感性负载下三相三线错误接线快速判断
三相三错误接线判断方法
三相三线错误接线判断方法1、测量U10、U20、U30的电压值,哪项为0时,表示该项为B相。
当0电压未出现时,表示B相断相。
当出现电压异常时,例如只有几十伏的电压,(此时的电压大小跟表尾的负载有关联)而非全电压时,则为该元件电压断相。
如例题11.1当出现电压断相时,可简单分为两种情况考虑,一是B相断,此时U10、U20、U30皆不为0V,二是B不断,此时可在U1,U2,U3中找到谁为B相,并能判断出是哪一元件电压断相。
此时无法判断的是哪一相电压断,判断方法为测量全电压与2元件电流夹角,假设电流的状态来反推电压,如果能确定已知的全电压是由哪相与B的组成,则断相的是谁也就可以判断了。
如例题22、测量I1、I2的值,观察是否有异常现象,如果电流很小,我们需判断电流是否短路或开路,短路和开路在表尾体现的电流都十分小,但仍然有区别,短路在表尾仍然有小电流的存在,但是开路是没有的。
另外还有一种情况就是出现很大的电流,电流值是另一元件的1.5倍以上,这种可能是由于在三相三简化接线时,在表尾出现IB电流,而且此时,A或C相电流在CT处极性反接所导致。
我们知道IB电流是由IA和IC在公共线合成,他们遵循IA+IB+IC=0当出现上诉故障时,IB电流值为其它电流的倍。
此时的IB电流就变化为IAC或ICA,其中IAC为A相CT反,ICA为C相CT反;如例题33、测量U12、U32、U31的电压值,当不出现电压断相时,正常时应为相等的全电压。
此时找出B相,使用相序表或者相位伏安表得出正确的相序。
另外还有一种情况就是出现很大的电压,电压值为另一元件的1.73 倍,造成这种现象的原因是该线电压为UA、UC 的合成电压,并此时A和C中必有一极性在PT处反接。
注意此时若使用相序表判断相序,得出的结论与实际结果相反。
如例题4,U12=173V,U30=0V,U13=100V,U32=100V 相序表显示正转,此时的真正相序为ACB,而不是我们所以为的CAB。
两元件三相三线电能表错接线快速排查方法
两元件三相三线电能表错接线快速排查方法两元件三相三线电能表错接线快速排查方法摘要:针对高压三相三线两元件计量装置常见错误接线,以及电压互感器极性接反等复杂情况,基于相量图法,提出一种快速排查电能表错误接线的方法,使技术人员及技能比武选手能够快速准确的判断三相三线电能表接线情况,便于退补电量的收取,提高企业经济效益。
关键词:三相三线电能表;错接线;电压互感器极性接反;相量图0引言电能计量装置是供用电双方进行电能贸易结算的工具,同时也是企业加强内部管理,实现经济核算必不可少的手段,因此其准确性、正确性非常受重视。
三相三线电能表广泛应用于10kV以及35kV中性点不接地系统中。
高压大工业用户所使用的经互感器接入的三相三线电能表,因为是电流、电压二次回路的组合比较容易出错,再加上极性接反和断线等有几百种可能的错误接线方式。
以前采用的常规六角图法以及标准电能表法排查错接线检查步骤多,且判断速度慢[1]。
本文提出了一种基于相量图法利用相位伏安表,在不测量三相对地电压的情况下,快速排查错接线的一种方法,便于技能人员快速更正错误接线,提高企业的经济效益。
1常见三相三线有功电能表错误接线分析三相三线电能表常采用经过两台电流互感器及两台电压互感器接线方式。
电流互感器采用两相分相接法,电压互感器采用V/V接法。
这种接线方式既能节省互感器又可满足三相功率表所需的线电压、线电流,广泛地应用于中性点不接地或经消弧线圈接地的35kV及以下的高压三相系统,特别是10kV 三相系统。
1.1.电能表电压相序接错三相三线电能表电压互感器V/V接线时,排除电压互感器断线以及极性接反等情况,电压回路共有6种组合,其中只有UVW顺序接法是正确的[2]。
电能表尾端相序及两个电压元件的角度如表1所示。
表1 电压相序及电压1、2元件角度表1.2电流互感器极性接反3三相三线电能表错接线快速判断方法三相三线电能表错接线判断方法有多种,其中最为常用的方法是在互感器二次回路上带电检查,通过相量图法判断错接线。
三相三线电能表错误接线检查与分析
则 三 相 三 线 电能 表 测 量 的有 功 功 率 P = P + P 2 , 即 等 于 三 相 三相 二 元 件接 线 . 接线较 为复杂, 也 是 现 场 应 用 最 多 的 一 种 接 有 功 功 率
高监 控 系统抵 御 恶 劣 环 境 的技 术 水 平 , 提高其监控性能。
, J 0 C A R B O N 0 R L D 2 0 1 7 / 5
低碳技术
■一 线 电能表 错 误 接 线检 查 与分 析
马中军 ( 国网四J 1 I 省电 力公司 德阳 供电 公司, 四川德阳6 1 8 0 0 0 )
4 在输电线路上应用视频监控技术的具体指标
4 . 1反外力破坏指标
反 外 力破 坏视 频 监 控 系统 的应 用 , 主要 是 用 来 抵 御 高 压 输 电 线路 遭 受 外 来 因素 的破 坏 。 ① 要发挥其预警功能 , 对 于 人 为偷 盗 电 力设 备 、 造成塔体 变形 . 车辆 撞 击杆 塔 等 外 力破 坏 行 为, 通过红外监测信号进行预警 , 及 时提 示 运 行 维护 人 员 并提
线 路 的 建 设 与 安 全 运 行 也 是 电 力行 业发 展 的 重要 内容 。 随 着 输 电 线路 范 围 、 面积的扩 大, 加 强 对 其 进 行 监 控 与 管理 , 非 常
必 要 。视 频 监 控 技 术 的 应 用 , 显 著 的 降低 了输 电线 路 巡 查 的 难 度, 减 少 了工作 量 , 提 高 了巡 检 、 监控 的 效 率 和 质 量 , 为 促 进 输
