常见矿物近红外光谱特征 PPT
《近红外光谱NIR》PPT课件
因此,依靠传统的建立工作曲线方法进行定量分析是十 分困难的。
光谱测量时不需要对分析样品进行前处理;
分析过程中不消耗其它材料或破坏样品;
分析重现性好、成本低。
对于经常的质量监控是十分经济且快速的,但对于 偶然做一两次的分析或分散性样品的分析则不太适 用。因为建立近红外光谱方法之前必须投入一定的 人力、物力和财力才能得到一个准确的校正模型。
编辑ppt
7
近红外光谱主要是反映C-H、O-H、N-H、 S-H等化学键的信息,因此分析范围几乎可覆盖 所有的有机化合物和混合物。加之其独有的诸多优 点,决定了它应用领域的广阔,使其在国民经济发 展的许多行业中都能发挥积极作用,并逐渐扮演着 不可或缺的角色。
(2)近红外光谱分析不是一种直接测定方法, 而是将未知样品测得的光谱通过训练集样品 得到的校正模型来预测其组成或性质。 因此,训练集样品的组成或性质的适用范 围、基础数据的准确性及选择计量学方法的 合理性,都将直接影响最终的分析结果。
编辑ppt
18
五、近红外光谱定量、定性分析
1.定量分析
用一组已知样品建立光谱数据与性质或组成数据 间的关系。
NIR的特点很适合于在线测定聚合物的结构 信息和动力学参数。 ∗NIR在聚合物合成及加工中的应用:
聚合物的合成与加工过程的控制; 聚合物中添加剂的分析; 聚合物分剂含量测定。
编辑ppt
23
4. 近红外光谱分析在生命科学与医药中的应用
矿物红外分析解读
中国地质大学(北京)矿物标型实验室
(2) 吸收峰的峰数
•理论上讲,分子的每一种振动形式都会产生 一个基频吸收峰,即一个多原子分子产生的 基频峰的数目=分子所有的振动形式的数目
中国地质大学(北京)矿物标型实验室
峰数与分子自由度有关。无瞬间偶基距变化时, 无红外吸收。
分子振动自由度指分子独立的振动数目,或基本的振动
带很弱,仪器无法检测; (4)有些吸收带落在仪器检测范围之外。
中国地质大学(北京)矿物标型实验室
基团频率(峰)位移
基团处于分子中某一特定的环境,因此它的振动不是孤立的 。基团确定后,m 固定,但相邻的原子或基团可通过电子效 应、空间效应等影响 K,使其振动频率发生位移。
在特征频率区,不同化合物的同一种官能团吸收振动总是出 现在一个窄的波数范围内,但不是一个固定波数,具体出现在 哪里与基团所处的环境有关,这就是红外光谱用于结构分析的 依据。
中国地质大学(北京)矿物标型实验室
1 红外光谱分析概述
1.1 红外光谱(IR)
分子中基团的振动和转动能级跃迁产生:振-转光谱
中国地质大学(北京)矿物标型实验室
1.2红外光谱的区域
近红外区(泛频区14290~4000cm-1): -OH,-NH,-CH的特征吸收区(组成及定量分析)
中红外区(基本振动区4000~400cm-1): 绝大多数有机和无机化合物的化学键振动基频区(分子中原子的振动及分
在一张红外光谱图上, 波数400-1300cm-1的波段通常被称为指纹区; 波数1300-4000cm-1的波段通常被称为特征区(官能团区) 。一般情况下,一张红外光谱图有5~30个吸收带(峰)。
中国地质大学(北京)矿物标型实验室
红外光谱中的重要波段
常见矿物近红外光谱特征(扬州)
2、二维数据(地表数据)建模
3、等值线图
3212000
3211800
3211600
3211400
3211200
3211000
3210800
3210600
3210400
3210200 570000
570200
570400
570600
570800
571000
571200
571400
571600
571800
7、控制和测量软件
8、数据处理软件
仪器测量方式
1、仪器准备:本底扫描、参比扫描、标准扫描 2、定性扫描:蚀变矿物识别 3、半定量扫描:矿物含量分析 4、建库扫描:建立本区特征数据库
数据建模与成图
1、数据建模: 包括一维数据建模和二维数据建模 2、数据成图: 包括等值线图、立体模型、光谱成像
1、一维数据(钻孔数据或沟槽数据)建模
8、蚀变矿物 填图矿床种类 可对高硫化物浅成热液矿床、低硫化 物浅成热液矿 床、斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、 铀矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
