2020中考数学模拟试卷解析版(20200404135907)

合集下载

2020中考数学模拟试卷电子版带答案详解

2020中考数学模拟试卷电子版带答案详解

2020中考数学模拟试题(经典版)可下载打印-K选择题(每小题3分,共30分•下列各小题均有四个答案,其中只有一个是正确的)1. G分)下列各数中,最大的数是()A—丄 B.l CO D—2242・(3分)据统计,今年“五一M长假期间,我市约有26用万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268x 103B.26.8X 104C268x 105DO268* 1063. (3分)如图是将正方体切去一个角后形成的几何体’则该几何体的左视图为()/面A」B.LJ C4. (3分)下列计算正确的是()A&+O3二 B. (x - 3)2-x2 - 95. (3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、屮位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)若关于x的方程肚2+2丫-1=0有两个不相等的实数根,则&的取值范围是()A.A> - IB.^< - 1C.k> - 1 且AHOD.A>・1 且 &工07.(3分)在菱形A BCD中,对角线/IC与3D相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()\.AB = AD B.O4 = OB C.AC = BDD.DC丄BC& (3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A4 % D・寺9.(3分)如图,在已知的中,按以下步骤作图:①分别以B、C为圆心,以大于寺3C的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD = AD y ZB二20。

,则下列结论中错误的是()A.Z CAD = 40°B. ZACD = 70°C.点D为ZUBC 的外心D.ZJCB = 90°10.(3分)在Rt^ABC中,Q为斜边/JB的中点,ZB = 60°, BC = 2cm,动点£从点/出发沿加?向点B运动,动点F从点D出发,沿折线D-C-B运动,两点的速度均为lc加心,到达终点均停止运动,设/E的长为t 心£尸的面积为y,则y与x的图象大致为()二、填空题(每小题3分,共15分)11.(3 分)若®,则*+2x+1 二_________ ・12.(3分)已知反比例函数y =乎,当兀>0时,y随x增大而减小,则刃的取值范围是_______ •13.(3分)不等式组住其:有2个整数解,则实数a的取值范围是______ ・14.(3 分)如图,在RtZVIBC 中,Z/JCB = 90°, ZJ = 30o,AC = 43.分别以点3为圆心,AC, BC的长为半径画弧,交MB于点D, E,则图中阴影部分的面积是_________ ・15. (3分)如图,在菱形ABCD中,ZA = 60°t初二3,点M 为力〃边上一点,AM = 2t点N为RD边上的一动点,沿将ZUMN翻折,点/落在点P处,当点P在菱形的对角线上时,的长度为_____________ ・c三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:令斗(击・兀+1),其中"sin30°+2_,+V4.17.(9分)如图,△/J3C内接于圆。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

2020年中考数学模拟试卷(含答案)

2020年中考数学模拟试卷(含答案)

2020年中考数学模拟试卷一、选择题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,小于﹣3的数是()A.0B.1C.﹣2D.﹣42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()3.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.3x+2y=6xy C.3﹣2=D.=±34.若k≠0,b<0,则y=kx+b的图象可能是()5. 图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.6.3分)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q 7.(3分)已知方程组的解为,则〇、□分别为()A.1,2B.1,5C.5,I D.2,48.(3分)证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程,正确的顺序应是①∵∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④△AOB≌△COD.⑤∴OA=OC,OB=OD()A.②①③④⑤B.②③⑤①④C.②③①④⑤D.③②①④⑤9.((3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.10.(3分)如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积是()A.π﹣2B.π﹣1C.2π﹣4D.不确定11.(2分)在东西方向的海岸线上有A,B两个港口,甲货船从A港沿东北方向以5海里/时的速度出发,同时乙货船从B港口沿北偏西60°的方向出发,2h后相遇在点P处,如图所示.问A港与B港相距____海里.()A.10B.5+5C.10+5D.2012.(2分)下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10﹣x A.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数13.(2分)某市对城区内某一段道路的一侧全部栽上梧桐树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔4米栽1棵,则树苗缺21棵:如果每隔5米栽1棵,则树苗正好用完.设原有树苗x棵,根据题意列方程,正确的是()A.4(x+21﹣1)=5(x﹣1)B.4(x+21)=5(x﹣1)C.4(x+21﹣1)=5x D.4(x+21)=5x14.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABCC的平分线BD;(2)作BC的垂直平分线EF;(3)BD,EF交于点O,则点O即为所求.对于两人的作法,正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对15.(2分)如图,在△ABC中,点I为△ABCC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°16.(2分)如图,已知点A(0,2),B(2,2),C(﹣1,0),抛物线y=a(x﹣h)2+k过点C,顶点M位于第一象限且在线段AB的垂直平分线上.若抛物线与线段AB无公共点,则k的取值范围是()A .0<k <2B .0<k <2或k >C .k >D .0<k <2或k >二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上) 17.(3分)8×21= 。

2020年中考模拟试卷数学试卷及答案共5套精品版

2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2020年中考数学模拟试卷【答案+解析】

2020年中考数学模拟试卷【答案+解析】

2020年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A.﹣20B.+20C.﹣10D.+102.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2C.a6÷a2=a3D.(﹣2a)2=4a23.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2B.3C.4D.55.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数、众数分别为()A.5,5,4B.5,5,5C.5,4,5D.5,4,47.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠D B.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BC D.OA=OB=OC=OD,AC⊥BD8.如图,P A、PB是⊙O的切线,A、B为切点,若∠P=50°,则∠P AB的度数为()A.50°B.60°C.65°D.70°9.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4B.5C.6D.710.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>0二.填空题(满分24分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为分.。