是 保 证 准确 计 量 的前 提 之 一 , 但 在 实 际 运行 中 , 计 量 装 置错 误 接 线 的情 况 时有 发 生 , 特 别 是 少数 不 法 分子 为 达 到 窃 电 目的 ,
感性负载下三相三线错误接线快速判断
的问题。 针对该项 目, 我 们 在 比 赛 中总 结 了
的相关规律进行 了总结 , 从 而 提 高 在 感性
相关的经验 , 对感性 负载下4 6 种 错 误 接 线 能 基本 保证 i A+i B+i C=0, 仅 用 两 个 元 件 于 计 算 出 各 种 故 障 接 线 时 的 更 正 系 数 , 一
Un de r t h e t h r e e -p h a s e t h r e e -wi r e i n d uc t i v e l o a d q ui c kl y de t er mi ne t h e e r r o r c o n n e ct i o n o
竞赛 , 其 中电 能 表 故 障 判 断 为 众 多 竞 赛 项 正 确 度 。
目之 一 , 比 赛 中 要 取 得 较 好 的 成 绩 除 了判
断正确 , 加 快 判 断 速 度 已然 成 为 首要 解 决
1 常用计量故 障判断原理及 方法
三 相 三 线 两 元 件 有 功 电 能 计 量 装 置 就 能正 确 计 量 三 相 电能 , 而 且 为 高 供 高 计 , 电能 表 安 装 在 用 户变 压 器 的 高 压 侧 。
Ch e n Ji n g
( Y i c h a n g E l e c t r i c S u p p l y C o mp a n y E l e c r i c t y T h e Me t e r i n g s e c t i o n o f c u s t o me r s e r v i c e c e n t r e , Y i c h a n g H u b e i 。 4 4 3 0 0 3C h i n a )
一种三相电能表错接线的简易判断方法
一种三相电能表错接线的简易判断方法摘要:电能计量的准确性非常重要,直接影响电力部门用电结算和广大用电客户的切身利益,为保证电能计量准确,电能表的接线必须正确。
本文针对三相电能表错误接线不易判断的现状提出一种简易的判断方法。
引言一般情况下,电能表、互感器在安装前都是经过检验合格后在进行安装,二者基本误差很小,对计量的准确性影响不大。
但是,电能表、互感器在安装接线过程中,很容易发生错误接线,这将造成大的计量误差。
因此,电能计量装置能否正确计量电能,取决于电能表、计量用电压互感器、电流互感器基本误差是否合格,二次回路接线是否正确。
而三者之间接线是否正确及其重要。
如何发现和及时更正错误接线,降低计量线损是当前计量工作的重点。
判断方法三相三线电能表的判断方法(感性负荷状况下)三相三线电能表的电压端共有6种接法,电流端由8种接法,6种电压和8组电流共构成48种接法,本文在只考虑感性负载的情况下,先判断电压接线相序,若Uab、Ucb的夹角为60度,则电压接线方式为逆相序,若Uab、Ucb的夹角为300度,则电压接线方式为正相序。
分别测量每一相得电压,通过找到B相来确定电压相序。
通过此结论可判断电压接线方式,接下来判断电流接线方式。
三相三线电能表一般采用两元件计量,设通过表1的电流为I1,通过表2的电流为I2。
通过测量UabI1,UcbI2的角度既可得电流的接线方式。
电压为正相序(Uab、Ucb夹角300度)下:若 ,则I1为Ia若 ,则I1为-Ic若 ,则I1为-Ia若 ,则I1为Ic若 ,则I2为Ic若 ,则I2为Ia若 ,则I2为-Ic若 ,则I2为-Ia电压为逆相序(Uab、Ucb夹角60度)下:若 ,则I2为Ia若 ,则I2为Ic若 ,则I2为-Ia若 ,则I2为-Ic若 ,则I2为Ic若 ,则I2为-Ia若 ,则I2为-Ic若 ,则I2为Ia由此可判断三相三线智能电能表错误接线方式。
依据所测量得到的数据在范围内进行匹配可得到相应的电流接线方式。
三相三线错接线功率表达式快速计算法的探讨
三相三线错接线功率表达式快速计算法的探讨摘要:本文介绍了三相三线错接线、一相TV反极性三相三线错接线情况下,根据数学推导,同时经过大量实例验证得出相关公式,能较为快捷、准确的得出计量单元功率表达式,适用于结论验算、给定接线组合情况下相关试题的快速计算,保证错接线分析结论的准确性。
关键词:错接线;功率表达式;快速计算;引言计量装置二次接线判读、分析及计算是从事电能计量工作必须掌握的技能。
二次接线判读的一般步骤为:(1)现场接线测量;(2)根据测量数据,绘制相量图,并由此做出计量元件组合判别;(3)根据相量图、元件组合情况及相角关系,计算分析错误接线下功率表达式;(4)计算更正系数K值。
针对第3步计量元件功率表达式的快速计算方法,根据大量验算,在此做一总结,希望能给同行一些借鉴。
下面对三相三线错接线、一相TV反极性三相三线错接线进行分析计算,根据实例推导出经验公式的正确使用。
假设例1,现场测量数据如表1中所示:根据测量数据绘制相量图(图1)感性负载时,相量图如图2所示,从而判断出计量元件组合形式:则根据相角关系得:日常根据相量图中的相角关系列出功率表达式时,易出现错误。
是否能寻找到一种快速计算法,直接根据接线组合写出功率表达式。
功率表达式无非就是电压相量同电流的夹角的一种运算,暂不考虑电流反的情况、TV反极性的情况,基本变量只有线电压中的两个相别、电流的相别、相序。
接下来通过三个实例,列出三元一次方程组,推导U、V、W三个变量代表的角度。
根据相量图三个线电压同相电流的三种组合列出等式。
