高一数学必修四测试卷
高中数学必修4试题含答案
11.设α角属于第二象限,且2cos 2cosαα-=,则2α角属于()A .第一象限B .第二象限C .第三象限D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有()A .①B .②C .③D .④3.02120sin 等于()A .23±B .23C .23-D .214.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于()A 43-B 34-C 43D .345.若α是第四象限的角,则πα-是()A .第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值()A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<;③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。
3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。
4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。
5.与02002-终边相同的最小正角是_______________。
三、解答题1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos+的值.2.已知2tan =x ,求xx x x sin cos sin cos -+的值。
3.化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4.已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值。
高中数学必修四综合测试(含解析)
模块综合质量测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.[2013·长春外国语高一模拟]tan(-300°)的值为( ) A. 33 B. -33 C. 3D. - 3[解析] tan(-300°)=-tan300°=-tan(360°-60°) =tan60°= 3. [答案] C2.若tan(α-3π)>0,sin(-α+π)<0,则α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 由已知得tan α>0,sin α<0,∴α在第三象限. [答案] C3.设角α的终边过点P (-4,3),则2sin α+cos α的值是( ) A.25 B.25或-25 C .-25D .-34[解析] ∵sin α=35,cos α=-45,∴2sin α+cos α=25. [答案] A4.下列命题中正确的是( ) A .若λa +μb =0,则λ=μ=0 B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2[解析] 根据平面向量基本定理,必须在a ,b 不共线的情况下,若λa +μb =0,则λ=μ=0;选项B 显然错误;若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分两向量所成的角为0°和180°两种;a ⊥b ⇒a ·b =0,(a ·b )2=0.[答案] D5.若3OC →-2OA →=OB →,则( ) A.AC →=13AB → B.AC →=23AB → C.AC →=-13AB →D.AC →=-23AB →[解析] 原式化为3(OC →-OA →)=OB →-OA →, ∴3AC →=AB →,AC →=13AB →. [答案] A6.[2013·哈师大附中高一月考]若函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)的图象如下图所示,则函数f (x )=( )A. sin(2x -π6)B. sin(x +π6)C. sin(2x +π6) D. sin(x -π6)[解析] 由图知A =1,T 4=π6+π12=π4, ∴T =π,ω=2. ∴f (x )=sin(2x +φ). ∴f (π6)=sin(2×π6+φ)=1, 即π3+φ=2k π+π2,(k ∈Z ), ∴φ=2k π+π6(k ∈Z ).∵|φ|≤π2,∴φ=π6,∴f (x )=sin(2x +π6). [答案] B7.设a >0,对于函数f (x )=sin x +asin x (0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值[解析] 令t =sin x ,t ∈(0,1],则函数f (x )=sin x +asin x (0<x <π)的值域为函数y =1+a t ,t ∈(0,1]的值域.又a >0,所以y =1+at ,t ∈(0,1]是一个减函数,故选B.[答案] B8.[2013·吉林实验高一联考]若f (x )=3sin(2x +φ)+a ,对任意实数x 都有f (π3+x )=f (π3-x ),且f (π3)=-4,则实数a 的值等于( )A. -1B. -7或-1C. 7或1D. ±7[解析] 由f (π3+x )=f (π3-x ),得 f (x )的图象关于直线x =π3对称. ∴2×π3+φ=k π+π2(k ∈Z ). ∴φ=k π-π6(k ∈Z ). ∵f (π3)=-4,∴f (π3)=3sin(2×π3+φ)+a =3sin(2π3+k π-π6)+a =3sin(k π+π2)+a =3cos k π+a =-4.当k 为奇数时,-3+a =-4,得a =-1; 当k 为偶数时,3+a =-4,得a =-7. [答案] B9.已知a =(cos α,sin α),b =(cos β,sin β)且a ≠±b ,那么a +b 与a -b 的夹角大小为( )A.π3B.π6C.π2D .π[解析] ∵|a |=1,|b |=1,∴|a |=|b |,∴(a +b )·(a -b )=|a |2-|b |2=0. ∴夹角为π2. [答案] C10.已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a +3b ,d =k a -b (k ∈R ),且c ⊥d ,那么k 的值为( )A .-6B .6C .-145D.145[解析] a ·b =1×2×cos60°=1,∵c ⊥d ,∴c ·d =(2a +3b )·(k a -b )=2k a 2-2a ·b +3k a ·b -3b 2=2k -2+3k -12=0,∴k =145.[答案] D11.已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB →=m +n ,AC →=m -3n ,D 为BC 边的中点,则|AD →|=( )A .1B .2C .3D .4 [解析] 由题意知:|AD →|=12|AB →+AC →|=12|2m -2n |=|m -n |=|m -n |2=|m |2+|n |2-2|m ||n |cos π6=1.[答案] A12.已知f (x )=sin(x +π2),g (x )=cos(x -π2),则下列结论中正确的是( )A .函数y =f (x )g (x )的周期为2πB .函数y =f (x )g (x )的最大值为1C .将y =f (x )的图象向左平移π2个单位后得y =g (x )的图象 D .将y =f (x )的图象向右平移π2个单位后得y =g (x )的图象 [解析] f (x )=sin(x +π2)=cos x ,g (x )=cos(x -π2)=sin x ,故只能选D.[答案] D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上.)13.设向量a =(3,-2),b =(1,2),若a +λb 与a 垂直,则实数λ=__________.[解析] 若a +λb 与a 垂直,则(a +λb )·a =0,即a 2+λa ·b =0.a 2=13,a ·b =-1.所以13-λ=0,即λ=13.[答案] 1314.