时,102c =<,不等式成立;②假设n k =,*()k N ∈时不等式成立,即12k c c c ++⋯+<,则当1n k =+时,121k k c c c c +++⋯++<<==,即1n k =+时,不等式也成立.由①②得12n c c c ++⋯+<,*n N ∈.(2019•北京理20)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【解答】解:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a …,∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.Q 对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -,Q 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.(2019•上海21)数列{}(*)n a n N ∈有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不为等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,使用a ,d ,c 表示12100a a a ++⋯+. 【解答】解:(1)Q 数列{}n a 有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,∴若11a =,2d =,则当2n =时,213a a d =+=,当3n =时,[1i ∈,2],则313a a d =+=或325a a d =+=,当4n =时,[1i ∈,3],则413a a d =+=或425a a d =+=或431()5a a d a d d =+=++=或432()7a a d a d d =+=++= 4a ∴的所有可能的值为:3,5,7;(2){}n a Q 不为等差数列,∴数列{}n a 存在m a 使得1m m a a d -=+不成立Q 对任意[2n ∈,10],存在n i a a d=+,[1i ∈,1]n -;∴存在[1p ∈,2]n -,使m p a a d =+,则对于m q i a a d -=+,[1i ∈,1]n q --,存在p i =,使得m q m a a -=,因此{}n a 中存在具有性质P 的项;(3)由(2)知,去除具有性质P 的数列{}n a 中的前三项,则数列{}n a 的剩余项均不相等,Q 对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,则一定能将数列{}n a 的剩余项重新排列为一个等差数列,且该数列的首项为a ,公差为d ,12100a a a ∴++⋯+97(96)2a a d c ++=+974656a d c =++.(2019•浙江10)设a ,b R ∈,数列{}n a 满足1a a =,21n n a a b +=+,*n N ∈,则( )A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >【解答】解:对于B ,令2104x x -+=,得12x =,取112a =,∴211,,1022n a a =⋯=<,∴当14b =时,1010a <,故B 错误; 对于C ,令220x x --=,得2x =或1x =-,取12a =,22a ∴=,⋯,210n a =<,∴当2b =-时,1010a <,故C 错误;对于D ,令240x x --=,得x =,取1a ,∴2a =,⋯,10n a =<,∴当4b =-时,1010a <,故D 错误; 对于A ,221122a a =+…,223113()224a a =++…,4224319117()14216216a a a =++++=>…,10n n a a +->,{}n a 递增,当4n …时,11132122n n n n aa a a +=+>+=,∴5465109323232a a a a a a ⎧>⎪⎪⎪>⎪⎪⎪⎨⎪⎪⎪⎪⎪>⎪⎩g gg ,∴61043()2a a >,107291064a ∴>>.故A 正确. 故选:A .(2019•江苏20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,求m 的最大值.【解答】解:(1)设等比数列{}n a 的公比为q ,则由245a a a =,321440a a a -+=,得244112111440a q a qa q a q a ⎧=⎪⎨-+=⎪⎩∴112a q =⎧⎨=⎩,∴数列{}n a 首项为1且公比为正数即数列{}n a 为“M -数列”; (2)①11b =Q ,1122n n n S b b +=-,∴当1n =时,11121122S b b b ==-,22b ∴=,当2n =时,212231122S b b b b ==-+,33b ∴=,当3n =时,3123341122S b b b b b ==-++,44b ∴=,猜想n b n =,下面用数学归纳法证明;()i 当1n =时,11b =,满足n b n =,()ii 假设n k =时,结论成立,即k b k =,则1n k =+时,由1122k k k S b b +=-,得1(1)2221(1)222k k k k k k k k b S b k k k S b k++===++--gg ,故1n k =+时结论成立,根据()()i ii 可知,n b n =对任意的*n N ∈都成立.故数列{}n b 的通项公式为n b n =;②设{}n c 的公比为q ,存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m …时,都有1k k k c b c +剟成立,即1k kq k q -剟对k m …恒成立,当1k =时,1q …,当2k =2q ,当3k …,两边取对数可得,1lnk lnk lnq kk -剟对k m …有解,即[][]1max min lnk lnklnq kk -剟,令()(3)lnx f x x x =…,则21()lnxf x x-'=,当3x …时,()0f x '<,此时()f x 递减,∴当3k …时,3[]3max lnk ln k =,令()(3)1lnxg x x x =-…,则211()lnxx g x x --'=,令1()1x lnx x φ=--,则21()x x xφ-'=,当3x …时,()0x φ'<,即()0g x '<,()g x ∴在[3,)+∞上单调递减,即3k …时,[]11min lnk lnm k m =--,则331ln lnm m -…,下面求解不等式331ln lnmm -…,化简,得3(1)30lnm m ln --…,令()3(1)3h m lnm m ln =--,则3()3h m ln m'=-,由3k …得3m …,()0h m '<,()h m ∴在[3,)+∞上单调递减,又由于h (5)3543125810ln ln ln ln =-=->,h (6)36532162430ln ln ln ln =-=-<,∴存在0(5,6)m ∈使得0()0h m =,m ∴的最大值为5,此时13[3q ∈,145].。
