2020-2021学年苏教版高中数学必修二全册综合练习及答案解析

合集下载

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。

高中数学本册综合检测题素养作业提技能含解析第二册

高中数学本册综合检测题素养作业提技能含解析第二册

本册综合检测题考试时间120分钟,满分150分。

一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知i是虚数单位,复数z1在复平面内对应的向量错误!=(-2,1),则复数z=错误!的虚部为(D)A.-错误!B.-错误!C.错误!D.错误![解析]由题意可知z1=-2+i,所以z=错误!=错误!=错误!=-错误!+错误!i,因此,复数z的虚部为错误!。

2.某台机床加工的1 000只产品中次品数的频率分布如下表:则次品数的众数、平均数依次为(A)A.0,1.1B.0,1C.4,1D.0。

5,2[解析]由表可知,次品数的众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0。

2+4×0.05=1.1.3.已知l,m表示两条不同的直线,α表示平面,则下列说法正确的是(A)A.若l⊥α,m⊂α,则l⊥mB.若l⊥m,m⊂α,则l⊥αC.若l∥m,m⊂α,则l∥αD.若l∥α,m⊂α,则l∥m[解析]对于A,若l⊥α,m⊂α,则根据直线与平面垂直的性质,知l⊥m,故A正确;对于B,若l⊥m,m⊂α,则l可能在α内,故B不正确;对于C,若l∥m,m⊂α,则l∥α或l⊂α,故C不正确;对于D,若l∥α,m⊂α,则l与m可能平行,也可能异面,故D不正确.故选A.4.在△ABC中,角A,B,C所对的边分别是a,b,c,若a=a cos B +b cos A,则△ABC是(A)A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形[解析]因为a=a cos B+b cos A,所以由余弦定理可得a=a×错误!+b×错误!,整理得a=c,所以△ABC为等腰三角形。

5.已知平面向量a与b的夹角为错误!,且|a|=1,|b|=2,则|a+b|=(B)A.3B.错误!C.7D.错误![解析]因为|a+b|2=(a+b)2=a2+2a·b+b2=|a|2+2|a|·|b|cos错误!+|b|2=1+2×1×2×错误!+4=3,所以|a+b|=错误!。

(新教材)2020-2021学年高中苏教版数学必修2课件:14.4.4 百分位数

(新教材)2020-2021学年高中苏教版数学必修2课件:14.4.4 百分位数

2.下列关于一组数据的50百分位数的说法正确的是
()
A.50百分位数就是中位数
B.总体数据中的任意一个数小于它的可能性一定是50%
C.它一定是这组数据中的一个数据
D.它适用于总体是离散型的数据
【解析】选A.由百分位数的意义可知选项B,C,D错误.
3.(教材二次开发:例题/习题改编)数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的 30百分位数是________. 【解析】数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1是按照从小到大的顺序排列 的,因为8×30%=2.4,故30百分位数是第三项数据8.4. 答案:8.4
3.四分位数 中位数即为50百分位数,我们也把中位数、25百分位数和75百分位数称为四分 位数.
【思考】 (1)p百分位数有什么特点? 提示:总体数据中的任意一个数小于或等于它的可能性是p. (2)某组数据的p百分位数在此组数据中一定存在吗?为什么? 提示:不一定.因为按照计算p百分位数的步骤,第2步计算所得的i=n×p%如果是 整数,则p百分位数为第i项与第(i+1)项数据的平均数,若第i项与第(i+1)项数据 不相等,则p百分位数在此组数据中就不存在.
【思路导引】(1)依据题设条件,分段写出函数解析式; (2)依据题设条件结合频率直方图,利用方程思想解决; (3)利用百分位数的定义结合频率直方图直接求解.
【变式探究】 根据典例的(2)题中求得的数据计算用电量的15百分位数. 【解析】设15百分位数为x,因为用电量低于100千瓦时的所占比例为0.001× 100=10%,用电量不超过200千瓦时的占30%,所以15百分位数在[100,200)内,所 以0.1+(x-100)×0.002=0.15,解得x=125千瓦时,即用电量的15百分位数为125千 瓦时.