[2013·南京市高一第二次联考]已知α为第三象限角,且 1-sin α1+sin α+1cos α=2,则sin α-cos αsin α+2cos α的值为________.[解析] 由1-sin α1+sin α+1cos α=2,得|1-sin α||cos α|+1cos α=2.∵α为第三象限角,∴1-sin α-cos α+1cos α=2,即sin α=2cos α,tan α=2. sin α-cos αsin α+2cos α=tan α-1tan α+2=2-12+2=14.[答案] 1415.[2013·南昌市高一月考]已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.[解析] 由对称轴完全相同知两函数周期相同, ∴ω=2,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6. 由x ∈⎣⎢⎡⎦⎥⎤0,π2,得-π6≤2x -π6≤56π. ∴-32≤f (x )≤3.[答案] ⎣⎢⎡⎦⎥⎤-32,3 16.[2013·温州十校高一检测]下面有五个命题: ①终边在y 轴上的角的集合是{β|β=2k π+π2,k ∈Z }.②设一扇形的弧长为4 cm ,面积为4 cm 2,则这个扇形的圆心角的弧度数是2.③函数y =sin 4x -cos 4x 的最小正周期是2π.④为了得到y =3sin2x 的图象,只需把函数y =3sin(2x +π3)的图象向右平移π6.⑤函数y =tan(-x -π)在⎣⎢⎡⎭⎪⎫-π,-π2上是增函数.所有正确命题的序号是________.(把你认为正确命题的序号都填上)[解析] 终边在y 轴上的角的集合为{β|β=k π+π2,k ∈Z },故①不正确;由S =12lR ,得4=12×4×R ,R =2,所以α=l R =42=2,故②正确;y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,所以周期为π,故③不正确;④正确:y =tan(-x -π)=-tan x 在[-π,-π2)上不可能是增函数,故⑤不正确.[答案] ②④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)已知A 、B 、C 三点的坐标分别是(-2,1)、(2,-1)、(0,1),且CP →=3CA →,CQ →=2CB →,求点P 、Q 和向量PQ →的坐标.[解] ∵A (-2,1)、B (2,-1)、C (0,1), ∴CA →=(-2,0),CB →=(2,-2). 于是CP →=3CA →=(-6,0), CQ →=2CB →=(4,-4).设P (x ,y ),则有CP →=(x ,y -1).∴⎩⎪⎨⎪⎧ x =-6,y -1=0,解得⎩⎪⎨⎪⎧x =-6,y =1. 即P 点的坐标为(-6,1). 同理可得Q (4,-3). 因此向量PQ →=(10,-4).18.(本题满分12分)已知α为第二象限角,且sin α=154,求sin (α+π4)sin2α+cos2α+1的值.[解] sin (α+π4)sin2α+cos2α+1=22(sin α+cos α)2sin αcos α+2cos 2α =2(sin α+cos α)4cos α(sin α+cos α), 因α为第二象限角,且sin α=154,所以cos α=-14. ∴sin α+cos α≠0,∴原式=24cos α=- 2.19.(本题满分12分)设向量a ,b 满足|a |=|b |=1及|3a -2b |=7. (1)求a ,b 的夹角θ; (2)求|3a +b |的值.[解] (1)由已知得(3a -2b )2=7, 即9|a |2-12a ·b +4|b |2=7. 又|a |=1,|b |=1代入得a ·b =12. ∴|a ||b |cos θ=12, 即cos θ=12.又θ∈[0,π],∴θ=π3. ∴向量a ,b 的夹角θ=π3.(2)由(1)知,(3a +b )2=9|a |2+6a ·b +|b |2=9+3+1=13.∴|3a +b |=13.20.(本题满分12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的最小正周期及解析式;(2)设g (x )=f (x )-cos2x ,求函数g (x )在区间[0,π2]上的最大值和最小值.[解] (1)由图可得A =1,T 2=2π3-π6=π2, 所以T =π. 所以ω=2.当x =π6时,f (x )=1,可得sin(2×π6+φ)=1. 因为|φ|<π2,所以φ=π6.所以f (x )的解析式为f (x )=sin(2x +π6). (2)g (x )=f (x )-cos2x =sin(2x +π6)-cos2x =sin2x cos π6+cos2x sin π6-cos2x=32sin2x -12cos2x=sin(2x -π6).因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.当2x -π6=π2,即x =π3时,g (x )有最大值,最大值为1;当2x -π6=-π6,即x =0时,g (x )有最小值,最小值为-12.21.(本题满分12分)[2013·吉林实验高一模拟]关于x 的方程8sin(x +π3)cos x -23-a =0在开区间(-π4,π4)上.(1)若方程有解,求实数a 的取值范围;(2)若方程有两个不等实数根,求实数a 的取值范围.[解] (1)令y =8sin(x +π3)cos x -2 3=8sin x cos π3·cos x +8cos x ·sin π3cos x -2 3=4sin x cos x +43cos 2x -2 3=2sin2x +23(cos2x +1)-2 3=2sin2x +23cos2x=4sin(2x +π3),要使方程有解,即使4sin(2x +π3)=a 有解.∵x ∈(-π4,π4),∴2x +π3∈(-π6,56π).∴4sin(2x +π3)∈(-2,4],∴a ∈(-2,4].(2)作出y =4sin(2x +π3)的图象如下图要使方程有两解由图知2<a <4,故a 的取值范围为(2,4).22.(本题满分12分)已知向量OA →=(λsin α,λcos α),OB →=(cos β,sin β),且α+β=5π6,其中O 为原点.(1)若λ<0,求向量OA →与OB →的夹角;(2)若λ∈[-2,2],求|AB →|的取值范围.[解] (1)因为|OA →|=(λsin α)2+(λcos α)2=-λ,|OB →|=1,OA →·OB →=λsin αcos β+λcos αsin β=λsin(α+β)=λsin 5π6=12λ.设OA →与OB →夹角为θ,则cos θ=12λ-λ×1=-12. 又因为θ∈[0,π],所以θ=2π3,所以OA →与OB →的夹角为2π3.(2)|AB →|=|OB →-OA →| =(cos β-λsin α)2+(sin β-λcos α)2 =1+λ2-2λ(sin αcos β+cos αsin β) =1+λ2-2λsin (α+β)=1+λ2-2λsin 5π6 =1+λ2-λ=(λ-12)2+34. 因为λ∈[-2,2],所以当λ=12时有最小值32,λ=-2时有最大值7.所以|AB →|的取值范围是[32,7].。
人教版高一数学必修1必修4期末测试卷附答案
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
高一数学必修4第三章综合检测题
第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。
高中数学必修四试卷(含详细答案)