2019年全国高考数学·分类汇编 专题19 数列综合(解析版)
专题19数列综合【母题来源一】【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+.【母题来源二】【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16.【命题意图】考查等差、等比数列的基础知识为主,重点考查求数列的通项公式和数列的求和问题. 【命题规律】数列一直是高考的热点,尤其是等差、等比数列的求和公式、错位相减法求和及裂项相消法求和为考查的重点,常与函数、方程、不等式等联系在一起综合考查,考查内容比较全面,解题时要注意基本运算、基本能力的运用,同时注意函数与方程、转化与化归等数学思想的应用. 【方法总结】1.等差数列的判定与证明的方法:(1)定义法:1()n n a a d n +-=∈*N 或1(2,)n n a a d n n --=≥∈⇔*N {}n a 是等差数列;(2)定义变形法:验证是否满足11(2,)n n n n a a a a n n +--=-≥∈*N ;(3)等差中项法:{}122()n n n n a a a n a ++=+∈⇔*N 为等差数列;(4)通项公式法:通项公式形如(,n a pn q p q =+为常数)⇔{}n a 为等差数列; (5)前n 项和公式法:2(,n S pn qn p q =+为常数)⇔{}n a 为等差数列.注意:(1)若判断一个数列不是等差数列,只需找出三项12,,n n n a a a ++,使得122n n n a a a ++≠+即可; (2)如果要证明一个数列是等差数列,则必须用定义法或等差中项法. 2.等比数列的判定与证明常用的方法:(1)定义法:1n na q a +=(q 为常数且0)q ≠⇔数列{}n a 是等比数列. (2)等比中项法:212(,0)n n n n a a a n a ++=⋅∈≠*N ⇔数列{}n a 是等比数列.(3)通项公式法:(0,)nn a tq tq n =≠∈*N ⇔数列{}n a 是等比数列.(4)前n 项和公式法:若数列的前n 项和nn S Aq A =-+(0,0,1)A q q ≠≠≠,则该数列是等比数列.其中前两种方法是证明等比数列的常用方法,而后两种方法一般用于选择题、填空题中. 注意:(1)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. (2)只满足()10n n a qa q +=≠的数列未必是等比数列,要使其成为等比数列还需要10a ≠. 3.数列求和的常用方法(1)公式法:直接利用等差数列、等比数列的前n 项和公式求和;(2)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的;(4)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;(5)分组转化求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 4.数列与函数综合(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形. (2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决.5.数列与不等式综合与数列有关的不等式的命题常用的方法有:比较法(作差作商)、放缩法、利用函数的单调性,其中利用不等式放缩证明是历年命题的热点.6.以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用函数的单调性求解.1.【陕西省西安市2019届高三第三次质量检测数学试题】设数列{}n a 的前n 项和为n S ,已知21n n S a =-. (1)求数列{}n a 的通项公式; (2)若()()11211n n n n a b a a +++=--,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=(2)11121n n T +=--2.(陕西省咸阳市2019届高三模拟检测(三)数学试题)已知数列{}n a 是等差数列,n S 是前n 项和且2651630a a S +==,.(1)求数列{}n a 通项公式; (2)若数列{}n b 满足14n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)2n a n =;(2)1n nT n =+.3.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和.【答案】(1)21,3nn n a n b =+=;(2)()331(2)2n n n -++.4.【重庆市2019届高三学业质量调研抽测(第二次)4月二诊数学试题卷】已知等差数列{}n a 的公差0d ≠,前3项和39S =,且125,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若12n n n b a -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)(23)23nn T n =-⋅+.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学试题】已知数列{}n a 是公比为q 的正项等比数列,{}n b 是公差d 为负数的等差数列,满足23111da a a -=,12321b b b ++=,123315b b b =. (1)求数列{}n a 的公比q 与数列{}n b 的通项公式; (2)求数列{}n b 的前10项和10S . 【答案】(1)11122n q b n ==-,;(2)1050S =.6.【辽宁省丹东市2019届高三总复习质量测试(二)数学试题】数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求数列{}n b 的前n 项和.【答案】(1)2n a n =;(2)21n nT n =+. 7.【内蒙古2019届高三高考一模试卷数学试题】等比数列{}n a 中,1752,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若126m S =,求m . 【答案】(1)2nn a =或()2nn a =--;(2)12.8.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】已知等差数列{}n a 中,374616,0a a a a =-+=, (1)求{}n a 的通项公式n a ; (2)求{}n a 的前n 项和n S .【答案】(1)210n a n =-或210n a n =-+;(2)(9)n S n n =-或(9)n S n n =--.9.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】已知等差数列{}n a 是递增数列,且140a a +=,231a a =-.(1)求数列{}n a 的通项公式; (2)设43n a n b +=,数列{}n b 的前n 项和为n T ,是否存在常数λ,使得1n n T b λ+-为定值?若存在,求出λ的值;若不存在,请说明理由. 【答案】(1)25n a n =-;(2)8.10.【新疆乌鲁木齐2019届高三第二次质量检测数学试题】记公差不为零的等差数列{}n a 的前n 项和为n S ,已知12a =,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)2n a n =;(2)1n n T n =+.。