2020中考数学模拟试卷及答案解析

2020中考数学模拟试卷及答案解析

D C BOA 图31B D A C 图1 AB D EC 图4C. D. 2020一、选择题1.下列判断中,你认为正确的是……………………………………………………【 】A .0的绝对值是0B .31是无理数 C .4的平方根是2 D .1的倒数是1-2.方程230x -=的根是………………………………………………………………【 】 A.3x = B.123,3x x ==- C.x =3.下列说法中正确的是……………………………………………【 】 A .“打开电视,正在播放《今日说法》”是必然事件B .要调查人们对“低碳生活”的了解程度,宜采用抽查方式C .数据1,1,1,2,2,3的众数是3D .一组数据的波动越小,方差越大4.如图1,AB ∥CD ,∠A = 40°,∠D = 45°,则∠1的度数为【 】 A .5° B . 40° C .45° D . 85° 5.如图2所示几何体的俯视图是…………………………………【 】6.已知a -b =1,则代数式2b -2a -3的值是…………………………………………【 】A .-1 B .1 C .-5 D .47. 关于x 的方程32mx x -=的解为正实数,则m 的取值范围是……………………【 】 A .m ≥2 B .m >2 C .m ≤2 D .m <2 8. 如图3,AB 是⊙O 的直径,C 是⊙O 上的一点,若BC =6,12x x ==AB =10,OD ⊥BC 于点D ,则OD 的长为…………【 】A .3B .4C .5D .69. 点A (x 1,y 1)、B (x 2,y 2) 在函数12y x=的图象上,若y 1>y 2 ,则 x 1、x 2的大小关系为……………………【 】 A .大于 B .等于 C .小于 D .不确定10.河北省的黄骅冬枣是我省的特产,冬季加工后出售,单价可提高20%,但重量会减少10%.现有未加工的冬枣30千克,加工后可以比不加工多卖12元,设冬枣加工前每千克卖x 元,加工后每千克卖y 元,根据题意,x 和y 满足的方程组是…………【 】A .(120)30(110)3012y xy x =+⎧⎨--=⎩%%B .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%C .(120)30(110)3012y x y x =-⎧⎨--=⎩%%D .(120)30(110)3012y x y x =-⎧⎨+-=⎩%%11.如图4,在△ABC 中,AB =AC ,BC =10,AD 是底边上的高,AD =12,E 为AC 中点,则DE的长为………………………………………………………………【 】 A .6.5 B .6 C .5 D .412.如图5,点P 是菱形ABCD 的对角线AC 上的一个动点,过 N 图2正面 ↗图6点P 作垂直于AC 的直线交菱形ABCD 的边于M 、N 两点. 设 AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的 函数图象大致形状是…………………………………【 】 卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上) 13.分解因式:21a -= .14.已知三角形的两边长为2,5,则第三边的长度可以是 (写出一个即可). 15.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 16.如图6,已知AB 是⊙O 的一条直径,延长AB 至C 点, 使得AC =3BC ,CD 与⊙O 相切,切点为D .若CD =3,则线段BC 的长度等于 .17.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t -1.5t 2.测得飞机着陆后滑行的距 离为600米,则飞机着陆后滑行______秒才能停下来.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分8分)求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中1x =.20.(本小题满分8分)如图8,已知反比例函数y = mx(m 是常数,m ≠0),一次函数y =ax +b (a 、b 为常数,a ≠0),其中一次函数与x 轴,y 轴的交点分别是A (-4,0),B (0,2).(1)求一次函数的关系式;零花钱用途学习资料零食文具它七年级同学最喜欢喝的饮料种类情况统计图八年级同学零花钱最主要用途情况统计图 图10-1 图10-2(2)反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO = 17(O 为坐标原点),求反比例函数的关系式;(3)求点P 关于原点的对称点Q 的坐标,判断点Q 是否在该反比例函数的图象上.21.(本小题满分8分)小亮同学去石家庄展览馆看展览,如图9,该展览馆有2个验票口A 、B (可进出),另外还有2个出口C 、D (不许进).(1)小亮从进入到离开共有多少种可能的进出方式?(要求用列表或树状图) (2)小亮不从同一个验票口进出的概率是多少?22.(本小题满分8分)石家庄28中七(8)班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图10-1、频数分布直方图10-2、表格来描述整理得到的数据.九年级同学完成家庭作业时间情况统计表展览大厅 出口C 出口D验票口A 验票口B 图9(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?求出扇形统计图中“冰红茶”所在扇形圆心角的度数;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)? 23.(本小题满分9分)如图11,△ABC 是等腰三角形,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为3,BE =1,求cos A 的值.24.(本小题满分9分)如图12-1,点C 是线段AB 上一动点,分别以线段AC 、CB 为边,在线段AB 的同侧作正方形ACDE 和等腰直角三角形BCF ,∠BCF =90°,连接AF 、BD . (1)猜想线段AF 与线段BD 的数量关系和位置关系(不用证明). (2)当点C 在线段AB上方时,其它条件不变,如图12-2,(1)中的结论是否成立?说明你的理由.(3)在图12-1的条件下,探究:当点C 在线段AB 上运动到什么位置时,直线AF 垂直平分线段BD ?A B C DF E 图12-1 DE图14-1 25.(本小题满分10分)如图13,已知抛物线y =x 2-2mx +4m -8的顶点为A .(1)当x ≤2时,函数值y 随x 的增大而减小,求m 的取值范围;(2)以抛物线y =x 2-2mx +4m -8的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y =x 2-2mx +4m -8与x 轴交点的横坐标均为整数,求整数..m 的值.26.(本小题满分12分)如图14-1,梯形ABCD 中,∠C =90°.动点E 、F 同时从点B 出发,点E 沿折线BA -AD -DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图14-2所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD =__________cm ,梯形ABCD 的面积=__________cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1 : 3.图13开始进出 B AC DABB C D A13.(1)(1)a a-+; 14.大于3小于7的任意一个数均可; 15.45; 16 17.20;18.左起第45列,上起第14行.三、解答题(本大题共8个小题;共72分)19.解:原式=221212x x xx x+--÷------------------------------2分=12(1)(1)x xx x x++------------------------------------------4分=21x-. ----------------------------------------------6分将1x=代入上式得原式2==.-----------8分20.解:(1)∵一次函数y=ax+b的图象经过A(-4,0)和B(0,2)∴⎩⎪⎨⎪⎧-4a+b=0b=2∴⎩⎪⎨⎪⎧a=12b=2,∴一次函数的关系式为:y=12x+2 .--------------------------2分(2)∵PO=17,AO=4,∴PA=1,∴点P的坐标为(-4,-1),---------------------------------4分把(-4,-1)代入y=mx,解得m=4,∴反比例函数的关系式为y=4x. ------------------------------5分(3)∵PO=17,AO=4,∴PA=1,点P(-4,-1)关于原点的对称点为Q(4,1),-----------------7分满足y=4x,∴点Q在该反比例函数的图象上. ------------------8分21.解法一:用树状图分析如下:-------------------4分∴小张不从同一个验票口进出的概率是:P (小张不从同一个验票口进出)= 6 8 = 34.-------8分22.(1)400(125%25%10%)160⨯---=,360(125%25%10%)144︒︒⨯---=,∴七年级400名同学中最喜欢喝“冰红茶”的人数是160人,冰红茶”所在扇形圆心角的度数为144°.------------------------------4分 (2)买学习资料的频数为:300-75-100-25=100,补图略.----------------6分 (3)1535(150 1.5802120 2.550) 1.8300300x =⨯⨯+⨯+⨯+⨯=≈. ∴九年级300名同学中完成家庭作业的平均时间大约是1.8小时.------------8分23.(1)证明:连结AD 、OD .∵AC 是⊙O 的直径,∴AD ⊥BC .-------------------1分 ∵AB =AC ∴D 是BC 的中点, 又∵O 是AC 的中点 ∴OD ∥AB .-------------------2分∵DE ⊥AB ∴OD ⊥DE ,∴DE 是⊙O 的切线.------------------------------4分 (2)解:由(1)知OD ∥AE ,∠FAE =∠FOD , ∠F =∠F , ∴△FOD ∽△FAE,∴FA FO =AEOD, ---------------------5分 ∴AC FC OC FC ++=BE AB OD -, ∴36FC FC ++=361-, 解得FC =32,∴AF =6+31522=,------------------------7分∴在Rt △AEF 中,cos A =AF AE =AF BEAB -=61152-=23--------9分24.解:(1)AF =BD ,AF ⊥BD .----------------------------------------------2分 (2)答:(1)中的结论仍成立,即AF =BD ,AF ⊥BD .------3分 理由:如图2-1∵四边形ACDE 为正方形,∴∠DCA =90°,AC =CD .∵∠BCF =90°,CF =BC , ∴∠DCA =∠BCF =90°, ∴∠DCA +∠DCF =∠BCF +∠DCF , 即∠ACF =∠DCB ,∴△ACF ≌△DCB , ---------------------5分 ∴AF =BD ,∠CAF =∠CDB . 又∵∠1=∠2,∠CAF +∠1=90°,∴∠CDB +∠2=90°, ∴AF ⊥BD .------------------------6分图2-1(3)探究:当AC =22AB 时,直线AF 垂直平分线段BD .--7分 如图2-2,连接AD ,则AD =2AC .--------------------8分∵直线AF 垂直平分线段BD ,∴AB =AD =2AC ,∴AC =22AB . ---------------------------------10分 25.解:(1)∵y =x 2-2mx +4m -8=( x -m )2+4m -8-m 2, ∴抛物线的对称轴为x =m ,∵当x ≤2时,函数值y 随x 的增大而减小,∴m ≥2 .---------------------------------------2分 (2)根据抛物线和正三角形的对称性,可知MN ⊥y 轴, 设抛物线的对称轴与MN 交于点B ,则AB =3BM , 设M (a ,b ),(m <a ), 则BM =a -m ,又AB =y B -y A =b -(4m -8-m 2)=a 2-2ma +4m -8-(4m -8-m 2=a 2-2ma +m 2=( a -m )2, ∴( a -m )2=3( a -m ),∴a -m =3,--------------5分 ∴BM =3,AB =3,∴S △AMN = 1 2 AB ·2BM = 12×3×2×3=3 3,∴△AMN 的面积是与m 无关的定值.---------------7分(3)令y =0,即x 2-2mx +4m -8=0,解得x =m ± ( m -2)2+4,由题意,( m -2)2+4为完全平方数,令( m -2)2+4=n 2, 即( n +m -2)( n -m +2)=4.∵m ,n 为整数,∴n +m -2,n -m +2的奇偶性相同, ∴⎩⎪⎨⎪⎧n +m -2=2n -m +2=2 或 ⎩⎪⎨⎪⎧n +m -2=-2n -m +2=-2,解得 ⎩⎪⎨⎪⎧m =2n =2 或 ⎩⎪⎨⎪⎧m =2n =-2, 综合得m =2. ----------------------------10分 26.解:(1)2 14;-----------------------2分 (2)当0<t ≤5时,点E 在BA 上运动,如图4-1, 过E 作EG ⊥BC 于G ,过A 作AH ⊥BC 于H .由△EBG ∽△ABH 得EB EG =ABAH, 即t EG =54,∴EG =54t , ∴y =21BF ·EG =21t ·54t =52t 2, 即y =52t 2(0≤t ≤5).---------------6分当7≤t <11时,点E 在DC 上运动,如图4-2,y =21BC ·EC =21×5×(11-t )=-25t +255即y =-25t +255(7≤t <11).------------8分(3)若△EBF 与梯形ABCD 的面积之比为1 : 3,则y =72.-----9分 B CEA DF 图4-1G HB CEA D图4-2 H 图3当0<t ≤5时,得52t 2=72,解得t =2.----------------10分 当7≤t <11时,得-25t +255=72,解得t =485.-----------11分故当t 或485时,△EBF 与梯形ABCD 的面积之比为1 : 3. -------12分。