6、利用近红外光谱可以区分 含羟基之层状硅酸盐矿物(闪石等) 硫酸盐矿物(明矾石,石膏等) 碳酸盐矿物(方解石,白云石等)。 7、地质中的应用 矿物识别,为勘查、地质和土壤/基岩测量进 行矿物填图,钻孔和隧道(平硐)编录,蚀变系 统填图和目标区选择,成矿作用的指示,成矿潜 力评价,矿物地球化学和结晶学,采矿中的品位 控制,下脚料中粘土含量监测,辅助遥感图片的 判别等。
近红外光谱法PPT课件
37
近红外光谱定量分析的流程与步骤
38
❖ 拓扑学方法和ANN方法等常用于非线性关系的 关联。
❖ ANN和PLS方法结合使用,可改善数据关联的 能力。
39
建立定量模型的方法
❖ MLR只要知道混合物中某些组分的浓度或性质,就 可以建立复杂体系的校正模型。但是仅适用几个波 长下的光谱数据,常常会丢失许多光谱信息。
❖平滑处理涉及处理窗口的大小,较大的平 滑点数可以使信噪比提高,但同时也会导 致信号的失真。
30
多元散射校正MSC
❖ 主要是消除颗粒分布不均匀及颗粒大小产生的散 射影响
❖ 经过散射校正后的光谱有效地消除了原始光谱由 于颗粒度及装样误差所导致的基线平移和非线性
影响
31
人参总皂甙近红外光谱及定标建模分析
❖ 中国药典2005版首次收载
附录XIXK 近红外分光光度法指导原则
2
NIR的特点
❖分析速度快,分析效率高 ❖适用的样品范围广(液体、固体、半固体和
胶状体) ❖样品一般不需要预处理,分析成本较低 ❖测试重现性好 ❖不破坏样品,应用在活体分析和医药临床领
域 ❖不适合痕量分析以及分散性样品的分析
3
二、基本原理
❖ 合频近红外谱带位于2000~2500nm处,一级 倍频位于1400~1800nm处,二级倍频位于 900~1200nm处,三级和四级或更高级倍频 则位于780~900nm处。
11
12
不同化合物基团在近红外区的吸收谱带
13
不同化合物基团在近红外区的吸收谱带
14
❖分子振动从基态向高能级跃迁时产生的;记录 的主要是含氢基团 C-H、O-H、N-H、S -H的倍频和合频吸收。
红外光谱谱图解析Ppt讲课文档
伸缩振动 亚甲基:
变形振动
亚甲基
202222//44//1133
第六页,共六十九页。
甲基的振动形式
伸缩振动 甲基:
对称
υs(CH3) 2870 ㎝-1
不对称
υas(CH3) 2960㎝-1
变形振动 甲基
202222//44//1133
对称δs(CH3)1380㎝-1
不对称δas(CH3)1460㎝-1
202222//44//1133
第四页,共六十九页。
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区
25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
202222//44//1133
第二页,共六十九页。
一、认识红外光谱图
202222//44//1133
第三页,共六十九页。
1、红外光谱图
峰强:Vs(Very strong):很
强;s(strong):强;
m(medium):中强;
w(weak):弱。
峰形:表示形状的为宽峰、尖峰、肩峰
、双峰等类型
常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz学会 谱图集、API光谱图集、DMS光谱图集。
202222//44//1133
第十四页,共六十九页。
1、红外光谱信息区
常见的有机化合物基团频率出现的范围:4000 670 cm-1
依据基团的振动形式,分为四个区:
(1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S)
红外光谱图文课件PPT
04
红外光谱实验技术
Байду номын сангаас
样品制备技术
01
02
03
固体样品制备
将样品研磨成粉末,然后 与KBr混合压制成透明片 或与Ge晶片接触测量。
液体样品制备
将液体样品涂在CaF2或 NaCl晶片上,或使用液膜 法测量。
气体样品制备
将气体样品通过吸收池, 利用适当的吸收剂吸收后 进行测量。
红外光谱的表示方法
谱图
红外光谱图是以波长为横坐标,以透 射比或吸光度为纵坐标绘制的图谱。
峰的位置与强度
特征峰与峰带
特征峰是指特定官能团对应的吸收峰, 峰带则是由多个特征峰组成的区域, 可以反映分子中存在的官能团及其结 构特征。