高中数学必修四试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b.(3)向量AB 与向量BA相等.(4)若非零向量AB 与CD是共线向量,则A ,B ,C ,D 四点共线.以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD = ,AB DC =,那么四边形ABCD 的形状是A.矩形B.菱形C.正方形D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、点G ,则下列各等式中不正确的是 A.23BG BE = B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a = ,1),(sin b α= ,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形.(3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+.以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知3sin 25α=,53[,]42αππ∈. (1)求cos 2α及cos α的值;(2)求满足条件sin()sin()2cos 10x x ααα--++=-的锐角x .已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.(本小题满分13分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)下图是sin()I A t ωϕ=+(0,)2πωϕ><求sin()I A t ωϕ=+的解析式; (2)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+ 那么ω的最小正整数值是多少?已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =---.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA = ,(5,1)OB = ,(2,1)OM =,点P 是直线OM 上的一个 动点,且8PA PB =- ,求OP的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x x b =- ,且[,]2x ππ∈. (1)求a b 及a b +;(2)求函数()f x a b a b =++的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )10x α-=-,所以1sin 2x =. ………………………(11分)因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分) 17.解:(1)由图可知300A =,设11900t =-,21180t =, ……………………(2分)则周期211112()2()18090075T t t =-=+=, …………………………(4分) ∴2150T πωπ==. ………………………………………………………(6分) 1900t =-时,0I =,即1sin[150()]0900πϕ⋅-+=,sin()06πϕ-=. 而2πϕ<, ∴6πϕ=.故所求的解析式为300sin(150)6I t ππ=+. ……………………………(8分)(2)依题意,周期1150T ≤,即21150πω≤,(0)ω>, …………………(10分)∴300942ωπ≥>,又*N ω∈,故最小正整数943ω=. ……………(13分)18.解:(1)已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =--- ,若点,,A B C 能构成三角形,则这三点不共线,即AB 与BC不共线. ……(4分)(3,1)AB = ,(2,1)AC m m =--,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由ABBC CA +>去解答,相应给分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =.∵点P 在直线OM 上,∴OP 与OM 共线,而OM(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =. ………………………………(2分)∵(12,7)PA OA OP y y =-=-- ,(52,1)PB OB OP y y =-=--,……(4分)∴(12)(52)(7)(1)PA PB y y y y =--+-- ,即252012PA PB y y =-+ . …………………………………………………(6分) 又8PA PB =- , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. ……………………………………(8分) (3,5),(1,1)PA PB =-=-.于是8PA PB PA PB ===-. …………………………………(10分)∴cos PA PB APB PA PB ∠===⋅. ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=, ……………………(3分)a b += ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)
人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
高一必修四数学正切函数练习
§1.4.3正切函数的性质和图象班级 姓名 学号 得分一、选择题 1.函数y =tan (2x +6π)的周期是 ( ) (A) π (B)2π (C)2π (D)4π 4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的周期是 A .πB .π2C .2πD .4π3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( ) (A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z} (B) {x |4k π<x <4k π+2π,k ∈Z} (C) {x |2k π<x <2k π+π,k ∈Z} (D)第一、三象限 5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( ) (A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( ) (A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 1、tan (,)2y x x k k Z ππ=≠+∈在定义域上的单调性为( ).A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间(,)()22k k k Z ππππ-++∈上为增函数 D .在每一个开区间(2,2)()22k k k Z ππππ-++∈上为增函数2、下列各式正确的是( ).A .1317tan()tan()45ππ-<-B .1317tan()tan()45ππ->- C .1317tan()tan()45ππ-=- D .大小关系不确定 3、若tan 0x ≤,则( ).A .22,2k x k k Z πππ-<<∈ B .2(21),2k x k k Z πππ+≤<+∈21世纪教育网C .,2k x k k Z πππ-<≤∈ D .,2k x k k Zπππ-≤≤∈5、函数sin tan y x x =+的定义域为( ).A .|22,2x k x k k ππππ⎧⎫≤<+∈⎨⎬⎩⎭ B . |22,2x k x k k ππππ⎧⎫<≤+∈⎨⎬⎩⎭{}C.|22,|2,2x k x k k x x k k Z ππππππ⎧⎫≤<+∈⋃=+∈⎨⎬⎩⎭D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Zππ≠+∈6、直线y a =(a为常数)与正切曲线tan (y x ωω=为常数,且0)ω>相交的两相邻点间的距离为( ). A .π B .2πωC .πωD .与a 值有关二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ;8.函数y =tan 2x -2tan x +3的最小值是 ;9.函数y =tan(2x +3π)的递增区间是 ;3、函数⎪⎭⎫ ⎝⎛+=3tan πx y 的单调区间是_________________6.