2020年中考数学模拟试题(含解析)

2020年中考数学模拟试题(含解析)

一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分)
1.(3分)(2020预测•德州)下列计算正确的是()
=3
2.(3分)(2020预测•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()
D
3.(3分)(2020预测•德州)图甲是某零件的直观图,则它的主视图为()
D
4.(3分)(2020预测•德州)第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示

正确的是(
5.(3分)(2020预测•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()
6.
(3分)(2020预测•德州)不等式组
的解集在数
轴上可表示为( )

. C . D .
解不等式组得:

7.(3分)(2020预测•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()
米米2
中,∵=,
=6米,
8.(3分)(2020预测•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()
=(千米
9.(3分)(2020预测•德州)雷霆队的杜兰特当选为2013﹣2020预测赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()
=29
10.(3分)(2020预测•德州)下列命题中,真命题是()
=4=9。

2020初中中考数学模拟试卷试题附答案.doc

2020初中中考数学模拟试卷试题附答案.doc

202 0 中考数学信息试卷2020 中考数学信息试卷9 .25 的平方根是.10.写出一个大于 1 且小于2的无理数.11.太阳的半径约是万千米,用科学记数法表示约是千米.一、选择题(每题 3 分,共24 分)1.6的绝对值等于()A .6B.1 62.下列计算正确的是( )2x x x xx 2x B.C.A.C.235(x)x D.16D. 63 2x x x1y 中,自变量x的取值范围是.x 112.在函数13.分解因式:3 2aab .14.某商原价100元,连续两次涨价后,售价为144 元.若平均增长率为x ,则x = .2 则 215.若 a 2a 3 0, 2016 -2a 4a若.3.一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是()A.长方体 B .正方体 C .圆锥 D .圆柱16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长4.如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC是()为.A. 110 °B. 115 °C. 120 °D. 125 °BA 45°C第16 题第17 题第18 题第4 题第7 题第8 题5.下列说法正确的是()A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7 的众数和中位数都是 5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是,乙组数据的方差是,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π,母线长为4,则它的底面半径为()A.2 B .1 C .3 D .4 17.如图,在半径为 2 的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.18.直线y=-2x-4 与x 轴交于点A,与y 轴交于点B,将线段AB绕着平面内的某个点旋转180°后,得到点C、D,恰好落在反比例函数y=D、C两点横坐标之比为3∶1,则k=.kx的图象上,且三、解答题(本大题共10 小题,共86 分)19.(每题 5 分,共10分)7.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()2B .A.2cm22C .cm232D .3cm2cm2(1)计算:0 18 2sin 45 (2 )312 x(2) 解方程: 23 0x8.八个边长为 1 的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()3 A.y= x53B.y= x49C .y= x10D.y= x20. (每题 5 分,共10分)二、填空题(每题 3 分,共30 分)(1)解不等式组3x 5 15x 1812①②,并写出整数解.(2)化简后选择一个合适的m 的值代入求值:(1 m 1m)2mm 111 23.(8 分)如图,在四边形ABCD 中,AB CD,BF DE,AEB D,CF BD ,垂足分别为E、F .(1)求证:△ABE≌△CDF ;(2)若AC 与BD 交于点O .求证:AO CO .21.(7 分)一只不透明的箱子里共有 3 个球, 把它们的分别编号为1,2,3, 这些球除编号不同外第23 题其余都相同.(1)从箱子中随机摸出一个球, 求摸出的球是编号为 1 的球的概率;(2)从箱子中随机摸出一个球, 记录下编号后将它放回箱子, 搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为 3 的球的概率.24.(8 分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点 D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin ∠ADE= 45,求AE的长。