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
19.已知复数z满足 , 的虚部为2,
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()

2020学年高中数学课时训练(二十二)圆的一般方程苏教版必修2(2021-2022学年)

2020学年高中数学课时训练(二十二)圆的一般方程苏教版必修2(2021-2022学年)

课时跟踪检测(二十二) 圆的一般方程层级一学业水平达标1.圆x2+y2+4x-6y-3=0的标准方程为( )A.(x-2)2+(y-3)2=16 B.(x-2)2+(y+3)2=16C.(x+2)2+(y-3)2=16 D.(x+2)2+(y+3)2=16解析:选C将x2+y2+4x-6y-3=0配方,易得(x+2)2+(y-3)2=16.2.将圆x2+y2-2x-4y+4=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0D.x-y+3=0解析:选C要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A、B、C、D四个选项中,只有C选项中的直线经过圆心,故选C。

3.方程x2+y2+2ax+2by+a2+b2=0表示的图形为()A.以(a,b)为圆心的圆ﻩB.以(-a,-b)为圆心的圆C.点(a,b) ﻩ D.点(-a,-b)解析:选D原方程可化为(x+a)2+(y+b)2=0,∴错误!未定义书签。

即错误!∴表示点(-a,-b).4.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于直线y=x对称,则必有()A.D=EB.D=FC.E=F D.D=E=F解析:选A由D2+E2-4F>0知,方程表示的曲线是圆,其圆心错误!未定义书签。

在直线y=x 上,故D=E.5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,错误!未定义书签。

为半径的圆的方程为( )A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0 ﻩ D.x2+y2-2x-4y=0解析:选C 直线(a-1)x-y+a+1=0可化为(-x-y+1)+a(1+x)=0,由错误!未定义书签。

得C(-1,2).∴圆的方程为(x+1)2+(y-2)2=5,即x2+y2+2x-4y=0.6.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且PA=1,则P点的轨迹方程是________.解析:设P(x,y)是轨迹上任一点,圆(x-1)2+y2=1的圆心为B(1,0),则PA2+1=PB2,∴(x-1)2+y2=2。

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案

2021年苏教版高中数学选修1-2全册同步练习及单元检测含答案苏教版高中数学选修1~2 全册同步练习及检测苏版高中数学课时作业及单元检测题全册合编含答案第1章统计案例§1.1 独立性检验课时目标1.了解独立性检验的基本思想.2.体会由实际问题建模的过程,了解独立性检验的基本方法.1.独立性检验:用______________研究两个对象是否有关的方法称为独立性检验. 2.对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B,Ⅱ也有两类取值,即类1和类2.我们得到如下列联表所示的抽样数据:Ⅱ 类A 类B 合计类1 a c a+c 类2 b d b+d 合计 a+b c+d a+b+c+d Ⅰ则χ2的计算公式是________________. 3.独立性检验的一般步骤:(1)提出假设H0:两个研究对象没有关系;(2)根据2×2列联表计算χ2的值;(3)查对临界值,作出判断.一、填空题1.下面是一个2×2列联表:x1 x2 总计 y1 a 8 b y2 21 25 46 总计 73 33 则表中a、b处的值分别为________,________. 2.为了检验两个事件A,B是否相关,经过计算得χ2=8.283,则说明事件A和事件B________(填“相关”或“无关”).3.为了考察高一年级学生的性别与是否喜欢数学课程之间的关系,在高一年级随机抽1苏版高中数学课时作业及单元检测题全册合编含答案取了300名,得到如下2×2列联表.判断学生性别与是否喜欢数学________(填“有”或“无”)关系.男女合计喜欢 37 35 72 不喜欢 85 143 228 合计 122 178 300 4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2=99.9,根据这一数据分析,下列说法正确的是________(只填序号).①有99.9%的人认为该栏目优秀;②有99.9%的人认为栏目是否优秀与改革有关系;③有99.9%的把握认为电视栏目是否优秀与改革有关系;④以上说法都不对.5.某班班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示.从表中数据分析,学生学习积极性与对待班级工作的态度之间有关系的把握有________.学习积极性高学习积极性一般合计 6.给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有______.7.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的唯一数据;④若判定两事件A与B有关,则A发生B一定发生.8.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3 000人,计算发现χ2=6.023,根据这一数据查表,市政府断言市民收入增减与旅游愿望有关系,这一断言犯错误的概率不超过____________________________________________________.二、解答题2积极参加班级工作 18 6 24 不太主动参加班级工作 7 19 26 合计 25 25 50 苏版高中数学课时作业及单元检测题全册合编含答案9.在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表; (2)检验性别与休闲方式是否有关系.10.有甲、乙两个工厂生产同一种产品,产品分为一等品和二等品.为了考察这两个工厂的产品质量的水平是否一致,从甲、乙两个工厂中分别随机地抽出产品109件,191件,其中甲工厂一等品58件,二等品51件,乙工厂一等品70件,二等品121件.(1)根据以上数据,建立2×2列联表;(2)试分析甲、乙两个工厂的产品质量有无显著差别(可靠性不低于99%)能力提升11.在吸烟与患肺病是否相关的判断中,有下面的说法:3苏版高中数学课时作业及单元检测题全册合编含答案①若χ2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.12.下表是对某市8所中学学生是否吸烟进行调查所得的结果:父母中至少有一人吸烟父母均不吸烟吸烟学生 816 188 不吸烟学生 3 203 1 168 (1)在父母至少有一人吸烟的学生中,估计吸烟学生所占的百分比是多少? (2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少? (3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由. (4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?1.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法,要确认两个变量有关系这一结论成立的可信程度,首先假设该结论不成立,即假设“两个变量没有关系”成立,在该假设下我们构造的随机变量χ2应该很小,如果由观测数据计算得到的χ2的观测值很大,则在一定程度上4感谢您的阅读,祝您生活愉快。