(图5)下面根据实例对3个公式逐一引用,一是公式的使用说明,再就是进一步验证公式的准确性。
1 三相三线接线,不涉及TV反极性从计算过程中可以看出,此处省去了相量图中相角关系的判别,不容易出现人为计算错误。
2 三相三线接线,一相TV反极性的情况当涉及到一相TV反极性时,在分析出接线组合后,同样可以运用经验公式快速列出功率表达式。
对新型三相三线电能表错接线快速判别方法的分析
对新型三相三线电能表错接线快速判别方法的分析摘要:新型三相三线电能表的现场接线较为复杂,容易出现错接线问题,需要快速、精准对其进行判别。
本文首先分析新型三相三线电能表错接线的判别原理,介绍其接线方式、判别流程以及具体判别方法。
在此基础上,提出一种利用旋转相量图的快速判别方法。
关键字:三相三线电能表;错接线问题;快速判别方法前言:电能表是电费计量装置,如果出现错接线问题,会导致计量结果出现错误,损害电力供应双方的利益,也容易引起电力公司与用户之间的纠纷。
在众多电能计量错误的案例中,由电能表错接线引起的计费错误占据较大比例。
这是由于新型三相三线电能表的接线过程较为复杂,容易出现错误。
因此,在完成接线后,要采用快速、有效的方法对其接线正确性进行判断,发现错误及时更正。
一、新型三相三线电能表的错接线判别原理(一)判别原理新型三相三线电能表主要被应用与高压计量,整个计量系统由电压、电流互感器和三相三线电能表组成,装置之间的接线情况较为复杂,容易出现错误,而且采用常规方法难以有效判别。
分别用Ua、Ub、Uc表示三相电压,用Ia、Ib、Ic 表示三线电流。
接入电表端的电压接线情况包括UaUbUc、UaUcUb、UbUaUc等六种,再加上电压互感器的极性接入错误,共有24种接线方式。
电流接线情况于此类似,电能表端的接入方式有6种,再加上电流互感器可能出现的4种误接线情况,也有24种接线方式。
电压和电流的接线组合则由576种可能,任何一个环节出现错误,都会影响最后的计量结果[1]。
根据这一情况,对新型三相三线电能表的错接线情况进行判别,主要包括以下几个步骤:(1)电压测量,判断电压相序是否正确,验证电压互感器极性;(2)电流测量,验证电流互感器极性;(3)相角或功率测量,验证电压电流的相夹角;(4)在六角图上绘制电压和电流的矢量图;(5)根据相位角余弦值判断电压和电流的矢量相别。
(二)基本判别方法根据上述原理,在实际判别过程中,首先假设电能表的电压接线正确,即UaUbUc相序正确。
三相三线错误接线分析及差错电能量计算(续一)
工培训NONGCUN DIANGONG三相三线错误接线圏丽匿■園_謂園S fr 園(纟卖一)(621000)国网四川绵阳供电公司(中国科技城)市区供电中心黄一洋牟壮3.8 表计运行特点及电能量退补结论根据分析结果说明给定条件下表计的运行特点。
(1) 欠>0表示:电能表正向计量,尺<0表示:电能 表反向计量。
(2) I A :I < 1表示:电能表运行快,IA :I > 1表示:电能 表运行慢。
(3) 表计运行快则多计,供电公司应向用户退还 相应电能量的电费。
(4)表计运行慢则少计,供电公司应向用户追补 相应电能量的电费。
如例1所给条件数据可得出结论:表计正向计量, 运行慢,少计量。
在按抄见电能量预收的基础上,用 户还应补交119 798 kW h 电能量对应的电费。
3.9绘制更正接线示意图在画实际接线原理图时首先应标注出电压互感 器、电流互感器和电能表第一、二元件的同名端。
电 能表从左到右的7个接线端子,其中2,4,6端子依次 接三相电压,1,3端子接一元件电流,5,7端子接二元 件电流。
电压互感器二次侧V 相、电流互感器二次侧 应接地。
需要特别强调的是,电能表接线图所画接线 都应横平竖直。
4计量竞赛安全措施4.1 组织措施(1) 正式开工前,工作负责人应列队向工作班竞 赛成员宣读工作票,交代清楚现场工作范围、安全措 施、危险点及其控制措施等安全注意事项,并请工作班竞赛成员签字确认。
(2) 工作班竞赛成员必须正确配戴安全帽,着棉 质工作服,穿绝缘鞋,戴线手套。
(3) 在工作过程中,认真贯彻“不伤害别人,不伤 害自己,不被别人伤害”的原则,在工作中相互监督, 避免发生人身事故和其他伤亡事故。
(4) 操作完毕后,工作班竞赛成员应收拾工具、仪 表并清理工作场地。
4.2技术措施(1)工作前应认真检查设备、仪器、仪表的运行状 况、接线方式及其送检情况等,确认使用的设备、仪器、 仪表都是按规定送检合格并在有效期内运行状况良 好,接线方式正确无误。
感性负载下三相三线错误接线快速判断
感性负载下三相三线错误接线快速判断作者:陈静来源:《科技资讯》2013年第06期摘要:感性负载下三相三线的错误接线有46种,但每种错误接线的误差利用传统方法进行判断至少需要15~20 min。
本文通过对46中错误接线的规律进行总结,能够在5 min内迅速判断并计算出错误接线的误差值,大大提高了电能表错误接线判断的速度。
对于感性负载下电能表三相三线错误接线判断的比赛有一定的帮助作用,但该方法用于现场错误接线却存在着一定的局限性。
关键词:感性三相三线快速判断中图分类号:TM933 文献标识码:A 文章编号:1672-3791(2013)02(c)-0139-02近些年电力公司举办了各类职工技能竞赛,其中电能表故障判断为众多竞赛项目之一,比赛中要取得较好的成绩除了判断正确,加快判断速度已然成为首要解决的问题。
针对该项目,我们在比赛中总结了相关的经验,对感性负载下46种错误接线的相关规律进行了总结,从而提高在感性负载下三相三线电能表故障判断的速度及正确度。
1 常用计量故障判断原理及方法三相三线两元件有功电能计量装置能基本保证iA+iB+iC=0,仅用两个元件就能正确计量三相电能,而且为高供高计,电能表安装在用户变压器的高压侧。