2020中考数学模拟试题含答案

2020中考数学模拟试题含答案

2020中考数学模拟试题含答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2020年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( )A. 1B. 23C.2D. 3 2. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. ×10B. ×108C. ×109D. ×10104. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2 = 9 B. (x - 2)2 = 9 C. (x + 2)2 = 1D. (x - 2)2 =1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )圆弧 角 扇形 菱形 等腰 A. B. C.(第7题A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为( )A. 3B. 23C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 .三、解答题(本大题8题,共66分,)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3)+(-1)3;(第11题(第12题图) (第17题(第18题°(2)化简:(1 -n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.3121--+x x ≤1, ……①解不等式组: 3(x - 1)<2 x + (第21题图)23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈,cos20°≈,tan20°≈)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低(第23题(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S△MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题(第26题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8;17. (16,1+3); 18. (或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分= n m m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =, …………1分∴这组样本数据的平均数是. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是,∴估计全校1200人参加活动次数的总体平均数是,有×1200 =3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×=, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - = .答:树AB 的高度约为米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ),∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分11。

2020年中考数学模拟试卷(解析版)

2020年中考数学模拟试卷(解析版)
,解得 ,故A品牌足球可享8折,B品牌足球原价;
设购买A,B两品牌足球的总费用为W元,则W=0.8×50a+30(60﹣a)=10a+1800,
∵k=10>0,∴W随x的增大而增大,
∴当a=45时,花费最少,最少费用为:10×45+1800=2250(元).
答:购买A品牌足球45个,B品牌足球15个花费最少,最少费用为2250元.
A. B. C. D.
C【解析】过点D作DG⊥BC的延长线,垂足为G.
由做图痕迹可知,CF为∠BCD的角平分线,
∴∠BCF=∠DCF,∵AD∥BC,∴∠BCF=∠DFC,∴∠DFC=∠DCF,∴DF=DC=4,
∵AB∥CD,∴∠DCG=∠ABC=60°,∴CG=CD·cos60°=2,DG=CD·sin60°= ,
∵OA=OC,∴∠CAO=∠ACO,∴∠CAO+∠GAE=90°,即∠GAO=90°,
∵OA为半径,∴AG为⊙O的切线;
(2)答案为:60°; .提示如下:
①若四边形ABOF为菱形,∴AB=AO,又∵AO=BO,∴△AOB为等边三角形,∴∠ABC=60°,
∴∠ACB=90°-60°=30°,∴∠AEG=∠DEC=90°-30°=60°;
D【解析】∵∠AOC=42°,∴∠BOD=∠AOC=42°,∵OE平分∠BOD,∴∠BOE=21°,∵OF⊥OE,∴∠BOF=90°﹣21°=69°.故选:D.
4.下列运算正确的是( )
A. B. C. D.
D【解析】A、 , 非同类项,无法合并,故此选项不合题意;
B、 = = ,故此选项不合题意;
A.0.3×10﹣10mB.3×10﹣10m
C.0.3×10﹣11mD.30×10﹣11m