函数y=tan(2x+π4)的单调递增区间是__________.15.求函数y =3tan (6π-4x)的周期和单调区间. 7、函数tan()4y x π=-的定义域是_____________8、函数tan()(0)6y ax a π=+≠的周期为_______三. 解答题11.不通过求值,比较下列各式的大小 (1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π)12.求函数y =tan 1tan 1x x +-的值域.*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π. 2、函数⎥⎦⎤⎝⎛-∈=4,3,tan ππx x y 的值域是A .(]1,∞- B .(]1,3-C .()+∞∞-,D .()+∞-,35、要得到函数x y 2tan =的图象,只须把⎪⎭⎫ ⎝⎛+=32tan πx y 的图象A .左移3π个单位 B .右移3π个单位 C .左移6π个单位 D .右移6π个单位6、观察正切曲线,满足条件1tan <x 的x 的取值范围是(其中k ∈Z) ( )A .(2k π-4π,2k π+4π)B .(k π,k π+4π) C .(k π4π-,k π+4π)D .(k π+4π,k π+43π)二、填空题 1、函数xy tan 11-=的定义域是 2、函数x y tan =图象的对称中心是5、观察正切曲线,满足条件3tan >x 的x 的取值范围是6、4tan ,3tan ,2tan ,1tan 由小到大排列为1、 求函数()()3tan 13tan 2-++-=x x x f 的定义域.2、 已知()1tan sin ++=x b x a x f ,75=⎪⎭⎫ ⎝⎛πf ,求⎪⎭⎫⎝⎛599πf 的值.4.若sin α>tan α>cot α(-π2 <x<π2 ),则α的取值范围是( )A.(- π2 ,π4 )B. (-π4 ,0)C.(0, π4 )D.( π4 ,π2 )7.函数 y=sinx 与 y=tanx 的图象在区间[0,2π]上交点的个数是________.9.函数y=lg tanx+1tanx-1 的奇偶性是__________.10.函数的y=|tan(2x-π3 )|周期是___________.13. 求函数y =)6πtan(1tan +-x x 的定义域 14. 求下列函数的值域:(1)y =2cos 2x +2cos x -1; (2)y =1cos 21cos 2-+x x .9、下列函数不等式中正确的是( ).A .43tan tan 77ππ>B .23tan tan 55ππ<[来源:21世纪教育网] C . 1315tan()tan()78ππ-<- D .1312tan()tan()45ππ-<- 一、选择题1、下列不等式中,正确的是( )A . tan74π>tan73π B . tan(-413π)>tan(-512π)C . tan 4<tan3D . tan281°>tan665° 2、下列命题中正确的是( )A .x y tan =在第一象限单调递增.B . 在x y tan =中,x 越大,y 也越大C . 当x >0时,x tan >0.D . x y tan =的图象关于原点对称3、若βαππβα22tan tan ),23,(,>∈且,则 ( )A .α<βB .α>βC .α+β>3πD .α+β<2π4、直线y = a (a 为常数)与y = tan ωx (ω>0)的相邻两支的交点距离为 ( )A .πB .ωπ C .ωπ2 D .与a 有关的值5、在下列函数中,同时满足的是( )①在(0,2π)上递增 ②以2π为周期 ③是奇函数 A .y =tan x B .y =cos x C .y =tan 21x D .y =-tan x6、在区间(-π23,π23)内,函数x y tan =与函数x y sin =图象交点的个数为( )A .1B .2C .3D .5二、填空题1、使函数y=tanx 和y=sinx 同时为单调递增函数的区间是.2、函数y=3tan(21x 4π-)的定义域是 ,值域是 .3、函数y=3tan(2x +3π)的对称中心的坐标是 .4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的图象被平行直线 隔开,图象与x 轴交点的横坐标是 ,与y 轴交点的纵坐标是 ,函数的周期是 ,定义域是 ,值域是,它的奇偶性是 . 5、比较大小: (1)︒222tan︒223tan ; (2)31)44(tan ︒ 21)44(tan ︒。
(word完整版)高一数学必修四第一章测试题
宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。
高一必修四数学向量试卷
必修四高一数学向量试卷一.选择题(共12小题)1.在△ABC中,点D在线段BC延长线上,且,点O在线段CD上(与点C、D不重合),若的取值范围是()A. B. C.D.2.已知,是不共线的向量,=λ+,=+μ(λ、μ∈R),那么A、B、C三点共线的充要条件为()A.λ+μ=2 B.λ﹣μ=1 C.λμ=﹣1 D.λμ=13.在△ABC中,M是AB边所在直线上任意一点,若=﹣2+λ,则λ=()A.1 B.2 C.3 D.44.已知O、A、B、C为同一平面内的四个点,若2+=,则向量等于()A.﹣B.﹣+C.2﹣ D.﹣﹣25.设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若(λ1,λ2为实数),则λ1+λ2的值为()A.1 B.2 C.0.5 D.0.256.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1 D.27.过坐标原点O作单位圆x2+y2=1的两条互相垂直的半径OA、OB,若在该圆上存在一点C,使得=a+b(a、b∈R),则以下说法正确的是()A.点P(a,b)一定在单位圆内B.点P(a,b)一定在单位圆上C.点P(a,b)一定在单位圆外D.当且仅当ab=0时,点P(a,b)在单位圆上8.正三角形ABC内一点M满足=m+n,∠MCA=45°,则的值为()A.﹣1 B.+1 C.D.9.ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若=,=,则=()A.+B.+C.+D.+10.已知平面向量=(1,1),=(1,﹣1),则向量﹣=()A.(﹣2,﹣1)B.(﹣2,1)C.(﹣1,0)D.(﹣1,2)11.已知向量=(2,﹣1),=(1,7),则下列结论正确的是()A.⊥B.∥C.⊥(+)D.⊥(﹣)12.在△ABC中,∠C=90°,=(k,1),=(2,3),则k的值是()A.5 B.﹣5 C.D.﹣二.填空题(共4小题)13.设点P是△ABC所在平面内一点,且,则=.14.在△ABC中,,点E是线段AD上一动点,(不含端点),若=,则=_____ 15.在平行四边形ABCD中,AC与BD交于点O,=0.5,CE的延长线与AD交于点F,若=+(λ,μ∈R),则λ+μ=.16.已知向量=(6,2),向量=(y,3),且∥,则y等于.三.解答题(共8小题)17.在△ABC中,角A、B、C对边分别为a、b、c,点(a,b)在直线2xcosB﹣ycosC=ccosB上.(1)求cosB的值;(2)若a=,b=2,求角A的大小及向量在方向上的投影.18.设△ABC的三个内角A,B,C所对的边分别为a,b,c,点O为△ABC的外接圆的圆心,若满足a+b≥2c.(1)求角C的最大值;(2)当角C取最大值时,己知a=b=,点P为△ABC外接圆圆弧上﹣点,若,求x•y的最大值.19.在△ABC中,角A、B、C所对的边分别为a,b,c.已知a+c=3,b=3.(I)求cosB的最小值;(Ⅱ)若=3,求A的大小.20.设函数f(x)=•,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)图象经过点(Ⅰ)求实数m值;(Ⅱ)求函数f(x)的最小值及此时x取值集合.21.平面直角坐标系xOy中,向量,且.(1)求x与y之间的关系式;(2)若,求四边形ABCD的面积.22.已知向量,,函数f(x)=,x∈R.(1)求函数f(x)的最大值;(2)若,且f(x)=1,求的值.23.