2019年高考专题:数列试题及答案
2019年高考专题:数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 4.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩,解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 5.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于( )A .66B .132C .-66D .- 32 【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.6.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【解析】因为11,()(1)n n a a n n n *+=+∈+N 所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-,各式相加,可得20191112019a a -=-,201911120192019a -=-,所以,20191a =,故答案为1.7.【2019北京市通州区三模数学试题】设{}n a 是等比数列,且245a a a =,427a =,则{}n a 的通项公式为_______.【解析】设等比数列{}n a 的公比为q ,因为245a a a =,427a =,所以223542427a a a a q q q ====,解得3q =,所以41327127a a q ===, 因此,13-=n n a ,n *∈N .故答案为13-=n n a ,n *∈N .8.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(I )若a 3=4,求{a n }的通项公式;(II )若a 1>0,求使得S n ≥a n 的n 的取值范围. 【解析】(I )设{}n a 的公差为d .由95S a =-得140a d +=.由a 3=4得124a d +=.于是18,2a d ==-. 因此{}n a 的通项公式为102n a n =-.(II )由(I )得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .9.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(I )求{}n a 的通项公式;(II )设2log n n b a =,求数列{}n b 的前n 项和.【解析】(I )设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(II )由(I )得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为21321n n +++-=.10.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【解析】(Ⅰ)设{}n a 的公差为d .因为110a =-, 所以23410,102,103a d a d a d =-+=-+=-+.因为23410,8,6a a a +++成等比数列,所以()()()23248106a a a +=++.所以2(22)(43)d d d -+=-+.解得2d =.所以1(1) 212n a a n d n =+-=-.(Ⅱ)由(Ⅰ)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤.所以,n S 的最小值为630S =-.11.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=. (I )求数列{}n a 与{}n b 的通项公式;(II )求数列{}n n a b +的前n 项和.【解析】(I )由11a b =,42a b =,则4212341223()()12S T a a a a b b a a -=+++-+=+=, 设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =. 所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3nn b =;(II )(21)3n n n a b n +=++, 所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++2(3521)(333)nn =++++++++(321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++.12.【山东省烟台市2019届高三3月诊断性测试数学试题】已知等差数列{}n a 的公差是1,且1a ,3a ,9a 成等比数列.(I )求数列{}n a 的通项公式; (II )求数列{}2n na a 的前n 项和n T . 【解析】(I )因为{}n a 是公差为1的等差数列,且1a ,3a ,9a 成等比数列,所以2319a a a =,即2111(2)(8)a a a +=+,解得11a =.所以1(1)n a a n d n =+-=.(II )12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,2311111112(1)22222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得1231111111222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以111111112211222212n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=-⨯=-- ⎪⎝⎭-.所以222n nnT +=-. 13.【安徽省1号卷A10联盟2019年高考最后一卷数学试题】已知等差数列{}n a 满足636a a =+,且31a -是241,a a -的等比中项.(I )求数列{}n a 的通项公式; (II )设()11n n n b n a a *+=∈N ,数列{}n b 的前项和为n T ,求使1n T <成立的最大正整数n 的值 【解析】(I )设等差数列{}n a 的公差为d ,6336a a d -==,即2d =,3113a a ∴-=+,2111a a -=+,416a a =+, 31a -是21a -,4a 的等比中项,()()232411a a a ∴-=-⋅,即()()()2111+3=16a a a ++,解得13a =.