精品模拟2020年中考数学模拟试卷解析版

精品模拟2020年中考数学模拟试卷解析版

2020年中考数学模拟试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.(4分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(4分)如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°3.(4分)如图,数轴上表示的解集是()A.x>1B.x≥1C.x<1D.x≤14.(4分)如图,空心圆柱在指定方向上的主视图是()A.B.C.D.5.(4分)直线y=2x﹣4,向()平移2个单位将经过点(4,0).A.上B.下C.左D.右6.(4分)将若干个菱形按如图的规律排列:第1个图形有5个菱形,第2个图形有8个菱形,第3个图形有11个菱形,…,则第10个图形有()个菱形.7.(4分)下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形8.(4分)根据以下程序,当输入x=﹣1时,输出结果为()A.﹣5B.﹣1C.0D.39.(4分)如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交AD,CD于G,F两点,则图中阴影部分的面积为()A.8﹣8﹣πB.4﹣2﹣πC.8﹣8﹣2πD.8+8﹣2π10.(4分)为了方便学生在上下学期间安全过马路,南岸区政府决定在南开(融侨)中学校门口修建人行天桥(如图1),其平面图如图2所示,初三(8)班的学生小刘想利用所学知识测量天桥顶棚距地面的高度.天桥入口A点有一台阶AB=2m,其坡角为30°,在AB上方有两段平层BC=DE=1.5m,且BC,DE与地面平行,BC,DE上方又紧接台阶CD,EF,其长度相等且坡度均为i=4:3,顶棚距天桥距离FG=2m,且小刘从入口A点测得顶棚顶端G的仰角为37°,请根据以上数据,帮小刘计算出顶端G点距地面高度为()m.(结果保留一位小数,参考数据:≈1.73,sin37°≈,cos37°≈,tan37°≈)11.(4分)如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y=过点B且与AC交于点N,如果AN=3CN,S=,那么k△NBC 的值为()A.8B.9C.10D.1212.(4分)若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5B.4C.3D.2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)化学从初三加入学生的课程,同学们对这个新学科非常感兴趣.化学元素中的二价镁离子Mg2+的半径为0.000000000072m,将数据0.000000000072用科学记数法表示为.14.(4分)如图,AB为⊙O的直径,点C为上的一点,且∠BAC=30°,点B为的中点,则∠ABD的度数为.15.(4分)如图,甲、乙两个转盘分别被平均分成4份与3份,每个转盘分别标有不同的数字.转动两个转盘,当转盘停止后,甲转盘指针指向的数字作为m,乙转盘指针指向的数字作为n,则为非负整数的概率为.16.(4分)如图,E为矩形ABCD边AD上一点,连接BE,将△ABE沿BE翻折得到△FBE,连接AF,过F作FH⊥BC于F,若AB=3,FH=1,则AF的长度为.17.(4分)A,C,B三地依次在一条笔直的道路上,甲、乙两车同时分别从A,B两地出发,相向而行,甲车从A地行驶到B地就停止,乙车从B地行驶到A地后立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发的时间t(h)之间的函数关系如图所示,则乙车第二次到达C地时,甲车距B地的距离为km.18.(4分)由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工个包裹.三、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.(10分)(1)计算:|3﹣2|﹣(﹣)﹣2+(π﹣3.14)0+(2)解方程:2x2﹣3x﹣1=020.(10分)化简:(1)(﹣a﹣2b)2﹣a(a+4b)(2)÷(﹣)21.(10分)“学而时习之,不亦乐乎!”,古人把经常复习当作是一种乐趣,能达到这种境界是非常不容易的.复习可以让遗忘的知识得到补拾,零散的知识变得系统,薄弱的知识有所强化,掌握的知识更加巩固,生疏的技能得到训练.为了了解初一学生每周的复习情况,教务处对初一(1)班学生一周复习的时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,一周复习2小时的女生人数占全班人数的16%,一周复习4小时的男女生人数相等.根据调查结果,制作了两幅不完整的统计图(表):初一(1)班女生的复习时间数据(单位:小时)如下:0.9,1.3,1.7,1.8,1.9,2.2,2.2,2.2,2.3,2.4,3.2,3.2,3.2,3.3,3.8,3.9,3.9,4.1,4.2,4.3.女生一周复习时间频数分布表(1)四舍五入前,女生一周复习时间的众数为小时,中位数为小时;(2)统计图表中a=,c=,初一(1)班男生人数为人,根据扇形统计图估算初一(1)班男生一周的平均复习时间为小时;(3)为了激励学生养成良好的复习习惯,教务处决定对一周复习时间四舍五入后达到3小时及以上的全年级学生进行表扬,每人奖励1个笔记本,初一年级共有1000名学生,请问教务处应该准备大约多少个笔记本?22.(10分)初三某班同学小戴想根据学习函数的经验,通过研究一个未学过的函数的图象,从而探究其各方面性质.下表是函数y与自变量x的几组对应值:(1)在平面直角坐标系xOy中,每个小正方形的边长为一个单位长度,描出了以上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象.(2)请根据画出的函数图象,直接写出该函数的关系式y=(请写出自变量的取值范围),并写出该函数的一条性质:.(3)当直线y=﹣x+b与该函数图象有3个交点时,求b的取值范围.23.(10分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元? 24.(10分)如图,在平行四边形ABCD 中,对角线BD ⊥AD ,E 为CD 上一点,连接AE 交BD 于点F ,G 为AF 的中点,连接DG .(1)如图1,若DG =DF =1,BF =3,求CD 的长;(2)如图2,连接BE ,且BE =AD ,∠AEB =90°,M 、N 分别为DG ,BD 上的点,且DM =BN ,H 为AB 的中点,连接HM 、HN ,求证:∠MHN =∠AFB .25.(10分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S 四边形ABCD =S △ABC +S △ADE +S△ABE得:(a +b )2=2×ab +c 2,化简得:a 2+b 2=c 2.实例二:欧几里得的《几何原本》记载,关于x 的方程x 2+ax =b 2的图解法是:画Rt △ABC ,使∠ACB =90°,BC =,AC =|b |,再在斜边AB 上截取BD =,则AD 的长就是该方程的一个正根(如实例二图).请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是 ,乙图要证明的数学公式是 ,体现的数学思想是 ;(2)如图2,若2和﹣8是关于x的方程x2+ax=b2的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上26.(8分)如图,抛物线y=与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8,10),点P为线段BC下方抛物线上的任意一点,过点P作PE∥y轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH 的中点,点N为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.3.解:该数轴表示的解集是x<1,故选:C.4.解:圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.5.解:设平移后直线的解析式为y=2x+b.把(4,0)代入直线解析式得0=2×4+b,解得b=﹣8.所以平移后直线的解析式为y=2x﹣8=2(x﹣2)﹣4,则需要将直线向右平移2个单位,或向下平移4个单位,可使平移后直线过点(4,0),故选:D.6.解:设第n个图形有a n个菱形(n为正整数).观察图形,可知:a 1=5=3+2,a 2=8=3×2+2,a 3=11=3×3+2,a 4=14=3×4+2, ∴a n =3n +2(n 为正整数), ∴a 10=3×10+2=32. 故选:C .7.解:∵两条对角线互相垂直的平行四边形是菱形, ∴A 选项错误∵两条对角线互相平分的四边形是平行四边形 ∴B 选项正确∵两条对角线相等的平行四边形是矩形 ∴C 选项错误∵两条对角线互相垂直且相等的平行四边形是正方形 ∴D 选项错误 故选:B .8.解:把x =﹣1代入得:4﹣(﹣1)2=4﹣1=3>1, 把x =3代入得:4﹣32=4﹣9=﹣5<1, 则输出结果为﹣5. 故选:A .9.解:∵四边形ABCD 是正方形,∴∠ABC =∠ADC =90°,∠GDE =∠FDE =45°, ∵GF 是⊙B 的切线, ∴BD ⊥GF ,∴∠DEG =∠DEF =90°, ∴∠DGE =45°,∠DFE =45°, ∴DG =DF ,GF =2DE ,∴DG =DF =DE ,∵BD =AB =2,∴DE =BD ﹣BE =2﹣2,∴DG =DF =(2﹣2)=4﹣2,S 阴影=S 正方形ABCD ﹣S 扇形BAC ﹣S △DGF=2×2﹣﹣(4﹣2)2=8﹣8﹣π.故选:A.10.解:如图,延长GF交过点A的水平线于J,作BH⊥AJ于H,CK⊥GJ于N,EM⊥GJ于M,DN⊥CK于K.