其故障接线包括电能表电压回路和电流回路的错误接线、电压互感器和电流互感器的极性反接、电压互感器的断相、电流互感器的开路和短路、电流互感器铭牌上额定变比与其实际变比不同、互感器和电能表各个端钮的虚假接线(存在绝缘物质或锈蚀现象使其接触不良)等。
如故障接线是由一种因素产生的,习惯上称为单因素故障接线,这些单因素故障接线一般都可以用“电能表现场校验仪”判断出来;如故障接线是由两种或两种以上因素引起的,则称为多因素故障接线,判断起来有一定难度。
这里指的故障接线,不仅指少计电量的错误接线,而是泛指所有类型的错误接线,因此也可能是电能表走快,多记电量,这时供电公司应给用户退还多交的电费。
熟悉掌握各种故障接线时更正系数的计算,进一步退补电量,从“量”的角度规范电费的抄、核、收工作,是搞好营业工作的基础。
三相三线错误接线分析及差错电能量计算(待续)
农村电工第29卷2021年第4期1相关知识结构梳理1.1感性负载:电流滞后电压φ角通俗地说,应用电磁感应原理制作的大功率电器产品就是感性负载,如电动机、压缩机、继电器、日光灯等。
也可以理解为在电路中带线圈的用电设备,其线圈部分即为感性负载。
如电动机、变压器、电风扇等设备。
1.2容性负载:电流超前电压φ角一般把带电容特性参数的负载,即符合电流超前电压特性的负载,称为容性负载,如电容器、补偿电容。
1.3相序正相序:电压U 1,U 2,U 3接线是顺时针,U 12和U 32的夹角为300°。
逆相序:电压U 1,U 2,U 3接线是逆时针,U 12和U 32的夹角为60°。
正相序和逆相序的相量图如图1所示。
1.4功率因数cos φ反映总电功率中有功功率P 所占的比重大小,S 为视在功率,计算公式为cos φ=P /S1.5常用公式回顾两角和公式为sin (A +B )=sin A cos B +cos A sin B sin (A -B )=sin A cos B -cos A sin B cos (A +B )=cos A cos B -sin A sin B cos (A -B )=cos A cos B +sin A sin B 和差化积公式为sin A +sin B =2sinA +B 2cos A -B2sin A -sin B =2cos A +B 2cosA -B2cos A +cos B =2cos A +B 2cosA -B2cos A +cos B =-2sin A +B 2sinA -B22高压三相三线电能表的正确接线三相三线二元件智能电能表一般应用于中性点非直接接地系统的高供高计用户,可同时计量四象限有功功率和无功功率,其内部结构一般采用二元件有功电能表和60°无功电能表计量原理。
高压三相三线电能表正确接线时的相量图如图2所示。
当系统中三相完全对称时,U uv =U wv =U ,I u =I w =I ,φu =φw =φ。
三相三线电能计量装置误接线快速判断
三相三线电能计量装置误接线快速判断摘要:介绍了三相三线电能计量装置中电能表错误接线的分析过程,提出了错误接线更正系数的快速计算方法,为实际工作提供了有效的参考。
关键词:电能计量装置;错误接线;更正系数0、引言随着电力体制改革的不断深入,用户数量的不断增加,电能计量装置也随之增长,电能计量装置作为“公平秤”,其作用越来越重要。
电能计量是否准确,除了采用高准确度的计量装置准确计量电能外,还必须减少电能计量装置错误接线造成的电量不准。
一旦发生错误接线,可能会使电能计量的误差很大,这会给客户或供电企业带来极大的经济损失。
为了把握好电能计量这一重要环节,电能计量人员必须具备更高的理论基础和专业素质、技能,必须能根据现场测量数据快速判断诸多电能计量中存在的问题,计算和追补因错误接线造成的流失电量,挽回经济损失。
在电力系统和电力用户中,计量装置的错误接线是时有发生的。
单相电能表接线较为简单,出现接线错误时容易分析,三相四线电能表采用分相法即可分析出接线正确与否。
而经电流互感器(TA)、电压互感器(TV)接入的三相三线电能表误接线的种类和几率较多,出现接线错误,且不易分析判断,文章主要介绍三相三线计量装置错误接线的分析与判断,该方法也同样适用于经互感器接入的三相四线电能表接线的检查。
1、判断电能表电流端钮所属相别先判断电流回路接地是否正确,可用一根两端带夹子的短路导线来确定,将导线夹子一端接地,另一端依次连接电能表电流端钮,若电能表转速变慢,则该端钮没有接地,若电能表转速无变化,则该端钮就是接地点,若电能表转速都无变化,说明电流回路未接地或电能表电流端钮两端接地,遇此情况应先查明处理后,再做其他测试。
用钳型电流表依次测量电能表电流端钮进线及出线端公共连线电流,当电能表电流端钮进线及出线端公共连线电流值接近相等时,即IN=I1=I2,说明I1、I2二相电流极性相同。
当电能表出线端公共连线电流接近电能表电流端钮进线电流的倍时,即IN= I1= I2,说明其中I1、I2有一相极性接反;当电能表出线端公共连线电流为零,而电能表电流端钮进线电流不为零时,说明电能表出线端公共连线回路断开,遇此情况,应先连通电能表出线端公共连线回路,再做其他检测。
三相三线电能表错误接线的判断方法
三相三线电能表错误接线的判断方法摘要:三相三线电能表的计量在供电系统中占据重要的作用,在电能表的安装接线过程中,错误接线不可避免,因此及时、迅速地查找错误接线并进行快速判断显得非常必要。
本文介绍了三相三线电能表的错误接线判断方法关键词:三相三线电能表;正确接线;判断电能表是电能计量的重要量具,其本身存在有误差。
如电能表潜动、电能表的误差等,很容易引起计量误差。