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

新教材2020-2021学年高中数学人教A版必修第二册学案:6.3.1平面向量基本定理含解析6.3平面向量基本定理及坐标表示6.3.1平面向量基本定理[目标]1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理;2.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理.[难点] 平面向量基本定理的应用.要点整合夯基础知识点平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.如图,设OA、OB、OC为三条共端点的射线,P为OC上一点,能否在OA 、OB 上分别找一点M 、N ,使OP →=错误!+错误!?提示:能。

过点P 作OA 、OB 的平行线,分别与OB 、OA 相交,交点即为N 、M .3.若向量a ,b 不共线,且c =2a -b ,d =3a -2b ,试判断c ,d 能否作为基底.提示:设存在实数λ使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0.由于a ,b 不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c ,d 不共线,故c ,d 能作为基底。

典例讲练破题型类型一 基底的概念[例1] 下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .②④B .②③④C .①③D .①③④[解析] 因为不共线的任意两个向量均可作为平面的一组基底,故②③正确,①不正确;由平面向量基本定理知④正确.综上可得②③④正确.[答案]B根据平面向量基底的定义知,判断能否作为基底问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底。

2020-2021学年苏教版高中数学必修一全册课时同步练习及解析

2020-2021学年苏教版高中数学必修一全册课时同步练习及解析

(新课标)最新苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy ”组成的集合与由“0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a ∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 . 5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,BA ,求x a ,的值; (3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.⊂ ≠§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B =I .2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么A B =I .3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=I I I I4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。

2020-2021高中数学第二册训练:5.3.1 样本空间与事件 课堂含解析

2020-2021高中数学第二册训练:5.3.1 样本空间与事件 课堂含解析

2020-2021学年高中数学新教材人教B版必修第二册训练:5.3.1 样本空间与事件课堂含解析第五章5。

3 5.3。

11.“抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1、2、3、4、5、6),它落地时向上的数字是2”是(C)A.不可能现象B.必然现象C.随机现象D.无法确定[解析]抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1、2、3、4、5、6),它落地时向上的数字可能是1、2、3、4、5、6,故选C.2.“连续抛掷两个质地均匀的骰子,记录朝上的面的点数”,该试验的结果共有(D)A.6种B.12种C.24种D.36种[解析](1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种.3.有下列事件:①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b,则b<A.其中是随机事件的是(B) A.②B.①C.③D.②③[解析]掷一枚硬币,可能出现正面,也可能出现反面,故①是随机事件,②③是必然事件.4.一个盒子中装有8个完全相同的球,分别标上号码1、2、3、…、8,从中任取一个球,写出基本事件空间__Ω={1,2,3,4,5,6,7,8}__.[解析]记取得球的标号为i,则Ω={1,2,3,…,8}.5.有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1个正四面体玩具朝下的点数,y表示第2个正四面体玩具朝下的点数.试写出该试验的样本空间.[解析]这个试验的样本空间为:Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。

2020-2021学年高中数学新人教A版必修第二册 9

2020-2021学年高中数学新人教A版必修第二册 9

| 课后提能训练 |
数学 必修第二册 配人版A版
第九章 统计
【预习自测】判断下列命题是否正确.(正确的画“√”,错误的画
“×”)
(1)一个样本的众数、平均数和中位数都是唯一的.
()
(2)样本的平均数是频率分布直方图中最高长方形的中点对应的数
据.
()
(3)若改变一组数据中一个数,则这组数据的平均数、中位数、众数
(4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改
变,方差不变.
()
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
【答案】(1)× (2)√ (3)× (4)√ 【解析】(1)该数据中的众数应为4和5. (3)二者单位不一致. (4)平均数也应减去该常数,方差不变.
(2)标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的 离散程度越大;标准差越小,数据的离散程度越小.显然,在刻画数据 的分散程度上,方差和标准差是一样的.但在解决实际问题中,一般多 采用标准差.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第九章 统计
众数、中位数、平均数之间的关系 (1)如果样本平均数大于样本中位数,说明数据中存在较大的极端 值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我 们了解样本数据中的极端数据信息,帮助我们作出决策. (2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特 征,它是各个数据的重心.