设CD=EF=5k,则FM=DN=4k,EM=CN=3k,BH=AB=1,AH=BH=,∴AJ=+1.5+1.5+6k=+3+6k,GJ=2+8k+1=3+8k,∵tan37°==,∴=,∴k≈0.156,∴GJ=3+8×0.156≈4.3(m),故选:C.11.解:设CN=a,BM=b,则AN=3a,设N(x,3a),B(x+b,2a),则,解得:ax=3,∵N在双曲线y=上,∴k=3ax=3×3=9,故选:B.12.解:不等式组整理得:,由不等式组有解且都是2x+6>0,即x>﹣3的解,得到﹣3<a﹣1≤3,即﹣2<a≤4,即a=﹣1,0,1,2,3,4,分式方程去分母得:5﹣y+3y﹣3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.解:将0.000000000072用科学记数法表示为:7.2×10﹣11.故答案是:7.2×10﹣11.14.解:∵AB为⊙O的直径,∠BAC=30°,∴∠ABC=90°﹣30°=60°,∵点B为的中点,∴,∴∠ABD=∠ABC=60°,故答案为:60°15.解:根据题意画图如下:共有12种等情况数,为非负整数的4种情况数,则为非负整数的概率为=;故答案为:.16.解:设AF与BH交于G,∵将△ABE沿BE翻折得到△FBE,∴BF=AB=3,∵FH⊥BC,∴BH==2,∵四边形ABCD是矩形,∴∠ABC=90°,∴AB∥FH,∴△ABG∽△FHG,∴==3,∴BG=,HG=,∴AG==,∴FG=,∴AF=AG+GF=2,故答案为:2.17.解:由题意得:A地到C地甲走了2个小时,乙走了1个小时,设甲的速度为akm/h,则乙的速度为2akm/h,2a+3a﹣2a=180,a=60,则A、B两地的距离为:2a+4a=6a=360,A、C两地的距离为:2×60=120,乙第二次到达C地的时间为:=4h,360﹣4×60=120(千米),答:则乙车第二次到达C地时,甲车距B地的距离为120km.故答案为:120.18.解:设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,依题意,得:12(x+2)(2y+x)=6×8xy,∴x2+4y﹣2xy+2x=0,∴y===+=+=+3+,∵x是大于5的整数,y是整数,∴x=6,y=6,∴该仓库平时一天加工6×6×8+6×12×8=864(个),故答案为864.三、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.解:(1)原式=3﹣2﹣4+1+2=0;(2)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17>0,则x=,即x1=,x2=.20.解:(1)原式=a2+4ab+4b2﹣a2﹣4ab=4b2.(2)原式=÷[﹣]=÷=•=.21.解:(1)2.2与3.2出现的次数都是3次,都是出现次数最多的数;=2.8.故答案为:2.2、3.2,2.8(2)初一(1)班一周复习2小时的女生人数共8人,即a=8;因为一周复习2小时的女生人数占全班人数的16%,所以该班人数为:8÷16%=50(人)因为该班有女生20人,所以有男生50﹣20=30(人).一周复习4小时的女生有:b=20﹣2﹣8﹣4=6(人)因为该班一周复习4小时的男女生人数相等.所以一周复习4小时的男生占男生人数的百分比为:=20%,即d=20,所以c=100﹣10﹣50﹣20=20.所以男生一周的平均复习时间为:2×50%+1×10%+4×20%+3×20%=2.5(小时)故答案为:8,20,2.5(3)初一(1)班复习时间在三小时及以上的人数有:4+6+6+30×20%=22(人)占该班人数的=44%,教务处该准备笔记本:1000×44%=440(个)答:教务处应该准备大约440个笔记本22.解:(1)(2)当x≤3时,函数为正比例函数,(1,4)带入y=kx,解得k=4,y=4x.当x>3时,函数为反比例函数,(6,6)代入y=,解得k=36,y=.∵当x≤3时,k=4>0,∴随着x增大,y值增大.故答案为:y=,当x≤3时,k=4>0,y随着x的增大而增大.(3)由图象可知:当4<b<9时,会有函数图象有3个交点.23.解:(1)设现场购买每张电影票为x元,网上购买每张电影票为y元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m)[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m2﹣120m=0m(16m﹣120)=0解得m1=0(舍去)m2=7.5答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.24.解:(1)∵BD⊥AD,∴∠ADB=90°,∵G为AF的中点,∴DG=GF,∵DG=DF=1,∴GF=DG=DF=1,∴AF=2,∵AD==,∵BF=3,∴BD=4,∴AB==,∵四边形ABCD是平行四边形,∴CD=AB=;(2)连接DH,HE,∵AD⊥BD,AE⊥BE,∴∠ADB=∠AEB=90°,∵H为AB的中点,∴DH=BH=EH=AH=AB,∵∠ADB=∠AEB=90°,∴A,D,E,B四点共圆,∴∠DHE=2∠DAE,∵AG=DG,∴∠DGF=2∠DAE,∴∠DGF=∠DHE,∴∠GDH=∠HEG,∵AD=BE,∴∠EAB=∠ABD,∵∠EAB=∠AEH,∴∠HBN=∠AEH,∴∠HBN=∠HDM,在△HDM与△HBN中,,∴△HDM≌△HBN(SAS),∴∠BHN=∠DHM,∴∠BHD=∠MHN,∵∠AFB=180°﹣∠BAF﹣∠ABF,∠DHB=180°﹣∠HDB﹣∠HBD,∴∠AFB=∠DHB,∴∠MHN=∠AFB.25.解:(1)如图1中,图甲大正方形的面积=(a+b)2=a2+2ab+b2,图乙中大正方形的面积=a2=(a﹣b)2+b2+2b(a﹣b),即a2﹣b2=(a﹣b)(a﹣b+2b)=(a+b)(a﹣b).甲图要证明的数学公式是完全平方公式,乙图要证明的数学公式是平方差公式,体现的数学思想是数形结合的思想.故答案为:完全平方公式,平方差公式,数形结合的思想.(2)如图2中,作CH⊥AB于H.由题意,AD=2,BC=BD=3,AC=4,∵•AC•BC=•AB•CH,∴CH=,∴BH==,∴DH=BD﹣BH=,∴CD==.(3)如图3中,用4个全等的直角三角形(直角边分别为x,y,斜边为z),拼如图正方形.当x+y是定值时,z最小的时候,值最大,易知当小正方形的顶点是大正方形的中点时,z的值最小,此时x=y,z=x,∴的最大值==.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上26.解:(1)在抛物线y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=6,当x=0时,y=﹣6,∵抛物线y=x2﹣x﹣6与x轴交于A,B(点A在点B左侧),与y轴交于点C,∴A(﹣2,0),B(6,0),C(0,﹣6),∴AB=8,AC=,BC=,在△ABC中,AC2+BC2=192,AB2=192,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵AD∥BC,∴∠CAD=90°,过点D作DL⊥x轴于点L,在Rt△ADL中,DL=10,AL=10,tan∠DAL==,∴∠DAB=30°,把点A(﹣2,0),D(8,10)代入直线解析式,得,解得k=,b=2,∴y AD=x+2,设点E的横坐标为a,EP⊥y轴于点Q,则E(a,a+2),Q(a,0),P(a,a2﹣a﹣6),∴EQ=a+2,EP=a+2﹣(a2﹣a﹣6)=a2+a+8,∴在Rt△AEB中,AE=2EQ=a+4,∴PE+AE=a+4+(a2+a+8)=a2a+12=(a﹣5)2+∴根据函数的性质可知,当a=5时,PE+AE有最大值,∴此时E (5,7),过点E 作EF ⊥CB 交CB 的延长线于点F ,则∠EAC =∠ACB =∠ACF =90°,∴四边形ACFE 是矩形,作点E 关于CB 的对称点E ',在矩形ACFE 中,由矩形的性质及平移规律知,x F ﹣x E =x C ﹣x A ,y E ﹣y F =y A ﹣y C ,∵A (﹣2,0),C (0,﹣6),E (5,7),∴x F ﹣5=0﹣(﹣2),7﹣y F =0﹣(﹣6),∴x F =7,y F =1,∴F (7,1), ∵F 是EE ′的中点,∴,,∴x E ′=9,y E ′=﹣5,∴E '(9,﹣5), 连接AE ',交BC 于点N ,则当GH 的中点M 在E ′A 上时,EN +MN 有最小值,∴AE ′==2,∵M 是Rt △AGH 斜边中点,∴AM =GH =,∴EN +MN =E ′M =2﹣,∴EN +MN 的最小值是2﹣.(2)在Rt △AOC 中,∵tan ∠ACO ==,∴∠AOC =30°,∵KE 平分∠ACB ,∴∠ACK =∠BCK =45°,由旋转知,△CA ′K ′≌△CAK ,∠AC ′A ′=75°, ∴∠OCA ′=75°﹣∠ACO =45°,∠AC ′K ′=45°, ∴OCK ′=90°,∴K ′C ⊥y 轴,△CAK ′是等腰直角三角形, ∴A ′C =AC =4,∴x A ′==2,y A ′=2﹣6,∴A ′(2,2﹣6),∴K ′(4,﹣6),将A ′(2,2﹣6),K ′(4,﹣6),代入一次函数解析式,得,解得k =﹣1,b =4﹣6,∴y A ′K ′=﹣x +4﹣6, ∵CB ∥AD ,∴将点C(0,﹣6),B(6,0)代入一次函数解析式,得,解得k=,b=﹣6,∴y CB=x﹣6,=﹣x+4﹣6和y CB=x﹣6,联立y A′K′得﹣x+4﹣6=x﹣6,∴x=6﹣6,∴直线CB与A′K′的交点横坐标是6﹣6,∵当EP经过A′时,点P的横坐标是2,∴如图2,当2<x P<6﹣6时,重叠部分是轴对称图形;如图3,由于RS的长度为2,由图可看出当x P=2﹣1时,重叠部分同样为轴对称图形;综上,当x P=2﹣1或2≤x P<6﹣6时,矩形RQRS和△A′CK′重叠部分为轴对称图形.。