已知A(﹣1,2),B(2,8),(1)若=,=﹣,求的坐标;(2)设G(0,5),若⊥,∥,求E点坐标.24.已知非零向量,满足||=1,且(﹣)•(+)=.(1)求||;(2)当•=时,求向量与+2的夹角θ的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:∵===﹣y,∵,点O在线段CD上(与点C、D不重合),∴y,∵,∴故选D.2.【解答】解:若A、B、C三点共线,则向量∥,即存在实数k,使得=k,∵=λ+,=+μ, ∴λ+=k(+μ),可得,消去k得λμ=1即A、B、C三点共线的充要条件为λμ=1故选:D3.【解答】解:∵△ABC中,M是AB边所在直线上任意一点,∴存在实数μ,使得=μ,即化简得=,∵=﹣2+λ,∴结合平面向量基本定理,得,解之得λ=3,μ=﹣故选C,4.【解答】解:∵2+=,∴点A、B、C共线,且A为BC中点,则点O的位置有5种情况,如图:(1)∵,∴;(2)=+2()=;(3)=+2()=;(4)=+2()=;(5)=+2()=;故选:C.5.【解答】解:由题意,如图,因为AD=AB,BE=BC,∴,又(λ1,λ2为实数),∴,∴λ1+λ2=.故选C.6.【解答】解:如图所示,∵=+,∴PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.∴=1.故选:C.∵,||==1 7.【解答】解:易知||=,∴||=,∴OP==1,又圆的半为1,∴点P一定在单位圆上,故选:B8.【解答】解:如图,设正三角形的边长为a,由得:;=;∴;∴得,;∴;∴.故选:D.9.【解答】解:如图所示,▱ABCD中,△DEF∽△BEA,∴==,再由AB=CD可得=,∴=;又=,=,∴=﹣=﹣=﹣,∴=﹣;又=﹣=﹣=+,∴=+=(+)+(﹣)=+.故选:C.10.【解答】解:平面向量=(1,1),=(1,-1),则向量﹣=(1,1)- =(-1,2).故选D 11.【解答】解:向量=(2,-1),=(1,7),+=(3,6).•(+)=6﹣6=0.⊥(+)=0.故选C.12.【解答】解:∵=(k,1),=(2,3),∴=﹣=(k﹣2,﹣2),∵∠C=90°,∴•=0,∴2(k﹣2)+3×(﹣2)=0,解得k=5,故选:A.二.13.【解答】解:因为+=2,所以点P为线段AC的中点,如图:即+=.答案14.【解答】解∵,∴=,∴==+,∴==(λ+μ)+=(-λ-μ)+.∵A,D,E三点共线,∴﹣λ﹣μ+=1,∴λ+1=.∴=.答案.15.【解答】解∵△FED∽△CEB,DF:CD=DE:EA=1:3,过点F作FG∥BD交AC于G,FG:DO=2:3,AG:AO=2:3,∴=,∵=+=,∴=+,=,λ+μ=﹣.故答案为:﹣.16.【解答】解:∵向量=(6,2),向量=(y,3),且∥,∴2y﹣6×3=0,解得y=9.故答案为:9.三.解答题(共8小题)17.【解答】解:(1)因为点(a,b)在直线2xcosB﹣ycosC=ccosB上.所以2acosB﹣bcosC=ccosB,由正弦定理变形得2sinAcosB﹣sinBcosC=sinCcosB,所以2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,又sinA≠0,所以cosB=;(2)由(1)得B=60°,因为a=,b=2,所以cosA=,所以A=arccos;因为∠B=60°,所以向量在方向上的投影为acos60°=.18.【解答】解:(1)在△ABC中由余弦定理得,;∵a+b≥2c;∴;∴;∴;∵,当且仅当a=b时取“=”;∴;即;∴;∴角C的最大值为;(2)当角C取最大值时,∵;∴△ABC为等边三角形;∴O为△ABC的中心,如图所示,D为边AB的中点,连接OD,则:OD⊥AB,且;∴OA=1,即外接圆半径为1,且∠AOB=120°;∴;∴对两边平方得,;∴1=x2+y2﹣xy;∴x2+y2=xy+1≥2xy,当且仅当x=y时取“=”;∴xy≤1;∴x•y的最大值为1.【解答】解:(I)在△ABC中,由余弦定理cosB==19.20.=.∵ac≤()2=.∴当ac=时,cosB取得最小值.(II)由余弦定理得b2=a2+c2﹣2accosB.∵=accosB=3.∴9=a2+c2﹣6,∴a2+c2=15.又∵a+c=3,∴ac=6.∴a=2,c=或a=,c=2.∴cosB=,sinB=.由正弦定理得,∴sinA==1或.∴A=或A=.20.【解答】解:(Ⅰ)∵f(x)==m(1+sin2x)+cos2x=m+msin2x+cos2x由已知,∴2m=2即m=1(Ⅱ)由(Ⅰ)得∴当=﹣1时,f(x)的最小值为此时2x+=即{x|,k∈Z}21.【解答】解(1)由题意得,,因为,所以(x+4)y﹣(y﹣2)x=0,即x+2y=0,①(2)由题意得,,因为,所以(x+6)(x﹣2)+(y+1)(y﹣3)=0,即x2+y2+4x﹣2y﹣15=0,②由①②得或当时,,,,当时,,,则,所以,四边形ABCD的面积为16则,22.【解答】解:(1)因为=∴f(x)的最大值是4.(2)∵f(x)=1,∴,又,即,所以,=.23.【解答】解:(1)∵=(3,6),∴==(1,2),=﹣=(﹣2,﹣4),∴==(2,4)﹣(1,2)=(1,2).(2)设E(x,y),则=(x+1,y﹣2),=(x-2,y-8),∵=(-2,-3),⊥,∥,∴,解得.∴E点坐标(﹣,).24.【解答】解:(1)因为(﹣)•(+)=,即﹣=,即||2﹣||2=,所以,||2=||2﹣=1﹣=,故||=.(2)因为||2 =||2+4+|2|2=1﹣1+1=1,故||=1.又因为•()=||2+2=1﹣=,∴cos θ=═,又0°≤θ≤180°,故θ=60°.。
高中数学习题必修4及答案
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
高一数学必修4《平面向量》测试卷(含答案)
《平面向量》测试卷考试时间:120分钟满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.对于任意向量a b 和,下列命题中正确的是()A.若,a b 满足a b >,且a b 与同向,则a b >B.a b a b +≤+ C .a b a b ⋅≥ D.a b a b -≤-2.已知平面向量(1,1),(1,1)a b ==-,则向量1322a b -等于()A .(2,1)--ﻩ B.(2,1)- C.(1,0)- D.(1,2)- 3.下列各组向量中,可以作为基底的是() A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),(,)24e e =-=-4.已知5,28,3()AB a b BC a b CD a b =+=-+=-,则( ) A.A B D 、、三点共线B.A B C 、、三点共线 C.B C D 、、三点共线D.A C D 、、三点共线5.已知正方形ABCD 的边长为1,,,,AB a BC b AC c ===则a b c ++等于() A.0B.32D.226.已知,,,,OA a OB b OC c OD d ====且四边形ABCD 为平行四边形,则() A.0a b c d +++=B.0a b c d -+-= C.0a b c d +--=D .0a b c d --+=7.若(2,3),(4,7)a b ==-,则b a 在方向上的投影为()365135658.在三角形ABC 中,,AB c AC b ==,若点D 满足2BD DC =,则AD =( )A.2133b c + B.5233b c - C.2133b c - D.1233b c + 9.如图,正六边形ABCDEF 中,BA CD EF ++=() A.0B.BE C.AD D .CF10.已知点O N P 、、在三角形ABC 所在平面内,且OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O N P 、、依次是三角形ABC 的( )A.重心、外心、垂心B.重心、外心、内心C.外心、重心、垂心D .外心、重心、内心 11.如图,三角形OAB 中,3,2ON NA OM MB ==,AM 和BN 交于点G ,OG mOA nOB =+,则()AA.11,23m n ==B.11,32m n ==C.11,63m n ==D.11,26m n ==12.