2020-2021学年高二数学新教材苏教版选修2-1课时分层练习:1.1.1-1.1.2 充分条件和必要条件 (含解析)

2020-2021学年高二数学新教材苏教版选修2-1课时分层练习:1.1.1-1.1.2 充分条件和必要条件 (含解析)

课时分层作业(十四)(建议用时:40分钟)[基础达标练]一、选择题1.以q 为公比的等比数列{a n }中,a 1>0,则“a 1<a 3”是“q >1”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件A [等比数列{a n }中,若a 1>0,则a 1<a 3,可得q 2>1,即q >1或q <-1;若q >1,则有q 2>1,所以a 1q 2>a 1,即a 1<a 3,所以“a 1<a 3”是“q >1”的必要不充分条件.]2.已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p 綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.故选A.]3.函数f (x )=⎩⎨⎧log 2x ,x >0,-2x +a ,x ≤0,有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1 A [因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔ 函数y =-2x+a (x ≤0)没有零点⇔函数y =2x 的图象(x ≤0)与直线y =a 无公共点.由数形结合可知a ≤0或a >1,根据集合之间的关系{a |a <0}{a |a ≤0或a >1},可知选A.]二、填空题4.已知α,β是两个不同的平面,直线a ⊂α,直线b ⊂β,p :a 与b 无公共点,q:α∥β,则p是q的________条件.[解析]α∥β⇒a,b无公共点,反之不成立.故p是q的必要不充分条件.[答案]必要不充分5.给出下列三个命题:①“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a>b”是“2a>2b”的充分不必要条件.其中正确命题的序号为________.[解析]对于①,当a=0时,f(x)=x3+ax2=x3为奇函数.即“a=0”⇒“f(x)=x3+ax2(x∈R)为奇函数.”若f(x)=x3+ax2(x∈R)为奇函数,则任意x∈R,都有f(-x)=(-x)3+a(-x)2=-f(x)=-x3-ax2成立,即2ax2=0对任意x∈R都必成立,所以a=0.故“f(x)=x3+ax2(x∈R)为奇函数”⇒“a=0”.综上所述,可知“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件,是正确的;对于②,因为“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错误;对于③,因为指数函数y=2x是R上的单调增函数,所以“a>b”是“2a>2b”的充要条件,故③错误.[答案]①6.函数y=x2+bx+c(x∈[0,+∞))是单调函数的充要条件是________(填序号).①b≥0;②b>0;③b<0;④b≤0.[解析]∵函数y=x2+bx+c(x∈[0,+∞))是单调函数,∴根据二次函数的性质得出:-b2+bx+c(x∈[0,+∞))是单调函数的充要2≤0,b≥0,∴函数y=x条件是b≥0,故填①.[答案]①7.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的________条件.[解析] 充分性:“x ≠y ”不一定能推出“cos x ≠cos y ”,如x =0,y =2π,此时cos x =cos y .必要性:“cos x ≠cos y ”一定能推出“x ≠y ”,所以“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.[答案] 必要不充分8.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是________.[解析] 由题意可知p :-2≤x ≤2,q :x ≤a .p 是q 的充分不必要条件,所以a ≥2.[答案] [2,+∞)三、解答题9.若方程x 2-mx +2m =0有两根,求其中一根大于3,一根小于3的充要条件.[解] 方程x 2-mx +2m =0对应的二次函数f (x )=x 2-mx +2m ,则方程x 2-mx +2m =0有两根,其中一根大于3,一根小于3的充要条件是f (3)<0,即32-3m +2m <0,解得m >9.故其中一根大于3,一根小于3的充要条件是(9,+∞).10.已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若p 是q 的充分不必要条件,求实数a 的取值范围.[解] 解不等式x 2-4x -5≤0,得-1≤x ≤5,解不等式|x -3|<a (a >0),得-a +3<x <a +3,设A ={x |-1≤x ≤5},B ={x |-a +3<x <a +3},因为p 是q 的充分不必要条件,从而有A B .故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a >4.所以实数a 的取值范围是(4,+∞).[能力提升练]1.设p:x2-x-20>0,q:1-x2|x|-2<0,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[不等式x2-x-20>0的解集A={x|x<-4或x>5},不等式1-x2|x|-2<0的解集B={x|x>2或x<-2或-1<x<1},由于A B,所以p⇒q且q p,所以p 是q的充分不必要条件.故选A.]2.已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的________条件.[解析]若函数f(x)在[0,1]上是增函数,则根据f(x)是偶函数可知f(x)在[-1,0]上是减函数,结合f(x)的周期为2可知f(x)在[3,4]上是减函数.反过来,若函数f(x)为[3,4]上的减函数,则根据f(x)的周期为2,可知f(x)为[-1,0]上的减函数.因此“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.[答案]充要3.“k>4,b<5”是“一次函数y=(k-4)x+b-5的图象交y轴于负半轴,交x轴于正半轴”的________条件.[解析]①当k>4,b<5时,一次函数y=(k-4)x+b-5的大致图象如图.②若一次函数y=(k-4)x+b-5交y轴于负半轴,交x轴于正半轴,当x=0时,y=b-5<0,∴b<5.当y=0时,x=5-bk-4>0.∵b<5,∴k>4.故“k>4,b<5”是“一次函数y=(k-4)x+b-5的图象交y轴于负半轴,交x轴于正半轴”的充要条件.[答案]充要4.已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.[证明]必要性:∵a+b=1,即b=1-a,∴a3+b3+ab-a2-b2=a3+(1-a)3+a(1-a)-a2-(1-a)2=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2=0.充分性:∵a3+b3+ab-a2-b2=0,即(a+b)(a2-ab+b2)-(a2-ab+b2)=0,∴(a+b-1)(a2-ab+b2)=0.∵ab≠0,∴a≠0且b≠0,∴a2-ab+b2≠0,故a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.。