∴数列{}n a 的通项公式为21n a n =+.(II )由(I )得()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭()1112323323n n n ⎛⎫=-= ⎪++⎝⎭, 由()13237n n <+,得9n <. ∴使得1n T <成立的最大正整数n 的值为8.14.【重庆一中2019届高三下学期5月月考数学试题】已知数列{}n a 满足:1n a ≠,()112n n a n a *+=-∈N ,数列}{n b 中,11n n b a =-,且1b ,2b ,4b 成等比数列. (I )求证:数列}{n b 是等差数列;(II )若n S 是数列}{n b 的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【解析】(I )111111111121n n n n n nb b a a a a ++-=-=------1111n n n a a a =-=--, ∴数列}{n b 是公差为1的等差数列;(II )由题意可得2214b b b =,即()()211113b b b +=+,所以11b =,所以1n b =,∴(1)2n n n S +=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 11111212231n T n n ⎛⎫=⨯-+-+⋯+- ⎪+⎝⎭122111nn n ⎛⎫=⨯-=⎪++⎝⎭.。
2019年高考文数——数列(解答)
2019年高考文数——数列1.(19全国一文18.(12分))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.2.(19全国二文18.(12分))已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.3.(19北京文(16)(本小题13分))设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.4.(19天津文(18)(本小题满分13分))设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .参考答案:1.解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n d a n d S -=-=. 由10a >知0d <,故n n S a …等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N 剟.2.解:(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=. 解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为21321n n +++-=L .3.解:(Ⅰ)设{}n a 的公差为d .因为110a =-, 所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列,所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+.解得2d =.所以1(1) 212n a a n d n =+-=-.(Ⅱ)由(Ⅰ)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤.所以,n S 的最小值为630S =-.4.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n nn n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =. (Ⅱ)解:112222n n a c a c a c +++L()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L 123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L ()2123613233n n n =+⨯+⨯++⨯L .记1213233nn T n =⨯+⨯++⨯L ,①则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n n n n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L ()22(21)3692n n n n +*-++=∈N .。
2019年高考专题:数列试题及答案
2019年高考专题:数列1.(2019年高考全国III 卷文数】己知各项均为正数的等比数列伉}的前4项和为15,且% =3%+4%,则为 = ( ) A. 16 B. 8 C・ 4 D. 2【解析】设正数的等比数列{或的公比为q,则,2 3a \ +a l e / + a l (l +阳q/ = +4</)解得一:=4,故选c.0 = 22. [2019年高考全国I 卷文数】记&为等比数列0}的前〃项和.若《=1,53=|,则玷・【解析】设等比数列的公比为0,由已知£ =%+"/ + “* =l + q + q ‘=:,即,广+q + ; = O.44解得g=-:,所以§=竺也=兰车2 — T583.【2019年高考全国III 卷文数】记乩为等差数列{为}的前〃项和,若明=5皿=13,则扁=«i =1 - e 10x9 , 5 . l°x9 - ec d 2,・・Sio = 10〃]+ —-—d = 10x1 + —-—x2 = 100.【解析】设等差数列{外}的公差为/根据题意可得=苗 + 2。
= 5 <«7 = % + 6J = 13 412019年高考江苏卷】已知数列吭}(〃 e ND 是等差数列,&是其前刀项和.若,% + % = 0, S, = 27 ,则g 的值是__________+纯=("i +〃)(《+44) + (% +7d) = O【解析】由题意可得:9x8d = 215M = 9q +2解得::二;,则$8=阿+亍-"=-40+28x2=16.8x75.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{《.}中,%,印是方程F+24x+12=0的两根,则数列{%}的前11项和等于()A.66B.132C.-66D.一32【解析】因为""4;是方程/+24x+12=0的两根,所以%+%=-24,又%+%=-24=2%,所以%=-12,Sn=l^^=¥=T32,故选D.6.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在数列{外}中,=""+奇土?"隹则"顼9 的值为______.【解析】因为所以*一%=时=厂淼%23・..,5一%产顽一昴,各式相加'可得吼M=1一而'5一而=】一郝,所凶“2019=1,故答案为1.7.[2019北京市通州区三模数学试题】设{《}是等比数列,且“2%=的,%=27,则{%}的通项公式为【解析】设等比数列{q}的公比为。