定义平面向量之间的一种运算“⊗”如下:对任意的(,),(,)a m n b p q ==,令a b mq np ⊗=-.下列说法错误的是( )A.若a b 与共线,则0a b ⊗= B.a b b a ⊗=⊗C.,R λ∈∀都有()()a b a b λλ⊗=⊗D.2222()()a b a b a b ⊗+⋅= 二.填空题.(本大题共4小题,每小题5分,共20分)13.已知向量(2,1),(1,),(1,2)a b m c =-=-=-,若a b +平行于c ,则m =.14.已知三角形ABC 的三个顶点坐标分别为(1,1)A ,(4,1)B ,(4,5)C ,则tan A 的值为. 15.我们知道,(1,0),(0,1)a b ==是一组单位正交基底.请再任意写出一组单位正交基底.16.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为,DE DC ⋅的最大值为.三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.平面向量的数量积a b ⋅是一个非常重要的概念,利用它可以容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、长方形对角线相等、正方形的对角线垂直平分等、三角形的三条中线交于一点、三角形的三条垂线交于一点、三角形的三条角平分线交于一点等.请选择其中一个命题,给出具体证明.18.已知平面直角坐标系中,点O 为原点,(3,4),(5,12)A B ---. (1)求AB 的坐标及AB ;(2)若,OC OA OB OD OA OB =+=-,求OC 及OD 的坐标; (3)求OA OB ⋅.19.在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----. (1)求以线段,AB AC (2)设实数t 满足()0AB tOC OC -⋅=,求实数t 的值 20.如图,在矩形ABCD 中,2AB BC ==, 点E 为BC 的中点,点F 在边CD 上, 若2AB AF ⋅=AE BF ⋅的值.21.已知,m n 为单位向量,夹角为3π. (1)求cos 35,2m n m n 〈+-〉;(2)若22,3m n km n π〈-+〉=,求实数k 的值.22.已知(2,1),(3,2),(1,4)A B D -.(1)求证:AB AD ⊥;(2)若四边形ABCD 是矩形,试确定C 点的坐标;(3)若点M 为直线OD 上的一个动点,当MA MB ⋅取最小值时,求OM 的坐标.《平面向量》答案解析一.选择题.(本大题共12小题,每小题5分,共60分)BDBAD BAADC AB二.填空题.(本大题共4小题,每小题5分,共20分)13.1- 14.4315.(cos ,sin ),(sin ,cos )a b θθθθ==-(答案不唯一) 16.1,1三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)22222222=,2=+==(+)2ABC C AB AC CBAB AC CBAB AB AC CB AC CB AC CB AC CBAC π=+∴=++⋅⊥∴17.解:勾股定理:三角形中,不妨设则有 证明: 又2220CB AB AC CB⋅=∴=+18.(1)(8,8),82(2)(3,4)(5,12)(2,16)(3,4)(5,12)(8,8)(3)(3,4)(5,12)33AB AB OC OD OAOB =-==--+-=-=----=-⋅=--⋅-=解:19.(1)(3,5),(1,1),(2,6),(4,4)210,42(2)(2,1)AB AC AB AC AB AC AB AC AB AC OC AB tOC ==-+=-=∴+=-=∴=--∴-=解:由题意知则 所求的两条对角线长分别为 (3,5)(2,)(23,5)()(23,5)(2,1)511()05110115t t t t AB tOC OC t t t AB tOC OC t t ---=++∴-⋅=++⋅--=---⋅=∴--=∴=-220.,(1)()()222(1)2DF xAB CF x ABAB AF AB AD DF AB AD xAB xAB xxBF BC CF BC ABAE==-⋅=⋅+=⋅+==∴=∴=+=+-∴解:方法一:设则222()(1)212()(1)2211)2211)2422BF AB BE BC ABAB BC BCABAB BC⎡⎤⋅=+⋅+-⎢⎥⎣⎦⎡⎤=+⋅+-⎢⎥⎣⎦=-+=-⨯+⨯=方法二:以(0,0),(2,0),(2,1),(,2)(2,0),(,2),(2,1),(2)2(,2)1(2A AB x AD yA B E F xAB AF x AE BF xAB AFxxAE BF∴====-⋅=∴⋅=∴=∴⋅=为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,则(12)⋅-=121.(1)29(35)(2),357,232(35)(2)33cos35,2143523(2)(2)(),223,a bm n m n m n m nm n m nm n m nm n m nm n km n km n km⋅=∴+⋅-=+=-=+⋅-∴〈+-〉==+--⋅+=-=解:由题意知232cos31,1()2n k kkk kπ+=+∴=∴=-=或舍(1)(1,1),(3,3),0(2)(,),(3,3)(3,2)0,5(0,5)(3)(,),(,),(AB AD AB AD AB ADC x y AD BC x y x y C M a b OM a b OD ==-∴⋅=∴⊥=-=--∴==∴==-22.解:由题意得 设则由得 设则21,4),,144(2,1)(3,2)(2,14)(3,24)1778714,3417O M D a bb aMA MB a b a b a a a a a a a MA MB b ∴=-∴=-∴⋅=--⋅--=-+⋅-+=++∴=-⋅=三点共线 当,时可取得最小值,此时 714(,)3417OM ∴=-。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高中数学必修四试卷(含详细答案)
高中数学必修四试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是 A.第一象限角是锐角C.终边相同的角一定相等零向量的长度为零,方向是任意的以上命题中,正确命题序号是B.D.钝角是第二象限角不相等的角,它们终边必不相同 1 2.函数 y 2sin( - x一)的周期,振幅, 4初相分别是B. C.-D. 2,2,-3.如果cos(A) 1 F一,那么 sin(— A) 22A. 12B.C. D.4 .函数 y sin( A.奇函数5 .给出命题2005 2B.2004x)是偶函数 C.非奇非偶函数D.既是奇函数又是偶函数(2) 若a , b 都是单位向量,则 a = b . uuu uuu(3) 向量AB 与向量BA 相等.uuu uuu若非零向量AB 与CD 是共线向量,则A,B, C, D 四点共线.A. (1)B. (2)C. (1)和(3)D.(1)和(4)6.如果点P(sin 2 , cos2 )位于第三象限,那么角所在象限是A.第一象限B.第二象限 C. 第三象限 D. 第四象限uur uur7.在四边形 ABCD 中,如果ABgDD 0 uuu uuuAB DC ,那么四边形ABCD 的形状是A.矩形B.菱形C. 正方形D.直角梯形8.若是第一象限角,则sincos 的值与1的大小关系是A . sin cosB. sin cosC. sin cosD.不能确定9.在△ ABC 中, sinC 2cosAsinB,则此三角形必是A.等腰三角形B.正三角形C. 直角三角形D.等腰直角三角形(2)求满足条件sin( x) sin( x) 2cos常的锐角x.10 .如图,在△ ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于uur uuur(2)在^ ABC 中,若ABgAC 0,则^ ABC 是钝角三角形.uuu 1 uur uuur(3)在空间四边形 ABCD 中,E,F 分别是BC,DA 的中点,则FE -(AB DC).2以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15 .