峰的位置表示特定波长的红外光被吸 收,峰的强度则反映该波长下分子振 动的程度。
红外光谱图文课件
目录
• 红外光谱基本概念 • 红外光谱与分子结构的关系 • 红外光谱的应用 • 红外光谱实验技术
01
红外光谱基本概念
红外光谱的产生
分子振动
分子中的原子或分子的振动会产 生能量变化,当这些变化与红外 光相匹配时,光被吸收,形成红 外光谱。
分子振动类型
分子振动主要有伸缩振动和弯曲 振动两种类型,伸缩振动是指原 子沿键轴方向的往复运动,弯曲 振动则是指分子构型的变化。
02
仪器维护
定期对仪器进行校准和维护,确保测量准确性。
03
安全防范措施
了解并遵守实验室安全规定,避免直接接触有毒有害物质;在操作过程
中注意防止气体泄漏和火灾事故的发生;实验结束后,应按照实验室规
定正确处理废弃物。
常见矿物近红外光谱特征(扬州)
8、蚀变矿物 填图矿床种类 可对高硫化物浅成热液矿床、低硫化 物浅成热液矿 床、斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、 铀矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
• 3) Mg-OH矿物: 2300-2400nm为特征吸收峰 ) 矿物: 矿物 为特征吸收峰
• 含有Mg-OH的代表矿物有绿泥石、滑石、绿帘石、角闪石、 含有Mg-OH的代表矿物有绿泥石、滑石、绿帘石、角闪石、 Mg 的代表矿物有绿泥石 阳起石、金云母、蛇纹石、透闪石和黑云母等。 阳起石、金云母、蛇纹石、透闪石和黑云母等。 • Mg-OH矿物在1390-1420nm内都有OH+H2O二者合成峰,滑 Mg-OH矿物在1390-1420nm内都有OH+ 二者合成峰, 矿物在1390 内都有OH 石和阳起石为尖峰,吸光度强,闪石吸光度小, 石和阳起石为尖峰,吸光度强,闪石吸光度小,且反射率 Mg-OH特征光谱在2300-2400nm, 特征光谱在2300 低;Mg-OH特征光谱在2300-2400nm,典型的滑石特征光谱 2310nm处有很强的吸收峰,2280nm处有一个小的吸收峰 处有很强的吸收峰,2280nm处有一个小的吸收峰, 在2310nm处有很强的吸收峰,2280nm处有一个小的吸收峰, 通常以此峰作为衡量仪器分辨率标志, 2390nm和 通常以此峰作为衡量仪器分辨率标志,在2390nm和2464nm 处有很明显的吸收峰, 处有很明显的吸收峰,这两个吸收峰的质量作为评判仪器 信噪比标志;绿泥石(与黑云母易混淆) 2250信噪比标志;绿泥石(与黑云母易混淆)在2250-2260nm 处与2340 2350nm处有双峰 1910nm,2000nm处为水的双 2340- 处有双峰, 处与2340-2350nm处有双峰,1910nm,2000nm处为水的双 1410nm为OH+ 吸收峰,Fe取代Mg,2340nm强 取代Mg 峰,1410nm为OH+H2O吸收峰,Fe取代Mg,2340nm强, 2250nm弱且向短波方向移动;金云母(与Mg绿泥石接近) 2250nm弱且向短波方向移动;金云母( Mg绿泥石接近) 弱且向短波方向移动 绿泥石接近 2380-2390nm为单峰 2000nm无水吸收峰 为单峰, 无水吸收峰; 在2380-2390nm为单峰,2000nm无水吸收峰;蛇纹石在 2320nm吸收峰最强 2380-2390nm有吸收峰 吸收峰最强, 有吸收峰。 2320nm吸收峰最强,2380-2390nm有吸收峰。
红外光谱-全ppt课件
到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
较高频率。
C-H弯曲振动:1475-1300 cm-1 ,甲基的对称变形 振动出现在1375 cm-1处 ,对于异丙基和叔丁基,
吸收峰发生分裂。
亚甲基平面摇摆:800-720cm-1对判断-(CH2)n-的碳
链长度有用, n>4 725,
n=3 729-726,
n=2 743-734, n=1 785-770
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
1610cm-1 3040cm-1
1565cm-1 3060cm-1
精选课件
21
氢键效应(X-H):
形成氢键使电子云密度平均化(缔合态),使体系 能量下降,基团伸缩振动频率降低,其强度增加但峰形 变宽。