2020-2021高中数学人教版第二册学案:8.1 第1课时棱柱、棱锥、棱台含解析

2020-2021高中数学人教版第二册学案:8.1 第1课时棱柱、棱锥、棱台含解析

新教材2020-2021学年高中数学人教A版必修第二册学案:8.1 第1课时棱柱、棱锥、棱台含解析第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台[目标]1。

记住棱柱、棱锥、棱台的定义及结构特征;2。

理解棱柱、棱锥、棱台之间的关系;3.能用棱柱、棱锥、棱台的定义及结构特征解答一些简单的有关问题.[重点]棱柱、棱锥、棱台的定义及结构特征.[难点]棱柱、棱锥、棱台之间关系的理解.要点整合夯基础知识点一空间几何体[填一填]1.空间几何体的定义空间中的物体都占据着空间的一部分,如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的分类(1)多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.(2)旋转体:一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴.[答一答]1.多面体与旋转体的主要区别是什么?提示:多面体是由多个多边形围成的几何体,旋转体是由平面图形绕轴旋转而形成的几何体.2.多面体最少有几个面,几个顶点,几条棱?提示:多面体最少有4个面、4个顶点和6条棱.知识点二棱柱的结构特征[填一填]1.有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.2.一般地,我们把侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的直棱柱叫做正棱柱,底面是平行四边形的四棱柱也叫做平行六面体.[答一答]3.棱柱的各侧棱是什么关系?各侧面是什么样的多边形?两个底面的关系是怎样的?提示:根据棱柱的定义,棱柱的各侧棱互相平行,侧面是平行四边形,两个底面是全等的多边形.4.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱吗?提示:不一定,因为“其余各面都是平行四边形”并不等价于“相邻两个四边形的公共边都互相平行”,如图所示.知识点三棱锥的结构特征[填一填]有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面;有公共顶点的各个三角形面叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;各侧面的公共顶点叫做棱锥的顶点.底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.[答一答]5.棱锥的侧面是什么样的多边形?有什么特征?提示:根据棱锥的定义,棱锥的侧面一定是三角形,且各个三角形有公共顶点.6.有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?提示:不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图所示.知识点四棱台的结构特征[填一填]用一个平行于棱锥底面的平面去截棱锥,我们把底面和截面之间的那部分多面体叫做棱台.在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面.[答一答]7.棱台的各侧棱是什么关系?各侧面是什么样的多边形?两个底面是什么关系?提示:棱台的各侧棱延长后交于一点,各侧面是梯形,两个底面是相似的多边形.8.观察下面的几何体,思考问题:图①是棱台吗?图②用任意一个平面去截棱锥,一定能得到棱台吗?提示:题图①不是棱台,因为各侧棱延长后不交于一点.不一定,题图②中只有用平行于底面的平面去截才能得到棱台。