(本小题满分13分)3已知sin 25(1)求 cos2 及 cosuuur 2 uuu uuur uurA. BG — BEB. CG 2GF3uuur 1 uuur1 uur2 uuin 1 C. DG AG D.—DA 一 FC —BC23 3 211.设扇形的周长为 8cm,面积为4cm 2,则扇形的圆心角的弧度数是12 .已知 tan 2, tan( r r13 .已知 a (3, 1), b (sin 14 .给出命题:r r 4sin 2coscos ),且 a / b则 ------5cos 3sin(1)在平行四边形 ABCD 中, uuu AB uuu r ADuuur AC . 5 3 [, 4 2的值;].点G ,则下列各等式中不正确的是 、填空题(本大题共4小题,每小题5分,共20分))3,则 tan .5已知函数 f(x) sin x x/3cos- , x R . 2 2(1)求函数f(x)的最小正周期,并求函数f (x)在x [ 2 ,2 ]上的单调递增区间;(2)函数f (x) sinx(x R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.17 .(本小题满分13分)已知电流I 与时间t 的关系式为I Asin( t ).(1)下图是 I Asin( t ) (0, 求I Asin( t )的解析式;一,,_ 1 . .... .、、 (2)如果t 在任意一段 ——秒的时间内,电流 150I Asin( t )都能取得最大值和最小值,那么 的最小正整数值是多少?一)在一个周期内的图象,根据图中数据2 ------------------------------uuu uuu uuur已知向量 OA (3, 4) , OB (6, 3) , OC (5 m, 3 m).(D 若点A, B, C 能够成三角形,求实数 m 应满足的条件;(2)若△ ABC 为直角三角形,且 A 为直角,求实数 m 的值.19 .(本小题满分13分)uuu uuu 设平面内的向量 OA (1,7), OB uuu uuu uuu动点,且PAgPB 8 ,求OP 的坐标及 APB 的余弦值.uuuu(5,1), OM (2,1),点P 是直线OM 上的一个20.(本小题满分13分)一,一 r 3x 3x r 已知向重 a (cos - ,sin —), b2 2r r r r(1)求a8及a b ;(cos-, sin x),且 x [—,]. 2 2 2r r(2)求函数 f (x) agD的最大值,并求使函数取得最大值时 x 的值.三、解答题515.解:(1)因为一4因为x 为锐角,所以xsin z 单调递增区间是[—2k ,— 2k222k、选择题 (1) (2) (3)14.同11.2 12. -13 13. 二、填空题中数学必修(4)试卷参考答案及评分标准因此cos2sin 2 24分)由 cos 22cos 210 10 (8分)(2)因为 sin( x) sin( x) 2cos.10 10,所以 2cos (1 sin x)10 101,所以sin x 一2(11 分)(2分)13分)16.解:y sin- J32 (1)最小正周期 x cos-221 23分)](k Z).所以, 2 5 3 4k0,得函数y5 3x sin — 2 4k ,k w ,而[3 \?3cos-, 2 Z .x [ 2 ,2 ]得单调递增区间是 5分)[K ]8分)uuu uuur(2)若△ ABC 为直角三角形,且 A 为直角,则AB AC,(2)把函数y sin x 图象向左平移 一,得到函数y sin (x 一)的图象,…㈠。
高一数学必修4综合能力测试
本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α=-3,则α是第( )象限角.( ) A .一 B .二 C .三 D .四[答案] C[解析] ∵-π<-3<-π2,∴-3为第三象限角.2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 2[答案] A[解析] 由题意得⎩⎪⎨⎪⎧ 2r +l =8,l =2r.解得⎩⎪⎨⎪⎧r =2,l =4.所以S =12lr =4(cm 2).3.有三个命题:①向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一条直线上;②向量a 与b 平行,则a 与b 的方向相同或相反;③单位向量都相等,其中真命题有( )A .0个B .1个C .2个D .3个[答案] A4.已知sin θ<0,tan θ>0,则1-sin 2θ化简的结果为( ) A .cos θ B .-cos θ C .±cos θ D .以上都不对[答案] B[解析] ∵sin θ<0,tan θ>0,故θ为第三象限角,∴cos θ<0. ∴1-sin 2θ=cos 2θ=|cos θ|=-cos θ. 5.tan(-1560°)的值为( ) A .- 3 B .-33C.33D. 3 [答案] D[解析] tan(-1560°)=-tan1560°=-tan(4×360°+120°)=-tan120°=-tan(180°-60°)=tan60°= 3.6.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75°[答案] D[解析] ∵a ∥b ,∴sin α·cos α=34×13,即sin2α=12又∵α为锐角,∴0°<2α<180°. ∴2α=30°或2α=150° 即α=15°或α=75°.7.已知sin α>sin β,那么下列命题中成立的是( ) A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β [答案] D[解析] 可以结合单位圆进行判断. 8.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[121]C .[12,32]D .[32,1][答案] B[解析] 可以借助单位圆或函数的图象求解.9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位[答案] C10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( )A .0B .-1C .0或-1D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x2·(x +1)2+x 2=22,即x 2+x =0,解得x =0或x =-1.11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34B.34 C .-43D.43[答案] B[解析] 主要考查三角函数的运算,分子分母同时除以cos α可得tan α=-3,带入所求式可得结果.12.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >c . 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若tan α=3,则sin αcos α的值等于________.[答案] 310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.函数y =sin(π3-2x )+sin2x 的最小正周期是________.[答案] π[解析] y =sin π3cos2x -cos π3sin2x +sin2x =32cos2x +12sin2x =cos(2x -π6),故T =2π2=π.16.已知三个向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,则k =________.[答案] -2或11[解析] 由A 、B 、C 三点共线,可得AB →=λBC →,即(4-k ,-7)=λ(6,k -5),于是有方程组⎩⎪⎨⎪⎧k +6λ=4,kλ-5λ=-7,解得⎩⎪⎨⎪⎧k =-2λ=1,或⎩⎨⎧k =11λ=-76.