如: 羧酸 RCOOH (RCOOH)2
(5)所需样品用量少,且可以回收。红外光谱分析一次 用样量约1~5mg,有时甚至可以只用几十微克。
精选课件
5
红外光谱基本原理
化学键的振动与频率:
双原子分子中化学键的振动可按谐振子处理。
m1
m2
用虎克定律来表示振动频率、原子质量和键力常数之间的关系:
υ= 1 2
若用波数取代振动频率,则有下式:
μ为折合原子量
μ=
M1M2 M1 M2
常见矿物药近红外漫反射光谱特征归纳与分析
常见矿物药近红外漫反射光谱特征归纳与分析结合前期研究工作,对51种不同阴离子类型的常见矿物药的近红外漫反射光谱(near infrared diffuse reflectance spectrometry,NIR)特征谱段进行归纳和解析,并参考矿物学和地质学文献,确定矿物类中药NIR 特征谱段的归属,为其NIR快速鉴别提供理论依据。
结果表明,矿物药的NIR特征主要在8 000~4 000 cm-1,归属于矿物药中所含的水、羟基(OH)及碳酸根[CO2-3]等基团。
水峰具有一定的规律性:一般结构水与OH基团在7 000 cm-1附近有组合峰,尖锐而强,结晶水在7 000,5 100 cm-1附近有2个强峰,吸附水只在5 100 cm-1附近有宽峰。
不同类型矿物药中水的存在形式不同,含量不同,水峰特征不同,据此可用于矿物药的鉴别。
硫酸盐类矿物药多含结晶水,硅酸盐类多含结构水,而碳酸盐类中以吸附水为主,因此,以阴离子类型对矿物药进行分类在NIR分析中具有合理性。
此外,由于某些矿物药所含的阳离子类型、杂质种类以及结晶性和晶型存在差异,在4 600~4 000 cm-1谱段存在专属性的NIR特征,主要可归属于AlOH,MgOH,FeOH,SiOH,[CO2-3]等基团的特征吸收。
煅制过的矿物药常伴随水分和主要成分的改变,其NIR特征亦发生变化,可用于其炮制过程的监测。
该文对NIR技术在矿物药分析中的适用性和局限性进行讨论:绝大部分矿物药具有明显的NIR特征谱段,可用NIR作为系统分析的主要方法,少数矿物药的NIR特征峰不明显,如紫石英、朱砂、雄黄等,可尝试应用拉曼光谱进行补充。
这将为矿物药质量控制提供参考。
标签:近红外漫反射光谱;矿物药;特征谱段;快速鉴别矿物类中药是传统中药(包括植物药、动物药和矿物药)的重要组成部分之一。
由于矿物的形态一般较为类似,一种矿物常伴生有其他矿物,所以矿物药(依据形态和成分)的鉴别较为困难,在市场中常有混淆品,加上其品种和用量少,研究较为薄弱,质量标准不够完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、立体模型
5、光谱成像
400 300 200 100
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
三、矿物的近红外光谱特征
1、常见蚀变矿物及化学式
2、常见矿物倍频及合成频率位置
3、蚀变矿物光谱特征
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
1、仪器结构
2、单色仪光路
3、积分球
4、电子电路
5、底层软件
下位机软件
模块1 系统自检
模块2 系统调零
模块3 光谱位置定位
模块4 全谱扫描
模块5 定波长测量
模块6 通讯模块
模块7 工作状态指示
步进电机子 程序
采集子程序
USB通讯程序
1) AL-OH矿物:2170-2210nm为特征吸收 大多数矿物都有铝离子,特别是硅酸盐矿物,含有AL-OH的代表矿物有叶 蜡石、黄玉、白云母、绢云母、伊利石、锂云母、高岭石、地开石、蒙脱 石、钠长石,硬水铝石、刚玉等,其波长在1390-1440nm处有OH+H2O二 者合成峰,其中H2O为结构水;在1940-1950nm处有H2O吸收峰,其中H2O 为吸附水。2170-2210nm为AL-OH的吸收峰,通常由于地质作用矿物中的 阳离子Al被取代,产生贫Al现象,使AL-OH吸收峰位发生位移,一般地贫 Al时峰位向高波长位移,此位移量是红外光谱建模的一个参数。通常白云 母、绢云母、伊利石、锂云母和蒙脱石的特征峰在2200nm附近;21602165nm内的特征峰为高岭石,随着结晶度的增加,肩峰向长波方向移动, 原地型高岭石结晶度好,峰形尖锐;搬运型高岭石结晶度低,峰形缓,需 要指出的是,高岭石在1410nm处有双峰,一般对称,在2160-2165nm也有 双峰,但不对称,这个特征比较容易识别高龄石。需要指出的是,迪开石 也有高龄石特性,只是在2160-2165nm一般双峰对称;叶蜡石是高温形成的, 在1394nm附近有尖的结构水吸收峰,在2160-2170nm也有很尖的吸收峰, 因此通常可作为仪器标样,由于高温含水量少,在1390-1396nm处吸收峰不 明显。