错误接线包括互感器的误接线、断线、电能表的误接线或断线,无论接线错在哪里,最终都反映在电能计量装置发生偏差。
这个偏差远远大于本身引起的计量误差,所以正确接线很重要。
再者三相三线电能表所计电量较大,为保证电能计量的准确可靠,要求电能表必须接线正确,否则将可能产生很大的损失或误差。
正确接线只有一种,但是错误接线存在七百多种。
笔者以三相三线制两元件有功电能表,电压互感器V/V接线B相接地为例,通过现场测量接入电能表的电压、电流及其相互间的相位、相序,介绍测量和判断的方法,即可方便判断出电能表接线方式。
按照此方法操作,浅显易懂,操作清晰,判断简化,方便实用。
1 电压回路的判断方法(1)测量电压值(指线电压)。
用万能表或相位伏安表的电压档,测量电能表进线盒电压端子2、4、6(A、B、C)间的线电压并做好记录。
三个线电压如接近相等,约为100V,则说明电压互感器(TV)极性正确或均接反;如各线电压相差较大,且有某线间电压明显小于100V,则说明电压回路存在断线或接触不良故障;当有某线电压接近 U(173V),则说明有一只TV极性接反。
(2)判断B相。
检查时将电压表一端接地,另一端以此分别触及电能表电压端子2、4、6,对地无电压者即为B相,并做好记录。
如皆有电压,则说明电压互感器(TV)不是V/V接线B相接地的接线方式,其可能原因是TV为Y/Y0接线或V/V接线而未将B相接地。
(3)测定三相电压的排列顺序(相序)。
用相位伏安表或相序表都行,目前相序表使用普遍又方便。
三相三线电能表错误接线分析
二、电能表正确接线
1. 电能表接线及相量图
U ab Ⅰ
ⅡU cb
U ab
U a
a
b
c
Ia
Ic
Ia
30°φ
U cb
A
Ic φ
B C
U c
U b
二、电能表正确接线
2. 功率表达式
P UabIa cos(30 ) UcbIc cos(30 )
UI(cos30 cos sin 30 sin cos30 cos sin 30 sin)
2UI cos30 cos
U cb
3UI cos
U ab
U a
Ia
30°φ
Ic φ
U c
U b
3. 伏安相位表简介
电源开关
第一路电压、电 流测量档位
第一路电压、电 流输入端子
档位打到“360校”显示 在360度。 φ可测量一、二路相位
第二路电压、电 流测量档位
第二路电压、电 流输入端子
正确电量 错误电量
KG
P P
3UI cos
3 UI(cos 3 sin) 1
2
3 tan
2
退补电量 W W W 1 KG W
若ΔW >0,意味着什么? 若ΔW<0,又意味着什么?
抄见电量
三、错误接线检查方法与步骤
2
U12 U bc
U1
U b
U 32
90°-φ
U ac
I1 Ia
φ
150°-φ
U 3 U a
φ
I2 Ic U c U 2
三、错误接线检查方法与步骤
三相三线电能计量装置错误接线判断分析
三相三线电能计量装置错误接线判断分析发表时间:2019-01-15T15:58:55.030Z 来源:《基层建设》2018年第34期作者:项国钢[导读] 摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。
广东电网有限责任公司阳江阳西供电局广东阳江 529500摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。
本文将会对三相三线电能计量装置错误接线的判断方法进行介绍,为具体工作开展提供参考。
关键词:三相三线电能计量装置;错误接线;判断方法;预防措施对于电力系统而言,为了确保电能计量装置计量数据的真实性、准确性,就需要保证电能表接线正确。
通常情况下,电能表本身计量误差仅有百分之几,但是如果计量回路的接线出现差错,将会导致计量误差增到百分之几百,不仅会诱发大量的用电量差错,而且还会影响用户及电力企业的经济效益。
因此,要对电能计量装置错误接线问题给予高度的重视,以确保电能表可以在正常的接线状态下对电能进行计量。
实际上,电能计量装置错误接线种类比较多,常见的有电压、电流互感器接反;电能表的电压元件、电流元件未接入对应相别的电压、电流;电压、电流回路断路等,这些都会对电能计量结果产生影响。
在电力系统和电力用户的电能计量装置中,三相三线高压计量装置得到了广泛的应用,因此对三相三线电能计量装置错误接线问题进行分析,并提出错误接线判断方法至关重要。
1.三相三线电能计量装置错误接线判断措施 1.1有功电能计量装置的计量通常情况下,不管电能表所接负载是感性还是容性,只要其可以正确接线,将会保证有功功率沿着同一个方向进行传输,并使计量表处于正转状态。
然而,电能表处于正转状态并非是判断电能计量装置接线正确的唯一标准。
当然,如果是电能表反转、不转或随着功率因数(cosφ)值的变化时而正转,时而反转,则该电能表可能存在错误接线问题。
浅析三相三线电能表错误接线判断及处理
浅析三相三线电能表错误接线判断及处理发布时间:2021-12-17T03:56:57.049Z 来源:《河南电力》2021年8期作者:叶新[导读] 电能计量的准确性对计划用电、节约用电和成本核算起到决定性的作用。
电能表是统计电量的重要工具,在安装使用过程中,接线错误时有发生,造成计量故障,甚至造成很大的经济损失。
(广东电网有限责任公司河源供电局广东河源 517000)摘要:本文首先分析三相三线电能表接电中错误接线的原因及类型,深入探讨三相三线电能表错误接线的判断原理,结合案例对相位表法的实际应用进行分析三相三线电能表中错误接线判断。
关键词:三相三线;电能表;错误接线;判断方法引言电能计量的准确性对计划用电、节约用电和成本核算起到决定性的作用。