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(α)-sin 2(5π2-α)的值.[解析] 原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1 又∵tan α=12,∴原式=12+112-1=-3.18.(本题满分12分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.19.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2), b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2 =13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.20.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期;(2)若f (θ)=3,其中0<θ<π2cos(θ+π6)的值.[解析] (1)由题意得f (x )=3sin2x +(sin x +cos x )·(sin x -cos x )=3sin2x -cos2x =2sin(2x -π6),故f (x )的最小正周期T =2π2=π.(5分)(2)由(1)知,f (θ)=2sin(2θ-π6),若f (θ)=3,则sin(2θ-π6)=32.又因为0<θ<π2,所以-π6<2θ-π6<5π6,则2θ-π6=π3或2θ-π6=2π3,故θ=π4或θ=5π12.(9分)当θ=π4时,cos(θ+π6)=cos(π4+π6)=cos π4cos π6-sin π4sin π6=6-24.(12分)当θ=5π12时,cos(θ+π6)=cos(5π12+π6)=cos(π-5π12)=-cos 5π12=-cos(π4+π6)=-6-24.(15分)21.(本题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的最大值为22,最小值为-2,周期为π,且图象过(0,-24). (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解析] (1)∵f (x )=A sin(ωx +φ)+B 的最大值为22,最小值为-2.∴A =322,B =22.又∵f (x )=A sin(ωx +φ)+B 的周期为π, ∴φ=2πω=π,即ω=2.∴f (x )=322sin(2x +φ)+22又∵函数f (x )过(0,-24),∴-24=322sin φ+22,即sin φ=-12.又∵|φ|<π2,∴φ=-π6,∴f (x )=322sin(2x -π6)+22.(2)令t =2x -π6,则y =322sin t +22,其增区间为:[2k π-π2,2k π+π2],k ∈Z .即2k π-π2≤2x -π6≤2k π+π2,k ∈Z .解得k π-π6≤x ≤k π+π3.(k ∈Z )所以f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。
(word完整版)高一数学必修四综合试题及详细答案
1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修四测试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1、已知sin()0,cos()0πθπθ+<-<,则角θ所在的象限是 ( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
2、cos ,[,]62
y x x ππ
=∈-
的值域是 ( )
A 、[0,1]
B 、[1,1]- C
、 D 、1[,0]2
-
3、在ABC 的内角A ,B ,C 的对边分别是a ,b ,c ;若a ,b ,c 成等比数列,且c =2a ,则cos B =( )
A 、
1
4
B 、
3
4
C
、4
D
、
3
4、“1
2
a =
”是“函数22cos 2sin 2y ax ax =-的最小正周期委π”的 ( ) A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
5、若角θ的终边过点P (4,3)(0)a a a -≠,则sin cos θθ+等于 ( ) A 、15- B 、15 C 、1
5
± D 、不能确定,与a 的值有关 6、函数()sin()6
f x x π
=+在(0,2)π上的图象与x 轴的交点的横坐标为 ( )
A 、1166
π
π
-
或
B 、566ππ或
C 、51166ππ或
D 、766ππ或 7、下列判断正确的是 ( )
A 、若向量A
B CD 与是共线向量,则A,B,C,D 四点共线
B 、单位向量都相等
C 、共线的向量,若起点不同,则终点一定不同
D 、模为0是一个向量方向不确定的充要条件
8、如图,在菱形ABCD 中,下列式子成立的是 ( ) A 、AB CD = B 、AB BC = C 、AD CB = D 、AD BC =
9、设s ,t 是非零实数,,i j 是单位向量,当两向量,s i t j t i s j +-的模相等时,,i j 的夹角是( ) A 、
6
π B 、
4π C 、3π D 、2
π 10、点P 在平面上作匀速直线运动,速度向量(4,3)v =- (即点P 的运动方向与v 相同,且每秒移动的距离为||v 各单位)。
设开始时点P 的坐标为(-10,10),求5秒后点P 的坐标为 ( ) A 、(2,4)-
B 、(30,25)-
C 、(10,5)-
D 、(5,10)-
11、如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界)
,若12OP aOP bOP =+,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )
A 、a>0 ,b>0
B 、a>0 ,b<0
C 、a<0 ,b>0
D 、a<0 ,b<0
12、把函数cos 2y x =的图象按向量a 平移,得到函数sin 2y x =的图象,则a 可以是:
( )
A 、(
,0)2
a π
= B 、(,0)2a π
=-
C 、(,0)4a π=
D 、(,0)4
a π
=- 二、填空题(本题共4小题,每小题4分,共16分) 13
、函数sin y x x =+在区间[0,
]2
π
上的最小值为_______________;
14、设向量a b 与的夹角为θ,且(3,3),2(1,1)a b a =-=-
θ= ; 15
、在,3,,30ABC a b c a A ==≠=中,则角C =_______度;
16、在锐角,cos()sin()ABC A B A B +=-中,则tan A = ______________. 三、解答题(本大题共4小题,共48分.解答应写出文字说明,证明过程或演算步骤)
17、(本题满分14分,Ⅰ,Ⅱ小题各7分) (Ⅰ)已知2sin(3)cos()πθπθ+=+,求2
22sin 3sin cos cos θθθθ+-的值
(Ⅱ)、对于函数|sin |()y x x R =∈,完成以下问题: (1)在下面的坐标系中画出它的图象并观察其周期; (2)它是奇函数?还是偶函数?为什么? (3)写出它的单调递减区间。
y
1
x
-1
18、(本题满分14分,Ⅰ,Ⅱ小题各7分)
(Ⅰ)在,||2,60ABC AB BAC =∠=中,G 是ABC 的重心,求GB GC .
(Ⅱ)、已知向量33(cos ,sin ),(cos ,sin ),||1,[0,]2222
x x x x
a b a b x π==-+=∈,求x 。
19、(本题满分10分)
已知函数()2sin()2sin ,3f x x x π=+
- ,0.2x π⎡⎤∈-⎢⎥⎣⎦
(Ⅰ)若cos x =
求函数()f x 的值; (Ⅱ)求函数()f x 的值域。
20、(本题满分10分).
如图,已知OPQ 是半径为1,园心角为
3π
的扇形,C 是扇形弧上的动点,ABCD 是扇形的内结矩形,记COP α∠=,求当角α取何值时, 矩形ABCD 的面积最大?并求出这个最大值.。