• 2)Fe-OH矿物,硫酸盐矿物
• Fe-OH矿物 2210-2300nm为特征吸收
• 在矿物组成中,Fe离子是重要元素之一。 其代表矿物有明矾石、黄铁钾矾,囊脱石, 皂石,锂皂石、石膏、纤铁矿、菱铁矿、 阳起石、直闪石和石榴子石等,特别指出 的是,铁氧化物的吸收峰一般在1100nm前, 而现有的矿物分析仪波长范围1300- 2500nm,因此有的矿物无法测到,但上述 的代表矿物可以进行检测。.明矾石在 1420nm处有OH+H2O二者合成峰,FeOH特征峰K明矾石在2210nm处,Na明矾
UART通讯子程序
USB固件底层驱动 程序
6、仪器指标
仪器测量范围 :1300nm-2500nm;
仪器分辨率 :〈8nm;
波长稳定性 :±1nm;
波长重复性 :±1nm;
波长扫描间隔 :2nm,4nm;
信噪比
:63dB;
探测器
:PbS(Te制冷);
仪器体积 :255×110×187;
仪器重量 :4.2kg;
5、典型应用范围:1300nm~2500nm
6、利用近红外光谱可以区分
含羟基之层状硅酸盐矿物(闪石等)
硫酸盐矿物(明矾石,石膏等)
碳酸盐矿物(方解石,白云石等)。
7、地质中的应用
矿物识别,为勘查、地质和土壤/基岩测量进行 矿物填图,钻孔和隧道(平硐)编录,蚀变系统 填图和目标区选择,成矿作用的指示,成矿潜力 评价,矿物地球化学和结晶学,采矿中的品位控 制,下脚料中粘土含量监测,辅助遥感图片的判 别等。
具体意义如下:
1)提供矿化环境的特征,如交代类型和交代带等。
2)鉴别原岩类型:鉴别高岭石,表明其原岩是长英质岩石, 发现蒙脱石表明原岩是镁铁质岩石
3) 指示矿化关系,富镁的绿泥石接近矿化中心,富钾的 白云母更和矿化有关
4)指示风化范围和过程,如三水铝石表示晚期的铝土质环 境
5)指示矿化作用的化学过程,(如K/Na交代)及温度 (叶腊石,黄玉,地开石等矿物是高温矿物)
的近红外光谱,根据矿物某些官能团在近红外区域的特征 吸收光谱可以区分不同的矿物及同一矿物的不同结晶度。
3、对近红外光谱产生吸收的官能团种类 氢基团C-H (甲基、亚甲基、甲氧基、羧基、 方基等), 羟基O-H,巯基S-H,氨基N-H等
4、官能团吸收频率范围 可见光:400nm-1100nm,氧化物 近红外:1100nm-2500nm,层状硅酸岩矿物等 热红外:8000nm-12000nm,不含水矿物
常见蚀变矿物的近红外光谱特征
2008年9月21日,扬 州
主内容
1、近红外矿物分析法的原理和应用概况 2、便携式近红外矿物分析仪原理及应用 3、常见蚀变矿物的光谱特征 4、几个应用实例
近红外矿物分析法的原理 和应用概况
1、近红外波长范围 780nm~2500nm
2、矿物的近红外光谱特征原理 矿物晶格中原子间的化学键的弯曲和伸缩吸收某些区域
2、数据成图: 包括等值线图、立体模型、光谱成像
1、一维数据(钻孔数据或沟槽数据)建模
2、二维数据(地表数据)建模
3、等值线图
3212000 3211800 3211600 3211400 3211200 3211000 3210800 3210600 3210400 3210200
570000 570200 570400 570600 570800 571000 571200 571400 571600 571800
8、蚀变矿物 填图矿床种类
可对高硫化物浅成热液矿床、低硫化 物浅成热液矿床、 斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、铀 矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
备用电源 :〉2小时 ;
软件
:PC机应用程序;微型PDA应用程序。
7、控制和测量软件
8、数据处理软件
仪器测量方式
1、仪器准备:本底扫描、参比扫描、标准扫描 2、定性扫描:蚀变矿物识别 3、半定量扫描:矿物含量分析 4、建库扫描:建立本区特征数据库
数据建模与成图
1、数据建模: 包括一维数据建模和二维数据建模