电能表是统计电量的重要工具,在安装使用过程中,接线错误时有发生,造成计量故障,甚至造成很大的经济损失。
为此,如何在安装过程中规避错误接线已成为当前供电企业需要考虑的重要问题。
同时,还要利用科学的技术手段对电能表错误接线的实际情况进行预测、判断,及时纠正计量表的错误接线,避免问题的进一步扩大。
1 三相三线电能表接电中错误接线的原因及类型作为供电计量和核算电费的重要组成要素,三相三线电能表接线对计算用电费用是非常重要的。
接线的正确性可以保证用户的使用电量不出现错误,但在现实生活中装表接电容易受到各种因素的影响,在安装过程中常常出现错误接线的现象。
而导致三相三线电能表接线过程中出现错误接线的主要原因在于:在安装过程中,工作人员未对工作仪器进行全面检查和验收;电表在运输过程中极易受到外力作用引发故障;对电表没有进行相应的调整;用户为了偷电私自进行跨越电表接线。
三相三线电能表接电中错误接线的类型主要有以下几种:没有正确接入 B 相或者接入 B 相的线发生断裂;电表接线位置和电流互感器不符合,使电表出现快走、慢走或倒走的现象;电压线断裂;电流互感器与其他相的变比不一致。
三相三错误接线判断方法
三相三线错误接线判断方法1、测量U10、U20、U30的电压值,哪项为0时,表示该项为B相。
当0电压未出现时,表示B相断相。
当出现电压异常时,例如只有几十伏的电压,(此时的电压大小跟表尾的负载有关联)而非全电压时,则为该元件电压断相。
如例题11.1当出现电压断相时,可简单分为两种情况考虑,一是B相断,此时U10、U20、U30皆不为0V,二是B不断,此时可在U1,U2,U3中找到谁为B相,并能判断出是哪一元件电压断相。
此时无法判断的是哪一相电压断,判断方法为测量全电压与2元件电流夹角,假设电流的状态来反推电压,如果能确定已知的全电压是由哪相与B的组成,则断相的是谁也就可以判断了。
如例题22、测量I1、I2的值,观察是否有异常现象,如果电流很小,我们需判断电流是否短路或开路,短路和开路在表尾体现的电流都十分小,但仍然有区别,短路在表尾仍然有小电流的存在,但是开路是没有的。
另外还有一种情况就是出现很大的电流,电流值是另一元件的1.5倍以上,这种可能是由于在三相三简化接线时,在表尾出现IB电流,而且此时,A或C相电流在CT处极性反接所导致。
我们知道IB电流是由IA和IC在公共线合成,他们遵循IA+IB+IC=0当出现上诉故障时,IB电流值为其它电流的倍。
此时的IB电流就变化为IAC或ICA,其中IAC为A相CT反,ICA为C相CT反;如例题33、测量U12、U32、U31的电压值,当不出现电压断相时,正常时应为相等的全电压。
此时找出B相,使用相序表或者相位伏安表得出正确的相序。
另外还有一种情况就是出现很大的电压,电压值为另一元件的1.73 倍,造成这种现象的原因是该线电压为UA、UC 的合成电压,并此时A和C中必有一极性在PT处反接。
注意此时若使用相序表判断相序,得出的结论与实际结果相反。
如例题4,U12=173V,U30=0V,U13=100V,U32=100V 相序表显示正转,此时的真正相序为ACB,而不是我们所以为的CAB。
三相三线有功电能表错误接线的判断方法分析
三相三线有功电能表错误接线的判断方法分析当今电力工业发展速度迅猛,为了保证电力工业工作能够安全、可靠、准确的运行,我们必须依靠安装在电力生产场所的电能测量电压、电流和功率等参数的仪器仪表来保证。
三相三线有功电能表一般有着五根到七根接线,并不复杂的结构,往往在接线时候会误接和漏接,特别是配有电流电压传感器的时候,电能表的接线往往就会出现错乱现象,接错的情况下,有可能指针不动或者倒转,这种接错方式很容易发现,接线人员可以及时的发现,给予重接。
但是如果指针正常转动,粗心的接线人员很容易忽视,那个时候测量出来的数据偏差将会非常大,这也是计量不准的主要原因之一。
1 对于三相三线有功电能表的介绍交流的能表的正确接线是保证电能表的正常工作的基本条件,因此要准确的计量电能,不仅仅要对电能表本身的精确度进行调整,对于外在的接线也要注意,并且接线引起来的误差往往很大。
研究人员在测量的时候,如果对于数据的大小有所怀疑,首先要对电能表的接线进行检查。
相对于三相四线有功电能表而言三相三线有功电能表接线比较复杂,更加容易接错,并且不容易被判断出来,因此对于三相三线有功电能表的研究有一定的代表意义。
分析电能表的接线错误的方法有很多种,当前采用的典型方法为向量图法,所谓的向量图法就是利用计量仪器对于流经电能表的电流电压的研究,绘出相应的电流电压向量图,然后在结合电路中的负载情况判断三相电能表的接线对错。
如若有误,可以再表中找到相应改进的途径。
2 电能表错误接线判断方法造成哪几种后果1)电压回路的判断方法:首先确定PT及二次回路的运行状态是否正确,测量电压表的三个电压端间的电压高低正常是电能表的电压值应该在接近100伏特,如果一个电压值明显高于100伏特,那么就说明有一根线接错了,电压互感器的极性接反。
相关人员应该及时的把线路连接正确。
其次是确定相序的正确性,若是有相序表,可以应用相序表进行测量,相序表连接之后,同向是连接正确,异向应该检查电路是否有连接错误,如果没有想学表,那么也可以用电压表来代替,测量电能表的进线端和电压互感器的同名端电压,如果电压为零则为同向,不为零就是异向。
关于三相三线智能表错接线的判断
关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况图1 U ab*I a与U cb*I c两组电能和图2 U ca*I c与U ba*I b两组电能和图3 U bc*I b与U ac*I a两组电能和说明:图2和图3 在实际情况下和图1是完全一样的。
仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。
图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。
由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。
了解这一点,就会发现A、B、C实际是我们人为定义的。
二、三相三线接线中,几个特点需了解1、正常接线情况下,如果电压电流均以U ab作为参考方向的话,那么A相(U ab)电压角为0°,C相(U cb)电压角为300°,A相电流角(Ia与U ab)为30°附近,C相电流角(Ic 与U ab)为270°附近。
2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差为60°,则一定有一相电流是接反的。
3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为所谓的A、B、C只是一个参考的方向。
目的是要通过接线调整,满足上述3个条件的情况。
4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电流采样的。
通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。
三、案例分析案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。
通过遥控器显示:A相电压角0 ;C相电压角300; A相电流角275; C相电流角330根据角度,画出向量图如上,根据本文二中关于三相三线接线中的特点可以分析如下:1、C相与A相电压角度为300°,符合正相序的特点。
三相三线电能计量装置错误接线的判断和预防
三相三线电能计量装置错误接线的判断和预防1. 引言为保证电能计量装置计量数据的准确性,必须保证其中的电能表接线正确。
电能表本身的计量的误差通常只有百分之几,可是一旦其计量回路的接线错误,所造成的误差可能就会激增到百分之几百。
这样,一旦计量出现几分误差,会造成几百几千分的误差量,导致大量的用电量差错,给企业和用户带来极大的经济损失和不便。
因此,对现场电能计量装置等设备的接线问题一定要有足够重视,确保电能表在正常的接线状态下计量电能。
电能表出现接线错误的种类数量很多,通常有:电流、电压互感器接反; 电流、电压回路断路或断路; 电能表的电流元件、电压元件不是接入对应相别的电流、电压等。
在这里,因为三相三线的高压计量装置是广泛应用于电力用户和电力系统的电能计量装置,因此,这里只分析三相三线电能计量装置错误接线的相关内容。
2.三相三线电能计量装置错误接线的判断方法为保证计量内容的准确性,电能计量装置的接线步骤是关键,必须保证电能计量装置的接线正确,并在其运行前和运行中进行定期检修,保证接线情况良好。
接线检查分为带电检查和停电检查。
以下情况需要停电检查:新装的电流、电压互感器; 更换的电流、电压互感器; 投入运行前的二次回路电能计量装置。
还有,在无法判断接线是否正确时已经投入使用的电能计量装置或需要进一步核实带电检查的结果时同样需进行停电检查,这里需要检查的内容是:核对电流、电压互感器的极性、变比、接线组别; 进行二次电缆的导通和接线端子的检查。
在对计量装置进行停电检查结束后,投入运用时要进行带电检查,同时进行周期检查时也需进行带电检查,从而确保电能计量装置的正确接线。
2.1有功电能计量装置的计量无论电能表所接负载是容性还是感性,只要其接线正确,有功功率的传输方向保持不变,则计量表都是处于正转状态。
也就是说,不能因为观察到电能表处于正转状态就判断其接线一定正确。
当然,若是电能表不转、反转或着随着(功率因数)的值时而反转,时而正转,则可以判断此时的电能表可能出现接线错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感性负载下三相三线错误接线快速判断
摘要:感性负载下三相三线的错误接线有46种,但每种错误接线的误差利用传统方法进行判断至少需要15~20 min。
本文通过对46中错误接线的规律进行总结,能够在5 min内迅速判断并计算出错误接线的误差值,大大提高了电能表错误接线判断的速度。
对于感性负载下电能表三相三线错误接线判断的比赛有一定的帮助作用,但该方法用于现场错误接线却存在着一定的局限性。
关键词:感性三相三线快速判断
Abstract:The perceptual load of three-phase wrong wiring three line 46,the error of each error wiring using traditional methods to determine needs at least 15~20 minutes.This paper summarizes the wrong wiring of 46 rules,can be in 5 minutes to quickly judge and calculate the error wiring,greatly improving the energy meter wiring error judgment rate.Is helpful for energy meter three-phase three wire wrong wiring judgment under inductive load game,but the method is used for wiring has certain limitation.