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷
一.选择题(共6小题,满分18分,每小题3分)
1.﹣2的相反数是()
A.2B.﹣2C .D .﹣
2.计算(﹣a)2•的结果为()
A.b B.﹣b C.ab D .
3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()
A .
B .
C .
D .
4.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图统计图:
则下面结论中不正确的是()
A.新农村建设后,养殖收入增加了一倍
B.新农村建设后,种植收入减少
C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
第1 页共30 页。

2020年中考数学全真模拟试卷含答案(精选4套)

2020年中考数学全真模拟试卷含答案(精选4套)

2020年初中毕业生学业考试数学模拟试卷(一)【说明】1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分100分.3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠.4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.5、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. -2的相反数是( ) A.21 212.“送人玫瑰,手留余香”,年轻的深圳有一批无私奉献的义工,截至2012年7月深圳注册义工达35000人,用科学计数法表示为( )A.3105.3⨯B. 4105.3⨯C. 31035⨯D. 51035.0⨯ 3.下图中既是中心对称图形,又是轴对称图形的是( )A B C D 4. 要摆出如图1所示的几何体,则最少需要( )个正方体. A .6个 个 个 个 5.下列运算正确的是( )俯视图 左视图 图1A.()222y x y x +=+ B.()422xy y x = C.()322xy xy y x =+ D.224x x x =÷6.已知点A ()1,2-+a a 在平面直角坐标系的第四象限内,则α的取值范围为 ( ) A.12<<-a B.12≤≤-a C.21<<-a D.21≤≤-a7.如图2,直线a ∥b ,∠1的度数是( ) ° ° ° °8.从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是( )9.某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A.40560006000+-=x x B.40560006000--=x x C.40560006000++=x xD.40560006000-+=x x 10.下列命题中错误的是( )A.两组对边分别相等的四边形是平行四边形B.正方形对角线相等C.对角线相等的四边形是矩形D.菱形的对角线互相垂直11.如图3,在矩形ABCD 中,动点P 从B 点以秒/1cm 速度出发,沿BC 、CD 、DA 运动到A 点停止,设点P 运动时间为x 秒,ABP ∆面积为y 2cm ,y 关于x 的函数图象如图4所示,则矩形ABCD 面积是( )2cmABC D P图3O2 7 9x5y图4ba1150°图2图512. 如图5,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k 值是( ) D.23 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分.) 13. 分解因式:=+-a a a 36323 .14.如图6,平行四边形ABCD 的周长是18cm ,对角线AC 、BD 相交于点O , 若△AOD 与△AOB 的周长差是5cm ,则边AB 的长是 cm.15. 二次函数6+2-=2x x y 的顶点坐标是 .16.如图7所示,在⊙○中,点A 在圆内,B 、C 在圆上,其中OA=7,BC=18, ∠A=∠B=60°,则tan OBC ∠=______.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()︒--+-+-30sin 201312020131π18.(本题6分)先化简,再求值:121412-+÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x ,其中2=x .图6OCBA图719.(本题7分)“地球一小时(Earth Hour )”是世界自然基金会(WWF )应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30-21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时——你怎么看”为主题对公众进行了调查,主要有4种态度A :了解、赞成并支持 B :了解,忘了关灯 C :不了解,无所谓 D :纯粹是作秀,不支持,请根据图8中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是_________度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有__________人.并根据统计信息,谈谈自己的感想.AB 30%DCA 人数/人DB C 50 态度图820.(本题7分)图9为学校运动会终点计时台侧面示意图,已知: 1=AB 米,5=DE 米,DC BC ⊥,︒60=∠︒30=∠BEC ADC ,.(1)求AD 的长度.(2)如图10,为了避免计时台AB 和AD 的位置受到与水平面成︒45角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)21.(本题8分)如图11,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F 。

2020中考数学模拟试卷(含答案解析)

2020中考数学模拟试卷(含答案解析)

中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.化简的结果为()A.±5B.25C.﹣5D.52.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣96.点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)7.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.8.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin26.5°B.C.a cos26.5°D.9.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小10.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:cos45°=.12.计算结果是.13.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.15.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.如图,等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD=1时,则AE的长为.三、解答题(共8小题,共72分)17.解方程组.18.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG 经过点A,问FH多少里?21.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD 于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a 经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据算术平方根的定义,直接得出表示25的算术平方根,即可得出答案.【解答】解:∵表示25的算术平方根,∴=5.故选:D.【点评】此题主要考查了算术平方根的定义,此题容易出错选择A,应引起同学们的注意.2.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,40.故选:D.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.【分析】将原式直接套用平方差公式展开即可得.【解答】解:(a+3)(a﹣3)=a2﹣32=a2﹣9,故选:C.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.6.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.【点评】此题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.7.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.8.【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:,故选:B.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.9.【分析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选:A.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.10.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin ∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sin C===,∴sin∠DMN=,故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了直角三角形斜边上的中线性质.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】依据∠α=∠3,以及∠1=∠4=52°,即可得到∠α=(180°﹣52°)=64°.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.14.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.【点评】本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.15.【分析】设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.【解答】解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|K|=12,由函数图象在第二象限,所以k=﹣12.【点评】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.【分析】分四种情形分别画出图形,利用全等三角形或相似三角形的性质解决问题即可;【解答】解:分四种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.②如图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∵∠CEF=∠CAB=60°,∠ECF=∠ACB=60°,∴△ECF是等边三角形,设EC=CF=EF=x,∵∠ABD=∠BFE=60°,∠BAD=∠FBE,∴△ABD∽△BFE,∴=,∴=,∴x=,∴AE=AC+CE=③如图3中,当点D在CB的延长线上,点E在AC的延长线上时.∵∠ABD=∠BCE=120°,AB=BC,∠BAD=∠FBE,∴△ABD≌△BCE(ASA),∴EC=BD=1,∴AE=AC+EC=4.④如图4中,当点D在CB的延长线上,点E在边AC上时.作EF∥AB交BC于F,则△EFC 是等边三角形.设EC=EF=CF=m,由△ABD∽△BFE,可得=,∴=,∴x=,∴AE=AC﹣EC=,综上所述,满足条件的AE的值为2或4或或.故答案为2或4或或.【点评】本题是三角形综合题、考查等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,将x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用△PCF∽△PBA,求出PC的长,从而可得PE,再利用△PGE∽△AGD,即可求出DG的长.【解答】解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG的长为.【点评】本题是利用三角形相似,对应边成比例,从而根据比例线段来求未知线段,关键是要找准能够运用的相似三角形.19.【分析】(1)关键描述语是:买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元;设甲种笔记本的单价是x元,乙种笔记本的单价是y元,列方程组解x,y的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元;设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个;可得m+(2m﹣10)≥80,3(2m﹣10)+5m≤320,求得m的整数值范围.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320 解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.20.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22.【分析】(1)利用反比例函数图象上点的坐标特征可得出y1=,y2=,将其代入x1+y1=x2+y2中可得出x1﹣x2=,结合x1<x2可得出x2=y1,x1=y2,再利用两点间的距离公式可证出OC=OD;(2)由正切的定义可得出=,结合+=10可求出x1,y1的值,再由点C在第一象限即可得出点C的坐标;(3)由点C的坐标,利用反比例函数图象上点的坐标特征可求出m的值,重复(2)的过程可得出点D的坐标,再由点C,D的坐标,利用待定系数法即可求出直线CD的解析式.【解答】(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.【点评】本题考查了反比例函数图象上点的坐标特征、两点间的距离公式、正切的定义以及待定系数法求一次函数解析式,解题的关键是:(1)利用反比例函数图象上点的坐标特征结合x1+y1=x2+y2,找出x2=y1,x1=y2;(2)利用正切的定义、OC=及点C在第一象限,求出点C 的坐标;(3)根据点C,D的坐标,利用待定系数法求出一次函数解析式.23.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AO sin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AO cos∠AOF=,则DF=OD﹣OF=1﹣,∴S=AC•DF=××(1﹣)=.△ACD【点评】本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.24.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(共10小题)1、(2020最新预测)7的相反数是()A、﹣7B、7C、D、﹣考点:相反数。