2020-2021学年高中数学新人教A版必修第二册 9

2020-2021学年高中数学新人教A版必修第二册 9

| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第九章 统计
2.抽签法与随机数法的定义 (1)抽签法:把总体中的N个个体__编__号__,把_号__码___写在号签上,将 号签放在一个容器中,搅拌均匀后,每次从中抽取__一__个__号签,连续抽 取n次,就得到一个容量为n的样本. (2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法, 即利用_随__机__数__表___、_随__机__数__骰__子_或__计__算__机__产生的随机数进行抽样.
所要调查对象的_全__体___
个体
总体中的每一个调查对象
从总体中抽取__一__部__分__个体进行调查,并以此为依据对总 抽样调查
体的情况作出估计和推断
样本
从总体中抽取的那部分__个__体____
样本量
样本中包含的_个__体__数___
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第九章 统计
A.0
B.1
C.2
D.3
【答案】B
【解析】根据简单随机抽样的特点逐个判断.①不是简单随机抽
样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.②不是
简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到
子进行实验,利用随机数法抽取种子,先将850颗种子按001,002,…, 850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写 出最先检验的4颗种子的编号______________(下面抽取了随机数表第1行 至第5行).

2020-2021学年苏教版高中数学第1章《集合》全单元课时同步检测题及答案解析

2020-2021学年苏教版高中数学第1章《集合》全单元课时同步检测题及答案解析

(新课标)最新苏教版高中数学必修一全单元各课时同步练习第1课时集合分层训练1.下列各项中不能组成集合的是()A.所有的正三角形B.数学课本中的所有习题C.所有的数学难题D.所有无理数2.已知2a∈A,a2-a∈A,若A含2个元素,则下列说法中正确的是()A.a取全体实数B.a取除去0以外的所有实数C.a取除去3以外的所有实数D.a取除去0和3以外的所有实数3.给出下列命题①N中最小的元素是1②若a∈N则-a N③若a∈N,b∈N,则a+b的最小值是2其中正确的命题个数是()A.0 B.1C.2 D.34.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合为M,则M中元素的个数为()A.1 B.2C.3 D.45.由a2,2-a,4组成一个集合A,A中含有3个元素,则a的取值可以是()A.1 B.-2C.6 D.26.设L(A,B)表示直线上全体点组成的集合,“P是直线AB上的一个点”这句话就可以简单地写成___________________________.7.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是________________________________8.设a,b,c均为非零实数,则x=||||||||a b c abca b c abc+++的所有值为元素组成集合是_____________________ 9.说出下列集合的元素①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a ba b Ra b+∈所确定的实数的集合;④抛物线y=x2-2x+1(x为小于5的自然数)上的点组成的集合。

拓展延伸10.关于x的方程ax2+bx+c=0(a≠0),当a,b,c分别满足什么条件时,解集为空集、含一个元素、含两个元素?11.由“x,xy0,|x|,y”组成的集合是同一个集合,则实数x,y的值是否确定的?若确定,请求出来,若不确定,说明理由。