Key Words:Emotional;Three-phase Three-wire;Quick;Judge
近些年电力公司举办了各类职工技能竞赛,其中电能表故障判断为众多竞赛项目之一,比赛中要取得较好的成绩除了判断正确,加快判断速度已然成为首要解决的问题。
针对该项目,我们在比赛中总结了
相关的经验,对感性负载下46种错误接线的相关规律进行了总结,从而提高在感性负载下三相三线电能表故障判断的速度及正确度。
1 常用计量故障判断原理及方法
三相三线两元件有功电能计量装置能基本保证iA+iB+iC=0,仅用两个元件就能正确计量三相电能,而且为高供高计,电能表安装在用户变压器的高压侧。
其故障接线包括电能表电压回路和电流回路的错误接线、电压互感器和电流互感器的极性反接、电压互感器的断相、电流互感器的开路和短路、电流互感器铭牌上额定变比与其实际变比不同、互感器和电能表各个端钮的虚假接线(存在绝缘物质或锈蚀现象使其接触不良)等。
如故障接线是由一种因素产生的,习惯上称为单因素故障接线,这些单因素故障接线一般都可以用“电能表现场校验仪”判断出来;如故障接线是由两种或两种以上因素引起的,则称为多因素故障接线,判断起来有一定难度。
这里指的故障接线,不仅指少计电量的错误接线,而是泛指所有类型的错误接线,因此也可能是电能表走快,多记电量,这时供电公司应给用户退还多交的电费。
熟悉掌握各种故障接线时更正系数的计算,进一步退补电量,从“量”的角度规范电费的抄、核、收工作,是搞好营业工作的基础。
一般,电能计量装置错误接线的类型有以下几点。
P2= U32 I2cos(30°-φb)=UIcos(30°-φ)
P=P1+P2=UIcosφ
从上述分析可知,只要用相位表按上述电压顺序在电能表电压接线端钮上测得两线电压之间或两相电压之间的相位角,就可得出三相电压的相序。
用相位表可以直接测出电压与电流之间的相位角度,以电为参考相量,测量电流相量与电压参考相量的相位差,确定电压、电流的相位、相序,从而能够确定电能表的接线方式。
2 感性负载下三相三线错误接线判断方法
假设在以下分析中,三相电压、电流基本对称,负载功率因数角范围为0°~+30°,感性负载性质,电压互感器V/v接线。
2.1 电压b相接地
一般判断方法是按照现场检验仪安全操作程序,首先应确定b相电压,V/v接线方式中b相接地,电压为零;再测试相序,从而判断出三个电压的实际位置;最后测量四个角度,即U12和I1、U32和I2、U12和I3、U32和I1,被检多功能电能表回路的实际电压、电流、功率因数、电压与电流间的相位,测定电能表误差,并做好测试记录。
按照所测相序及各元件的夹角,来分析找出正确的相量图。
三相三线错误接线具体检查步骤如下(不含电压反极性)。
(1)电压、电流测量。
测量U12、U32线电压,测量I1和I2电流。
(2)判断b相。
测量U1、U2、U3对地电压,对地电压为0 V的为b相。
(3)判断电压相序
测量U12与U32的相位角,如果为300°是正相序,假设b相位置在U2,那么U1、U2、U3对应得就是Ua、Ub、Uc。
假设b相位置在U1,那么U1、U2、U3对应得就是Ub、Uc、Ua。
测量U12与U32的相位角,如果为60°是逆相序。
(4)电流相位测量和相量图。
以U12为参照,测量U12对I1,U32对I2各相位角并记录。
感性负荷的情况下,电流滞后相电压;容性负荷的情况下,电流超前相电压。
(5)根据测量数据绘制相量图,写出错误接线和正确接线功率表达式,求出更正系数。
(6)更正接线。
2.2 电压b相不接地
(1)在电压b相不接地的情况下,没有参照量,我们就需要根据所
测相序及两个元件的相位角画出3种可能出现的相量图来,来分析并找出正确的相量图。
此种方法往往会因为画图过多而混淆。
(2)在传统判断方法的基础上,熟练的掌握分析所需要的元素,只需要画出基本的相量图,将相量图分为三个区间(如图1所示),并根据相序及所测两个元件的相位角来观察,用空间法来排除不可能的情况,得到正解。
此方法与画三个图的方法比较会更快速更清晰。
(3)同样,根据三相三线48种错误接线情况可分析出,在感性负载下,两个元件可测得角度大概在0°、60°、120°、180°、240°、300°六种角度左右(根据所设置功率角的不同所测的角度也会不同)。
三个电压端子共有6种排列,四个电流端子共有8种不同排列,这样就有48种接线,其中只有两种接线的计量是正确的,其余46种接线都是错误的。
经过这46种错误接线的测量归类分析,可以把标准的相量图分成三个区间,如图2所示,第一区间含有的角度为0°和180°,第二区间含有的角度为60°和240°,第三区间含有的角度为120°和300°。
通过总结得出以下的快速判断规律:当测得的两个元件的夹角角度在各自所在的区间,此时两个元件均在该区间内,比如测得角度为122°和307°,则其两个元件在第三区间内,同理,7°和189°则在第一区间,65°和246°则在第二区间;当测得的两个元件的夹角角度在不同的区间,此时两个元件则在除去夹角所在区间的另外一个区间,比如测得
角度为122°和246°,则其两个元件在第一区间内,同理,7°和122°则在第二区间,65°和187°则在第三区间。
以上规律仅适用于三相三线感性负荷下,且三相电压、电流基本对称,负载功率因数角范围为0°~+30°。
此方法有一定的局限性,并不是随便举出两个角度就可以知道其元件所在位置,只要是能测量出来的角度,运用此方法都可以正确分析其错误接线图,并求出更正系数。
3 结论
错误接线的准确判断是在电压端子接线正确的情况下,对电度表的错误接线的检查和处理可以在不停电的情况下进行,并且不需要对电流互感器的极性进行效验及修改,改正错误的接线,并且可以对以前的错误接线的计量进行校验。
参考文献
[1] 李兆华,李斌.电能计量接线技术手册[M].中国电力出版社,2012(2).
[2] 牟民生,牟平.电能计量基础与技术实践[M].中国电力出版社,2011(1).。