专题:计算题。

分析:根据相反数的意义,只有符号不同的两个数为相反数,只要改变7前面的符号可得7的相反数.解答:解:根据相反数的意义,7的相反数为﹣7.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2020最新预测)下列调査中,适合采用全面调査(普査)方式的是()A、对綦江河水质情况的调査B、对端午节期间市场上粽子质量情况的调査C、对某班50名同学体重情况的调査D、对某类烟花爆竹燃放安全情况的调査考点:全面调查与抽样调查。

分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A,对綦江河水质情况的调査的调查应用抽样调查,大概知道水质情况就可以了,故此选项错误,B,对端午节期间市场粽子质量的调查适用抽样调查,利用全面调查,就不能买了,故此选项错误;C,对某班50名同学体重情况的调査适用全面调查,人数不多,全面调查准确,故此选项正确;D,对某类烟花爆竹燃放安全情况的调査适用抽样调查,利用全面调查,破坏性极大,就不能买了,故此选项错误.故选C.点评:此题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、(2020最新预测)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A B CD考点:简单组合体的三视图。

分析:俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.4、(2020最新预测)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A、1:3B、1:9C、3:1D、1:考点:相似三角形的性质。

专题:计算题。

分析:由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.解答:解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选B.点评:本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方.5、(2020最新预测)如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A、65°B、50°C、35°D、25°考点:平行线的性质。

分析:首先由AC丄AB与∠1=65°,求得∠B的度数,然后由a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∴∠1+∠B=90°,∵∠1=65°,∴∠B=25°,∵a∥b,∴∠2=∠B=25°.故选D.点评:此题考查了平行线的性质与垂直的定义.题目比较简单,解题时要注意数形结合思想的应用.6、(2020最新预测)在“庆祝建党90周年的红歌传唱活动”比寒中,七位评委给某参赛队打的分数为:92、86、88、87、92、94、86,则去掉一个最高分和一个最低分后,所剩五个分数的平均数和中位数是()A、89,92B、87,88C、89,88D、88,92考点:中位数;算术平均数。

专题:计算题。

分析:要求平均数只要求出数据之和再除以总个数即可;求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:根据去掉一个最高分和一个最低分后,所剩五个分数的平均数为:平均数:(92+86+88+87+92)÷5=89,故平均数是89;将数据按从小到大的顺序排列得:86、87、88、92、92.最中间的年龄是88,故中位数是88.故选:C.点评:此题主要考查了中位数的概念以及平均数的求法,根据中位数定义给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数,熟练记忆定义是解决问题的关键.7、(2020最新预测)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A、6πB、5πC、3πD、2π考点:弧长的计算;切线的性质。

专题:计算题。

分析:由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.解答:解:∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=60°,∴∠AOB=120°,∠AOB所对弧的长度==2π.故选D.点评:此题主要考查了弧长的计算问题,也利用了切线的性质和四边形的内角和,题目简单.8、(2020最新预测)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A、B、C、D、考点:由实际问题抽象出分式方程。

分析:设每个甲型包装箱可装x个鸡蛋,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,可列出分式方程.解答:解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选B.点评:本题考查理解题意能力,以包装箱个数做为等量关系,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,可列方程求解.9、(2020最新预测)小明从家中出发,到离家 1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A、B、C、D、考点:函数的图象。

分析:首先分析题干条件,小明从家中出发,到离家 1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,据此可以判断A和D错误,然后小明原路返回到离家1千米的学校上课,即学校在家和早餐店之间,依次可以可到答案.解答:解:小明从家中出发,到离家 1.2千米的早餐店吃早餐,距离逐渐增大,当吃早餐时,距离不变,当返回学校时,距离变大,到达学校距离不再变化.故选C.点评:本题主要考查函数的图象的知识点,解答本题的关键是理解原路返回到离家1千米的学校上课这句话得意思,也就是说学校在家和早餐店之间.10、(2020最新预测)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()3 a b c ﹣2 …1A、3B、2C、0D、﹣1考点:规律型:数字的变化类。

专题:规律型。

分析:首先由已知和表求出a、b、c,再观察找出规律求出第2011个格子中的数.解答:解:已知其中任意三个相邻格子中所填整数之和都相等,则,3+a+b=a+b+c,a+b+c=b+c﹣1,所以a=﹣1,c=3,按要求排列顺序为,3,﹣1,b,3,﹣1,b,…,再结合已知表得:b=2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,得到:每3个数一个循环,则:2011÷3=670余1,因此第2011个格子中的数为3.故选A.点评:此题考查的是数字的变化类问题,解题的关键是先由已知求出a、b、c,再找出规律求出答案.二、填空题(共6小题)11、(2020最新预测)经过倾力打造,綦江旅游业得到一定发展,到綦江旅游的人数逐年增加.据旅游部门统计今年上半年到我县古剑山、丁山湖、东溪古镇,永新梨花山等景点旅游的人数已达63700人,这个数用科学记数法表示为 6.37×104.考点:科学记数法—表示较大的数。

分析:先根据科学记数法的概念求出n的值,再用科学记数法表示即可.解答:解:∵63700共有5位数,∴n=5﹣1=4,∴63700用科学记数法表示为:6.37×104.故答案为:6.37×104.点评:本题考查的是科学记数法的概念,即把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.12、(2020最新预测)若有意义,则x的取值范围是x≥.考点:二次根式有意义的条件。

分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:要是有意义,则2x﹣1≥0,解得x≥.故答案为:x≥.点评:本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13、(2020最新预测)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D= 60°.考点:圆周角定理。

专题:计算题。

分析:首先利用直径所对的圆周角是直角得到直角三角形,然后求得另一锐角的度数,从而求得所求的角.解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=60°,∴∠D=60°,故答案为:60°.点评:本题考查了圆周角定理,解决本题的关键是利用直径所对的圆周角是直角得到直角三角形.14、(2020最新预测)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.考点:菱形的性质;点到直线的距离;勾股定理。

分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解答:解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO?BO=AB?OH,OH=.故答案为:.点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.15、(2020最新预测)在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x 图象上方的概率是.考点:概率公式;正比例函数的图象;反比例函数图象上点的坐标特征。

相关文档
最新文档