12.2复数的运算(3)课件-2020-2021学年高一下学期数学苏教版(2019)必修第二册

12.2复数的运算(3)课件-2020-2021学年高一下学期数学苏教版(2019)必修第二册
(2)z2-10z+40=0。
数学建构
2、实系数一元二次方程在复数范围内的求解方法 一般地,设实系数一元二次方程 ax2+bx+c=0(a≠0), (1)求根公式法 ①当 Δ≥0 时,
②当 Δ<0 时,
(2)利用复数相等的定义求解 设方程的根为 x=m+ni(m,n∈R),将此根代入方程 ax2+bx+c=0(a≠0),化简后利用复数相等定义求解。
变式拓展
已知1+i是方程x2+bx+c=0(b,c为实数)的一个根, (1)求b,c的值; (2)试判断1-i是不是方程的根。
解:(1)∵1+i 是方程 x2+bx+c=0 的根, 且 b,c 为实数, ∴(1+i)2+b(1+i)+c=0,即 b+c+(b+2)i=0,
∴b+c=0, 解得b=-2,
内呢?
数学建构
1、关于复数ω和 的几个结论
设 1 3 i ,则 1 3 i ,且有
22
22
(1)
(2)
(3)
(4)
(5)
(6)
变式拓展
计算: (1 3i)15 (1 3i)15 。
(1 i)20
(1 i)20
数学应用 类型二 在复数范围内解方程
例2、在复数范围内解下列方程 (1)z2+4=0;
(1)
(2)
(3)
(4)
(5)
6、关于复数ω和 的几个结论
设 1 3 i ,则 1 3 i ,且有
Hale Waihona Puke 2222(1)
(2)
(3)
(4)
(5)
(6)
课堂小结
7、实系数一元二次方程在复数范围内的求解方法 一般地,设实系数一元二次方程 ax2+bx+c=0(a≠0), (1)求根公式法 ①当 Δ≥0 时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)2018-2019学年苏教版高中数学必修二全册综合练习一、填空题1. 圆C:x2+y2+2x-4y-4=0的圆心到原点的距离是________.2. 已知直线l过直线l1:3x-5y-10=0和l2:x+y+1=0的交点,且平行于l3:x+2y -5=0,则直线l的方程是________________.3. 已知圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则线段AB的垂直平分线的方程是________________.4. 不论m为何实数,直线(m-1)x+(2m-1)y=m-5都过定点________.5. 半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为__________________.6. 给出下列说法:①正方形的直观图是一个平行四边形,其相邻两边长的比为1∶2,有一内角为45°;②水平放置的正三角形的直观图是一个底边长不变,高为原三角形高的一半的三角形;③不等边三角形水平放置的直观图是不等边三角形;④水平放置的平面图形的直观图是平面图形.其中,正确的说法是________.(填序号)7. 如图,正方体的棱长为1,C,D分别是两条棱的中点,A,B,M是顶点,那么点M 到截面ABCD的距离是________.(第7题)(第8题)8. 如图,正四棱锥SABCD 的底面边长和各侧棱长都为2,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为________.9. 已知一圆的方程为x 2+y 2-6x -8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为________.10. 如图,在直三棱柱ABCA 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥DABC 1的体积为__________.二、 解答题11. 已知直线l 1:(a +1)x +y -a +1a 2+1=0,l 2:x -y -a 2-3a 2+1=0.(1) 当a 为何值时,l 1∥l 2? 当a 为何值时,l 1⊥l 2?(2) 若l 1与l 2相交,且交点在第一象限,求a 的取值范围.12. 如图,在长方体ABCD ­A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E 是棱AA1上任意一点.(1) 求证:BD⊥EC1;(2) 如果AB=2,AE=2,OE⊥EC1,求AA1的长.13. 如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.求证:(1) 直线OG∥平面EFCD;(2) 直线AC⊥平面ODE.14. 已知直线x -2y +2=0与圆C :x 2+y 2-4y +m =0相交,截得的弦长为255.(1) 求圆C 的方程;(2) 过原点O 作圆C 的两条切线,与抛物线y =x 2相交于M ,N 两点(异于原点).求证:直线MN 与圆C 相切.1. 5 解析:圆心C(-1,2)到原点距离d =(-1)2+22= 5.2. 8x +16y +21=0 解析:由直线l 过l 1与l 2的交点,故可设直线l 的方程为3x -5y -10+λ(x +y +1)=0,即(3+λ)x +(λ-5)y +λ-10=0.∵ l ∥l 3,∴ 3+λ1=λ-52≠λ-10-5,∴ λ=-11. ∴ 直线l 的方程为-8x -16y -21=0,即8x +16y +21=0.3. 