正切、余切函数的图象和性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正切、余切函数的图象和性质

正切、余切函数的图象和性质张思明教学目的:教学过程择录:一、引题:师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?生众:P159正弦,余弦函数的定义域:P158正弦,余弦函数的最值:P158正弦,余弦函数的奇偶性P159正弦,余弦函数的单调性P159正弦,余弦函数的应用一-----比大小P158正弦,余弦函数的周期P159正弦,余弦函数的图象P160正弦,余弦函数性质的应用教师在黑板上书写:定义域值域奇偶性单调性比大小求最小正周期作图应用教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?生众:不就是上面这几点问题吗?教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后~后面加一个“是什么?”这样一些问题。请同学们带的这些问题看书5分钟。[评述]:这里是通过作业小结的方式引入问题。学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。二、学生自己回顾性设问,5分钟以后:学生阅读完毕,教师指导第一组学生为相邻的同桌的同学就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学对着大家回答。做完后,问、答的两组学生角色交换。其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正:生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数生3:.........生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数)生11:正切函数是它定义域上的增函数吗?邻生答:是,其它学生更正:不是。教师追问理由 (12)

正切函数是一个周期为2的函数吗?邻生回答:准确地说正切函数是最小正周期为的周期函数。生13:余切函数也是一个以2为周期的周期函数,这个说法对吗?邻生:不对,另外的学生答:对,……… 学生即席讨论………。生14:怎样由y=tgx的图象得到y=ctgx的图象?,邻生答:可以先把y=tgx的图象以x轴为轴,翻转180度,再向右平移。另一个邻座同学:也可以先把y=tgx的图象以y轴为轴,翻转180度,再向右平移。教师插说:我怎么不懂了?为什么把y=tgx的图象以x轴为轴,翻转180度和把y=tgx的图象

以y轴为轴,翻转180度的效果一样?…学生讨论得到:因为y=tgx是奇函数,f(-x)=-f(x)。教师又插说:非要先翻转后平移吗?…学生讨论略。[评论]学生自己设计问题,自问他答,其它学生协助判定是否正确,可以在很大程度上调动学生自己学习的主动性。但问题的难易控制有一定难度,先问的人设计问题相对容易些,可以用往复问答的方式来解决。邻座的学生作答,同一横行同学做答的是非判定,这样做目的是让反馈的更快、更广些。从学生问答情况看,基本达到了目的。三、自己提出问题,设计问题,当堂练习,自己作评价。师:下面请第3组同学为大家设计一组课堂练习可以讨论。要求是七个方面都要覆盖。请第四组同学上黑板解:其它同学在下面解。再请第5组同学:评价题目和解法的长短。请第6组同学对应设计课后作业。请第7组同学:作全课的小结[评述]活动覆盖面大,学生在教师控制的“方向”上直接参与练习设计,求解,并且加入练习题设计及解法的评价和全课小结,目的是让学生学会“品题”,“品课”,这本身是对学生掌握学法的一种引导,对培养学生的自学能力十分重要。第3组学生上黑板设计的题目:求函数的定义域。求函数的值域。比较和的大小。函数最小正周期是什么?求出的单调增区间。作出函数的图象,并说明它是由y=tgx经过怎样的变换得到的。讨论下面函数的奇偶性和最小周期:,y=tg (mx+n)+b 学生D组7人上黑板解题。:求解过程及改错讨论略。学生E组评价:首先对D组的解答做出评判学生15:我觉得设计的好,它要求先用诱导公式转化成同名函数再比大小。学生16:我先纠正解答中的错误,原解认为最小正周期是,这是一个明显的错误,因为它不是正数。我觉得设计的目的就是要考查最小正周期的表达式中绝对值这一个最容易被忽略的地方。我认为此题设计的很好。学生17:我觉得设计的不很好,原因是,对数后面根号似乎多余,因为对数对真数的要求和算术根大体一致。又复合函数的内、外层函数y=lgt, 都是增函数,再讨论递增区间,显得“挖潜”不够,不如将y=lgt或换成某种减函数如。这样可以考察到更多的复合函数单调性的知识。……[评述]:这里有一个集体协作的场景,组长“派”任务和个人主动抢任务结合,学困生强以优先,各尽其能,各显所长。教师可以在旁边观察、欣赏、记录。作出鼓励或引导性的“旁白”。第七组的两个代表,上来做了全课的总结:学生17:今天我们学习了正切、余切、函数的性质,我觉得比较重要的是要把握函数的性质,就要去研究什么东西?这里面主要是定义域,值域单调性、奇偶性、周期性,和由此得到的函数的图象。对于正、余切函数的性质我觉得通过它们的图象去记忆,去理解是最容易的。只要记住函数的基本图象,我们就可以说出相应的性质。简单地说可以从图象直观走向看增减性、是否对称看奇偶性、是否可重复看周期

相关文档
最新文档