2019年全国高考理科数学试题分类汇编4:数列
一、选择题1 .(2019年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2019年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=•••∈则以下结论一定正确的是( ) A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mqC.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2019年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )【答案】C8 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2019年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】A二、填空题10.(2019年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2019年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的最大正整数n 的值为_____________.【答案】1214.(2019年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2019年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____ 【答案】2019.(2019年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ 20.(2019年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X K K和12,,,n B B B K K 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-= 22.(2019年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- 23.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈K ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=>ΛΘ是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x Λ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322Λ时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n Λ0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n ΛΛ上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ΛΛΛ)()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ΛΛ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2019年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+L 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k 644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S •=,440a S •=,551a S •=,662a S •=,11111a S •-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i Λ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i Λ的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i Λ所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i Λ的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(Λ 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++Λ【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==g g g g g g②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=g g g g g g g g g g g g g g g所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩g g g ;28.(2019年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =. (I)求数列{}n a 的通项公式;(II)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-L 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦L ,不存在这样的正整数m .29.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414n nn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈) (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2019年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0nn S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 是等比数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考专题:数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 4.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=.5.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于( )A .66B .132C .-66D .- 32 【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.6.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【解析】因为11,()(1)n n a a n n n *+=+∈+N 所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-,各式相加,可得20191112019a a -=-,201911120192019a -=-,所以,20191a =,故答案为1.7.【2019北京市通州区三模数学试题】设{}n a 是等比数列,且245a a a =,427a =,则{}n a 的通项公式为_______.【解析】设等比数列{}n a 的公比为q ,因为245a a a =,427a =,所以223542427a a a a q q q ====,解得3q =,所以41327127a a q ===, 因此,13-=n n a ,n *∈N .故答案为13-=n n a ,n *∈N .8.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(I )若a 3=4,求{a n }的通项公式;(II )若a 1>0,求使得S n ≥a n 的n 的取值范围. 【解析】(I )设{}n a 的公差为d .由95S a =-得140a d +=.由a 3=4得124a d +=.于是18,2a d ==-. 因此{}n a 的通项公式为102n a n =-.(II )由(I )得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .9.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(I )求{}n a 的通项公式;(II )设2log n n b a =,求数列{}n b 的前n 项和.【解析】(I )设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(II )由(I )得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为21321n n +++-=.10.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【解析】(Ⅰ)设{}n a 的公差为d .因为110a =-, 所以23410,102,103a d a d a d =-+=-+=-+.因为23410,8,6a a a +++成等比数列,所以()()()23248106a a a +=++.所以2(22)(43)d d d -+=-+.解得2d =.所以1(1) 212n a a n d n =+-=-.(Ⅱ)由(Ⅰ)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.11.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(I )求数列{}n a 与{}n b 的通项公式;(II )求数列{}n n a b +的前n 项和.【解析】(I )由11a b =,42a b =,则4212341223()()12S T a a a a b b a a -=+++-+=+=, 设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =. 所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3nn b =;(II )(21)3n n n a b n +=++, 所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++2(3521)(333)nn =++++++++(321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++.12.【山东省烟台市2019届高三3月诊断性测试数学试题】已知等差数列{}n a 的公差是1,且1a ,3a ,9a 成等比数列.(I )求数列{}n a 的通项公式; (II )求数列{}2n na a 的前n 项和n T . 【解析】(I )因为{}n a 是公差为1的等差数列,且1a ,3a ,9a 成等比数列,所以2319a a a =,即2111(2)(8)a a a +=+,解得11a =.所以1(1)n a a n d n =+-=.(II )12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得1231111111222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以111111112*********n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=-⨯=-- ⎪⎝⎭-. 所以222n nnT +=-. 13.【安徽省1号卷A10联盟2019年高考最后一卷数学试题】已知等差数列{}n a 满足636a a =+,且31a -是241,a a -的等比中项.(I )求数列{}n a 的通项公式; (II )设()11n n n b n a a *+=∈N ,数列{}n b 的前项和为n T ,求使1n T <成立的最大正整数n 的值 【解析】(I )设等差数列{}n a 的公差为d ,6336a a d -==,即2d =,3113a a ∴-=+,2111a a -=+,416a a =+, 31a -是21a -,4a 的等比中项,()()232411a a a ∴-=-⋅,即()()()2111+3=16a a a ++,解得13a =.∴数列{}n a 的通项公式为21n a n =+.(II )由(I )得()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭ ()1112323323nn n ⎛⎫=-= ⎪++⎝⎭, 由()13237n n <+,得9n <. ∴使得1n T <成立的最大正整数n 的值为8.14.【重庆一中2019届高三下学期5月月考数学试题】已知数列{}n a 满足:1n a ≠,()112n n a n a *+=-∈N ,数列}{n b 中,11n n b a =-,且1b ,2b ,4b 成等比数列. (I )求证:数列}{n b 是等差数列;(II )若n S 是数列}{n b 的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【解析】(I )111111111121n n n n n nb b a a a a ++-=-=------1111n n n a a a =-=--, ∴数列}{n b 是公差为1的等差数列;(II )由题意可得2214b b b =,即()()211113b b b +=+,所以11b =,所以1n b =, ∴(1)2n n n S +=,∴12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 11111212231n T n n ⎛⎫=⨯-+-+⋯+- ⎪+⎝⎭122111nn n ⎛⎫=⨯-=⎪++⎝⎭.。