3x -y -9=0 解析:AB 的垂直平分线经过两圆的圆心(2,-3),(3,0),所以AB 的垂直平分线的方程是y =3(x -3),即3x -y -9=0.4. (9,-4) 解析:在(x +2y -1)m -(x +y -5)=0中,令⎩⎨⎧x +2y -1=0,x +y -5=0,解得⎩⎨⎧x =9,y =-4.5. (x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36解析:设圆心坐标为(a ,b),由所求圆与x 轴相切且与圆x 2+(y -3)2=1相内切可知,所求圆的圆心必在x 轴的上方,且b =6,即圆心为(a ,6).由两圆内切可得a 2+(6-3)2=6-1=5,所以a =±4.所以所求圆的方程为(x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36.6. ④ 解析:对于①,若以该正方形的一组邻边所在的直线为x 轴、y 轴,则结论正确;但若以该正方形的两条对角线所在的直线为x 轴、y 轴,由于此时该正方形的各边均不在坐标轴上,则其直观图中相邻两边长不一定符合“横不变,纵减半”的规则.对于②,水平放置的正三角形的直观图是一个底边长不变,高比原三角形高的一半还要短的三角形.对于③,只要坐标系选取恰当,不等边三角形水平放置的直观图可以是等边三角形.7. 23 解析:设点M 到截面ABCD 的距离为h ,由V C ABM =V M ABC 知13·S △ABM ·1=13·S △ABC ·h ,又S △ABM =12,S △ABC =12·2·1+⎝ ⎛⎭⎪⎫242=34,∴ h =23.8. 43π 解析:如图,过S 作SO 1⊥平面ABCD ,由已知O 1C =12AC =1.在Rt △SO 1C 中, ∵ SC =2,∴ SO 1=SC 2-O 1C 2=1,∴ O 1S =O 1A =O 1B =O 1C =O 1D ,故O 1是过S ,A ,B ,C ,D 点的球的球心,∴ 球的半径为r =1,∴ 球的体积为43π·r 3=43π.9. 20 6 解析:圆的方程可化为(x -3)2+(y -4)2=52,∴ 圆心为P(3,4).∴ 过点(3,5)的最长弦为直径AC =10, 过点(3,5)的最短弦长BD =4 6.故四边形ABCD 的面积=12·AC ·BD =12×10×46=20 6. 10. 1311. 解:(1) 当(a +1)·(-1)-1=0且-a 2-3a 2+1-a +1a 2+1≠0时,l 1∥l 2,上式无解,即不存在a ∈R ,使l 1∥l 2.当(a +1)·1-1=0,即a =0时,l 1⊥l 2.(2) 方程联立得交点为(a -1a 2+1,-a 2+a +2a 2+1),所以⎩⎪⎨⎪⎧a -1a 2+1>0,-a 2+a +2a 2+1>0,解得1<a <2.12. (1) 证明:由题设条件,容易证明BD ⊥平面AA 1C 1C.又EC ⊂平面AA 1C 1C ,所以BD ⊥EC 1.(2) 解:设A 1E =x ,在Rt △AEB 中,AE =2,AB =2,则BE =6; 在Rt △BCC 1中,BC =2,CC 1=x +2,则BC 21=BC 2+CC 21=22+(x +2)2;在Rt △EA 1C 1中,EC 21=A 1E 2+A 1C 21=x 2+(22)2.又由(1)知BD ⊥EC 1且OE ⊥EC 1,BD ∩OE =O , ∴ EC 1⊥平面BDE.又BE ⊂平面BDE ,∴ EC 1⊥BE.∴ △BEC 1为直角三角形.∴ BC 21=BE 2+EC 21,即22+(x +2)2=6+x 2+(22)2,解得x =2 2.又AE =2,∴ AA 1=3 2.13. 证明:(1) ∵ 四边形ABCD 是菱形,AC ∩BD =O , ∴ 点O 是BD 的中点.∵ 点G 为BC 的中点,∴ OG ∥CD. ∵ OG ⊄平面EFCD ,CD ⊂平面EFCD ,∴ 直线OG ∥平面EFCD.(2) ∵ BF =CF ,点G 为BC 的中点, ∴ FG ⊥BC.∵ 平面BCF ⊥平面ABCD ,平面BCF ∩平面ABCD =BC ,FG ⊂平面BCF ,FG ⊥BC , ∴ FG ⊥平面ABCD.∵ AC ⊂平面ABCD ,∴ FG ⊥AC.∵ OG ∥AB ,OG =12AB ,EF ∥AB ,EF =12AB ,∴ OG ∥EF ,OG =EF ,∴ 四边形EFGO 为平行四边形, ∴ FG ∥EO. ∴ AC ⊥EO.∵ 四边形ABCD 是菱形,∴ AC ⊥DO. ∵ EO ∩DO =O ,EO ,DO 在平面ODE 内, ∴ AC ⊥平面ODE.14. (1) 解:∵ C(0,2),∴ 圆心C 到直线x -2y +2=0的距离为d =|0-4+2|5=25.∵ 截得的弦长为255,∴ r 2=⎝ ⎛⎭⎪⎫252+⎝ ⎛⎭⎪⎫552=1,∴ 圆C 的方程为x 2+(y -2)2=1.(2) 证明:设过原点的切线方程为y =kx ,即kx -y =0,∴ |0-2|k 2+1=1,解得k =±3, ∴ 过原点的切线方程为y =±3x. 不妨设y =3x 与抛物线的交点为M ,则⎩⎨⎧y =3x ,y =x 2,解得M(3,3),同理可求得N(-3,3), ∴ 直线MN :y =3.∵ 圆心C(0,2)到直线MN 的距离为1且r =1,。

相关文档
最新文档